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Abstract: Tissue engineering offers auspicious opportunities in oral and maxillofacial surgery to 

heal bone defects. For this purpose, the combination of cells with stability-providing scaffolds is 

required. Jaw periosteal cells (JPCs) are well suited for regenerative therapies, as they are easily 

accessible and show strong osteogenic potential. In this study, we analyzed the influence of 

uncoated and polylactic-co-glycolic acid (PLGA)-coated β-tricalcium phosphate (β-TCP) scaffolds 

on JPC colonization and subsequent osteogenic differentiation. Furthermore, interaction with the 

human blood was investigated. This study demonstrated that PLGA-coated and uncoated β-TCP 

scaffolds can be colonized with JPCs and further differentiated into osteogenic cells. On day 15, after 

cell seeding, JPCs with and without osteogenic differentiation were incubated with fresh human 

whole blood under dynamic conditions. The activation of coagulation, complement system, 

inflammation, and blood cells were analyzed using ELISA and scanning electron microscopy (SEM). 

JPC-seeded scaffolds showed a dense cell layer and osteogenic differentiation capacity on both 

PLGA-coated and uncoated β-TCP scaffolds. SEM analyses showed no relevant blood cell 

attachment and ELISA results revealed no significant increase in most of the analyzed cell activation 

markers (β-thromboglobulin, Sc5B-9, polymorphonuclear (PMN)-elastase). However, a notable 

increase in thrombin-antithrombin III (TAT) complex levels, as well as fibrin fiber accumulation on 

JPC-seeded β-TCP scaffolds, was detected compared to the scaffolds without JPCs. Thus, this study 

demonstrated that besides the scaffold material the cells colonizing the scaffolds can also influence 

hemostasis, which can influence the regeneration of bone tissue. 

Keywords: jaw periosteal cells; bone tissue engineering; biomaterial; β-tricalcium phosphate; 

hemocompatibility 

 

1. Introduction 

The repair of small and large bone defects is of key interest in oral and maxillofacial 

surgery. Thus, molecular, as well as cell-based therapies are applied for the engineering 

of new bone tissue. In most studies, mesenchymal stromal cells (MSCs) derived from bone 

marrow have been used for regenerative bone formation [1,2]. These cells have a 

multipotential differentiation capacity into osteoblasts, adipocytes, and chondrocytes 

[3,4]. MSCs derived from the periosteal tissue are well accessible during routine 

maxillofacial surgeries [5]. Jaw periosteal cells (JPCs) show strong multipotency [6] and 
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higher proliferation and self-renewal rates compared to bone marrow-derived MSCs [7,8]. 

In addition, JPCs exhibit reliable osteogenic differentiation while showing a lower 

chondrogenic and adipogenic differentiation capacity compared to bone marrow-derived 

MSCs. [8]. Consequently, JPCs represent an optimal alternative for bone tissue 

engineering [9–12].  

Besides cellular components, biomaterials used as scaffolds for cells play a decisive 

role in bone repair [13]. The scaffolds should be biocompatible, support cell attachment, 

provide stability, and have osteoconductive and osteoinductive properties. For this 

purpose, different scaffold materials were used, such as hydroxyapatite [14], low-

temperature calcium phosphate cement [15], bioactive glass [16], polylactide acid [17], and 

β-TCP [18]. Calcium phosphate bioceramics have been reported to possess 

osteoconductive and osteoinductive characteristics due to their structural and chemical 

similarity to bone tissue, and they can facilitate the osteogenic differentiation of 

mesenchymal stem cells [19]. β-TCP also offers good structural stability during 

biodegradation and new bone formation [20]. Moreover, during degradation, large 

quantities of calcium (Ca2+) and phosphate ions (PO42-) are released, which are essential 

inorganic salts for new bone formation [21]. Due to these advantages, β-TCP scaffolds are 

frequently used in the field of oral and maxillofacial surgery [22,23]. Furthermore, these 

materials for bone regeneration can be functionalized with cell-binding ligands to 

improve cell adhesion on their surface [24,25]. It has been demonstrated that a thin coating 

with poly-lactic-co-glycolic acid (PLGA) can improve the mechanical stability and 

biocompatibility of β-TCP scaffolds and increase the adhesion and proliferation of JPCs 

[26]. 

Immediately after implantation into the bone defects, scaffolds/implants come into 

close contact with blood, which can lead to the adsorption of plasma proteins on their 

surface. Plasma proteins can trigger coagulation via the intrinsic pathway, activation of 

leukocytes, adhesion and activation of platelets [27]. This blood–biomaterial interaction 

leads to the provisional matrix formation and influences subsequent host reactions to the 

implants. In the case that scaffolds are colonized with cells, resident cells also come into 

close contact with blood after the implantation. As a complex biological system, 

interactions between blood components and JPCs cultivated three-dimensionally on the 

scaffolds cannot be excluded and also need to be examined in detail. Thus, in this study, 

we evaluated the interaction of fresh human blood with PLGA-coated and uncoated β-

TCP scaffolds seeded with undifferentiated or osteogenically induced JPCs. 

Hemocompatibility tests were performed according to ISO 10993-4 guidelines.  

2. Results 

2.1. Detection of JPCs on Uncoated and PLGA-Coated β-TCP Scaffolds  

Uncoated β-TCP scaffolds showed a rough porous surface, while the PLGA-coated 

scaffolds showed a smooth and less porous structure (Supplementary Figure S1). The β-

TCP scaffolds with and without PLGA coating were seeded with 5 × 104 JPCs and cultured 

either in hPL10 maintenance medium or osteogenic induction medium and after 15 days, 

histological sections were generated. Using toluidine blue staining, cells were detected in 

sections of PLGA-coated as well as uncoated β-TCP scaffolds (Figure 1A) with more 

intense staining in PLGA-coated β-TCP scaffolds. The presence of cells in the scaffolds 

was also confirmed by SEM (Figure 1B). Depending on the surface structure of the 

scaffolds, a confluent layer of cells was detected on smooth scaffold surfaces, but also 

porous surfaces with cavities contained incorporated cells. JPCs cultivated on PLGA-

coated β-TCP scaffolds without osteogenic induction at days 6 and 13 showed a slightly 

lower cell viability compared to the JPCs on uncoated scaffolds (Figure 1C). However, no 

significant differences in cell viability were detected with osteogenically induced JPCs at 

days 6 and 13. The osteogenic induction of JPCs seeded on PLGA-coated β-TCP scaffolds 
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led to improved cell viability in contrast to JPCs without osteogenic induction at days 6 

and 13.  

 

Figure 1. Detection of JPCs on uncoated or PLGA-coated β-TCP scaffolds with and without 

osteogenic induction and analysis of cell viability. 5 × 104 JPCs were seeded and cultivated for 15 

days with or without osteogenic induction medium. (A) Histological sections of β-TCP scaffolds 

with or without PLGA coating were stained with toluidine blue. Arrows indicate toluidine blue-

stained cells in histological sections. (B) Overview and magnified SEM images of JPCs and 

osteogenically induced JPCs on β-TCP scaffolds with or without PLGA coating. Black arrows 

indicate cells on the scaffolds. (C) Cell viability was determined by measuring metabolic activity 

using the colorimetric EZ4U assay. The conversion of tetrazolium salts to formazan derivatives by 

living cells was measured photometrically at 450 nm. Results are shown as the mean + SD (n = 3). 

Statistical differences were determined using two-way ANOVA (* p < 0.05, ** p < 0.01). 

2.2. Osteogenic Differentiation of JPCs and Cell Mineralization on β-TCP Scaffolds 

JPCs were seeded onto β-TCP scaffolds with and without PLGA coating and 

cultivated with or without osteogenic induction medium. After 6 and 13 days of 

cultivation, osteogenic differentiation of JPCs was assessed by investigating ALP 

expression using real-time qRT-PCR, ALP activity, and hydroxyapatite formation (Figure 

2).  
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Figure 2. Osteogenic differentiation of JPCs seeded on uncoated and PLGA-coated β-TCP scaffolds. 

(A) Detection of ALP gene expression in JPCs cultivated for 6 and 13 days on uncoated or PLGA-

coated β-TCP scaffolds with or without osteogenic induction using qRT-PCR. The mRNA levels 

were normalized to GAPDH and the results are presented relative to JPCs without osteogenic 

induction on day 6. Results are shown as the mean + SEM (n = 3). (B) Detection of alkaline 

phosphatase activity of JPCs cultivated on uncoated or PLGA-coated scaffolds with or without 

osteogenic induction medium using the Sensolyte pNPP Alkaline Phosphatase Colorimetric Assay 

kit. ALP concentrations were normalized to total protein concentrations, which were determined 

using a BCA assay. Results are shown as the mean + SEM (n = 3). Statistical differences were 

determined using two-way ANOVA (** p < 0.01, *** p < 0.001, **** p < 0.0001). (C) Detection of 

mineralization on day 15 in uncoated or PLGA-coated β-TCP scaffolds with and without osteogenic 

induction using OsteoImaging mineralization assay. Nuclei were stained blue using Hoechst dye. 

The green fluorescent staining showed cell mineralization. Arrows indicate confluent cell layers on 

β-TCP scaffolds. 

After 6 days of osteogenic induction, significantly increased expression of ALP 

transcript levels was detected in JPCs cultivated on uncoated β-TCP scaffolds compared 

to JPCs without osteogenic induction (Figure 2A). After 13 days of cultivation on PLGA-

coated β-TCP scaffolds, significantly higher ALP transcript levels were detected in JPCs 

with osteogenic induction compared to the JPCs without osteogenic induction. The 

osteogenically induced JPCs on PLGA-coated scaffolds also showed significantly higher 

ALP transcript levels compared to the JPCs on uncoated β-TCP scaffolds. The osteogenic 
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stimulation of JPCs on PLGA-coated β-TCP scaffolds resulted in significantly increased 

ALP activity (Figure 2B). Furthermore, a significantly increased ALP activity was detected 

at day 6 and 13 in osteogenically stimulated JPCs seeded on PLGA-coated scaffolds 

compared to those seeded on uncoated scaffolds.  

Furthermore, the hydroxyapatite produced by the cells was detected after 15 days of 

cultivation using the OsteoImage mineralization assay (Figure 2C). An enhanced and 

continuous mineralization layer was detected in scaffolds cultivated in osteogenic 

induction medium compared to the scaffolds cultivated in the standard hPL10 

maintenance medium, which showed only sporadic mineralization. Thereby, the 

successful osteogenic differentiation of JPCs was demonstrated in PLGA coated and 

uncoated β-TCP scaffolds.  

2.3. Interaction of β-TCP Scaffolds with Human Blood  

β-TCP scaffolds with or without cells were incubated for 90 min at 37 °C with human 

whole blood to analyze the impact of β-TCP scaffolds and seeded cells on different stages 

of the hemostatic system.  

Analysis of Blood Cell Counts 

The interaction of whole blood with biomaterial surfaces can lead to the activation of 

platelets and leukocytes as well as to the adhesion of these cells to the surface of scaffolds. 

These interactions can lead to decreased cell numbers in the analyzed blood samples. 

Therefore, the cell counts were measured before and after the incubation of scaffolds with 

blood. Performed analyses showed no significant differences in the numbers of platelets, 

erythrocytes, and leukocytes of the control blood without scaffolds compared to the 

scaffolds with or without cells and with or without osteogenic induction (Figure 3).  

 

Figure 3. Analysis of blood cell counts after the incubation of blood with β-TCP scaffolds seeded 

with and without JPCs. PLGA-coated or uncoated β-TCP scaffolds with or without JPCs and with 

or without osteogenic induction were incubated for 90 min at 37 °C with fresh human blood and the 

numbers of platelets, erythrocytes, and leukocytes were analyzed. Whole human blood without 

scaffolds served as a control. Results are shown as the mean + SD (n = 3). Statistical differences were 
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determined using one-way ANOVA for repeated measurements followed by Bonferroni’s multiple 

comparison test. 

2.4. Analysis of Activation Markers 

2.4.1. Activation of Leukocytes 

The contact of blood with artificial surfaces can trigger inflammatory processes, 

which can lead to the activation of leukocytes, such as polymorphonuclear (PMN) 

leukocytes. This can result in the release of the proteolytic enzyme PMN elastase. In this 

study, incubation of blood with scaffolds alone or with scaffolds colonized with cells did 

not significantly alter the PMN elastase concentration compared to the control group  

(Figure 4). Thus, the tested scaffolds and cells did not activate an inflammatory reaction 

in the analyzed blood samples. 

 

Figure 4. Analysis of hemocompatibility after the incubation of β-TCP scaffolds with and without 

cells. Analysis of PMN elastase, TAT, SC5b-9, and β-TG concentrations in plasma after the 

incubation of PLGA-coated or uncoated β-TCP scaffolds with or without JPCs and with or without 

osteogenic induction for 90 min at 37 °C with fresh human blood. Blood samples without scaffolds 

served as controls. Results are shown as the mean + SD (n = 3). Statistical differences were 

determined using Kruskal–Wallis tests followed by Dunn’s multiple comparison tests (PMN 

elastase) or one-way ANOVA followed by Bonferroni’s multiple comparison tests. 
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2.4.2. Activation of the Coagulation System 

The interaction of plasma proteins with artificial surfaces can lead to the activation 

of the intrinsic coagulation pathway. This results in the conversion of prothrombin into 

thrombin, which in turn leads to the formation of a dense fibrin network. Excessive fibrin 

formation is counteracted by the coagulation inhibitor antithrombin III, which neutralizes 

thrombin by forming TAT. Thus, TAT concentration in plasma serves as a marker for the 

detection of coagulation activation. Scaffolds seeded with JPCs resulted in an increased 

TAT plasma concentration compared to the scaffolds without cells (Figure 4). In 

particular, the β-TCP scaffolds seeded with JPCs and cultivated in an osteogenic induction 

medium led to significantly higher TAT levels. The scaffolds without cells showed similar 

TAT values as the control.  

2.4.3. Activation of the Complement System 

The complement system, which consists of more than 30 proteins, is part of the innate 

immune system. The contact of foreign surfaces with blood can activate the complement 

cascade and leads to the generation of the terminal complement complex SC5b9 complex. 

As a final complex, SC5b-9 is well suited as an indicator of complement activation. The 

incubation of scaffolds with and without cells in human blood did not induce complement 

activation (Figure 4).  

2.4.4. Activation of Platelets  

The activation of platelets leads to the release of β-TG, which is stored in alpha 

granules of platelets. The incubation of uncoated or PLGA coated β-TCP scaffolds with 

and without cells for 90 min in whole blood did not lead to an increased β-TG 

concentration (Figure 4). Furthermore, the cultivation of JPCs in osteogenic or 

maintenance medium did not influence measured β-TG levels in plasma. 

2.5. SEM Analyses of the β-TCP Scaffolds after Blood Contact 

SEM was performed to visualize potential fibrin deposits and the attachment of 

platelets to the scaffolds. The overview images of uncoated β-TCP scaffolds without cells 

showed an intense red coloration (Figure 5). In contrast, PLGA-coated scaffolds without 

cells showed reduced red accumulations in the cavities of the scaffold and cell-seeded 

scaffolds were shown to be largely white with only a few red accumulations. SEM images 

of the scaffolds without cells also showed accumulations of erythrocytes in the cavities of 

the scaffold. Thus, the visible red color could be caused by the entrapped erythrocytes in 

the cavities of the scaffolds. JPC seeded scaffolds showed small accumulations of fibrin 

networks. Below those fibrin fibers, dense JPC layers were visible, which partly covered 

the cavities and might be responsible for the reduced entrapment of erythrocytes and red 

coloration of the scaffolds. A confluent cell layer was detected on the surface of PLGA-

coated and uncoated scaffolds cultivated in osteogenic induction medium and reduced 

fibrin networks.  
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Figure 5. Overview and representative SEM images of β-TCP scaffolds seeded with osteogenically induced and untreated 

JPCs after the incubation with human blood. SEM images of uncoated and PLGA-coated scaffolds after 90 min of 

incubation with human whole blood in the rotation model. White frames are showing regions with increased 

magnification. 

3. Discussion 

The insertion of implants results in tissue injury and direct contact with blood, which 

can lead to the activation of platelets, leukocytes, and coagulation [27]. A provisional 

matrix is formed that influences the subsequent host responses to implants. In addition to 

the scaffold material, the cells seeded on the scaffolds may also have an impact on 

hemocompatibility. In this study, we used human fresh blood to analyze the impact of 

PLGA-coated or uncoated β-TCP scaffolds seeded with untreated or osteogenically 

induced JPCs on hemocompatibility according to ISO 10993-4 for the biological evaluation 

of medical devices.  

JPCs represent an excellent stem cell type for the repair of small and large bone 

defects in oral and maxillofacial surgery. The combination of stability-providing scaffolds 

with cells showing osteogenic potential can be suitable for bone regenerative therapies. 

Furthermore, the use of PLGA-coated β-TCP scaffolds in combination with JPCs can 

increase the structural stability of used scaffolds. In addition, the degradation of β-TCP 

leads to the release of inorganic material such as calcium (Ca2+) and phosphate ions (PO42−), 

which have been shown to support mineralization in osteoblast-like cells [21]. In previous 

studies, PLGA coating resulted in increased JPC proliferation rates [26]. Furthermore, 

PLGA can be used for biofunctionalization with growth and/or differentiation factors to 

improve the biofunctionality of the scaffold [28,29]. 

In this study, coating of β-TCP scaffolds with PLGA resulted in scaffolds with a 

smoother and less porous structure than uncoated β-TCP scaffolds. However, both 

scaffold types proved to be suitable substrates for cell adhesion and supported periosteal 

cell growth. SEM images showed that uncoated and PLGA-coated β-TCP scaffolds were 
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uniformly covered with cells. Successful osteogenic differentiation of JPCs on β-TCP 

scaffolds was confirmed by significantly increased ALP gene expression levels and 

activity as well as an increased hydroxyapatite deposition (mineralization) compared 

with constructs seeded with JPCs cultivated in standard hPL10 medium. The herein 

performed ALP gene expression and ALP activity analyses indicate that the cultivation of 

JPCs on PLGA coating led to increased osteogenic cell differentiation.  

The incubation of PLGA-coated or uncoated β-TCP scaffolds seeded with JPCs or 

osteogenically induced JPCs with whole fresh blood showed no reduction in blood cell 

counts compared to the control samples without scaffolds. Furthermore, no inflammatory 

reactions (PMN elastase), activation of the complement system (SC5b-9), or activation of 

thrombocytes (β-TG) were detected. Although statistically significant only with 

osteogenically induced JPCs on uncoated β-TCP scaffolds, increased TAT levels, 

indicative of coagulation activation, were detected when scaffolds were seeded with 

periosteal cells. The activation of the coagulation cascade can lead to the generation of 

thrombin and subsequently to the formation of a fibrin network. SEM analyses also 

confirmed the formation of a fibrin network with entrapped erythrocytes on the surface 

of the cell-seeded β-TCP scaffolds. In contrast, erythrocytes without the formation of a 

fibrin network were detected mainly in the cavities of scaffolds without seeded cells.  

The coagulation system can be activated via the contact activation (intrinsic) or the 

tissue factor (extrinsic) pathway [30]. Previous studies reported that human bone marrow- 

and periodontal ligament-derived MSCs can lead to thromboembolism after intravenous 

infusion in mice [31] and intracoronary application in pigs [32]. Intensive investigations 

revealed that the thromboembolic complications were triggered by the strong expression 

of the tissue factor on the surface of MSCs and the activation of blood coagulation via the 

extrinsic pathway [33].  

During implantation, injury of the vascularized tissue leads to an immediate 

development of a provisional matrix at the implant site. The generated fibrin network 

provides a provisional scaffold for wound healing [34]. This matrix also contains plasma 

fibronectin, which enhances cell adhesion via integrin receptors. Thereby, the migration 

and adhesion of various cell types, such as fibroblasts and endothelial cells, are 

stimulated. The formed matrix can also increase the adhesion and activation of platelets. 

Activated platelets entrapped in the provisional matrix can release various growth factors, 

such as PDGF, VEGF, bFGF, and TGF-β, which can further enhance the recruitment of 

fibroblasts, endothelial cells, and immune cells [35]. Attracted endothelial cells improve 

angiogenesis and fibroblasts produce extracellular matrix proteins, especially collagen. 

The formation of new blood vessels plays an important role in supplying oxygen and 

nutrients to the cells of tissue-engineered constructs, and their timely generation is a 

critical component for the engraftment of constructs and bone healing [36]. Thus, 

activation of blood coagulation by JPC-populated β-TCP scaffolds compared to JPCs-free 

scaffolds could further facilitate neovascularization and healing responses resulting in an 

improved bone healing process. 

4. Materials and Methods 

4.1. Coating of β-TCP Scaffolds with PLGA  

The TCP scaffolds were coated with PURASORB PLGA (Corbion Purac, Gorinchem, 

The Netherlands). Briefly, the polymer (ester terminated, inherent viscosity in CHCl3 of 

0.4 dL/g) was dissolved in ethyl acetate to obtain a 20% PLGA solution. To perform the 

PLGA coating, the cylindrical β-TCP scaffolds (Cerasorb M®, Curasan, Kleinostheim, 

Germany) were immersed in the PLGA solution for 15 min and dried in a desiccator. The 

polymer uptake was measured by weighing and calculating an average of 20 samples. 
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4.2. Cultivation of JPCs 

JPCs were isolated from the periosteal tissue of three healthy donors after receiving 

written informed consent. Periosteal tissue was obtained during interventions at the De-

partment of Oral and Maxillofacial Surgery after approval by the local ethical committee 

(6182017BO2).  

The cultivation of JPCs was performed in hPL5 medium consisting of DMEM/F12 

(Thermo Fisher Scientific Inc., Waltham, MA, USA) supplemented with 5% human plate-

let lysate (hPL, ZKT Tübingen GmbH, Germany), 100 U/mL penicillin-streptomycin 

(Lonza, Basel, Switzerland), and 2.5 µg/mL amphotericin B (Biological Industries, Kibbutz 

Beit Haemek, Israel) in T75 cell culture flasks at 37 °C and 5% CO2. The medium was 

changed every 2–3 days. After reaching 80% confluency, JPCs were detached using Try-

pleExpress (Thermo Fisher Scientific Inc., Waltham, MA, USA) and the reaction was 

stopped using hPL5-medium. Afterwards, cells were centrifuged for 5 min at 350× g and 

seeded 1:10 diluted in T75 cell culture flasks. 

4.3. Seeding of β-TCP Scaffolds with JPCs and Osteogenic Induction 

Uncoated or PLGA-coated β-TCP tricalcium phosphate scaffolds were placed in each 

well of a 96-well plate and preconditioned with 200 µL hPL5-medium at 37 °C. After 1 h, 

the medium was aspirated and each scaffold was seeded with 5 × 104 JPCs in 50 µL hPL5 

medium. The cells were incubated for 2 h at 37 °C to allow cell adherence and then 150 µL 

medium was added. After 24 h, scaffolds seeded with cells were transferred into a new 

96-well plate and 200 µL hPL10 medium (DMEM/F12 containing 10% hPL, 100 U/mL pen-

icillin-streptomycin (Lonza, Basel, Switzerland), 2.5 µg/mL amphotericin B) or osteogenic 

induction medium (hPL10 containing 0.1 mM L-ascorbic acid 2-phosphate (Sigma-Al-

drich, Taufkirchen, Germany), β-glycerophosphate (AppliChem, Darmstadt, Germany), 

and 4 µM dexamethasone (Sigma-Aldrich)) were added to each scaffold. Cells seeded 

onto β-TCP scaffolds were cultivated at 37 °C for 15 days with medium changes every 2–

3 days.  

4.4. Analysis of Cell Viability of JPCs on β-TCP Scaffolds 

The EZ4U kit (Biomedica, Vienna, Austria) was used to compare the mitochondrial 

activity of JPCs cultured on uncoated or PLGA-coated scaffolds. This analysis was per-

formed on day 6 and day 13 of osteogenic differentiation. 

The medium was aspirated from the scaffolds and 200 µL of fresh control JPC stand-

ard maintenance (hPL5 medium) or osteogenic induction medium and 20 µL of tetrazo-

lium salt substrate was added to each well. After 3 h of incubation at 37 °C and 5% CO2, 

150 µL were pipetted into a new 96-well plate and absorbance was measured at a wave-

length of 450/620 nm using an ELx800 microplate reader (Bio-Tek, Winooski, VT, USA). 

KC4 software was used for analysis. 

4.5. RNA Isolation from JPCs Cultured on β-TCP Scaffolds 

Cell-seeded scaffolds were transferred to LysingMatrix D Tubes (MP Biomedicals, 

Santa Ana, CA, USA) containing 600 µL RA1 buffer + TCEP (NucleoSpin RNA Mini Kit, 

Macherey Nagel, Düren, Germany). Thereafter, samples were homogenized using the 

FastPrep-24 instrument (MP BiomedicalsSanta Ana, CA, USA). After centrifugation, 500 

µL supernatant was transferred into a microcentrifuge tube and total RNA was isolated 

using the NucleoSpin RNA Mini Kit (Macherey Nagel, Düren, Germany) according to the 

manufacturer’s instructions. 

4.6. qRT-PCR Analysis 

Total RNA was isolated from JPC seeded β-TCP scaffolds 6 and 13 days after starting 

the osteogenic induction). As a control, the RNA was isolated from JPC seeded β-TCP 
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scaffolds cultured without osteogenic activators. Complementary DNA (cDNA) was ob-

tained by reverse transcription of 25 ng RNA using the iScript kit (Bio-Rad, Munich, Ger-

many). For the specific amplification of osteogenic markers, the following primers were 

ordered from Eurofins (Luxemburg, Luxemburg): Alkaline phosphatase (ALP) (forward 

primer: 5′TGTTCCTGGGAGATGGGTCAG-3′ and reverse primer: 5′CTTGGA-

GAGGGCCACGAAG-3′). Primers were designed by using the Primer-Blast tool from 

NCBI [37]. Melting temperatures and self-complementarities were checked using the oli-

gonucleotide properties calculator from Northwestern University Medical School [38]. 

Real-time qRT-PCR was performed using 300 nM primers, IQ™ SYBR®Green Supermix 

(Bio-Rad), and CFX Connect Real-Time PCR Detection System (Bio-Rad). The amplifica-

tion of cDNA was performed under the following conditions: 3 min at 95 °C for one cycle, 

followed by 40 cycles of 95 °C for 15 s, 60 °C for 30 s, and 72 °C for 10 s. Melting curve 

analysis was performed to ensure the specificity of the PCR products. The samples were 

run in triplicate with a total volume of 15 µL per well. Levels of mRNA for each gene were 

normalized to the constitutively expressed internal standard gene glyceraldehyde-3-phos-

phate dehydrogenase (GAPDH). The results were shown relative to the mRNA levels of 

JPCs cultivated in a standard maintenance medium (hPL10). 

4.7. Analysis of Alkaline Phosphatase (ALP) Activity of JPCs in β-TCP Scaffolds.  

The ALP activity of JPCs on uncoated and coated β-TCP scaffolds was analyzed on 

day 6 and day 13 of osteogenic differentiation. Four scaffolds were used for each sample. 

Four scaffolds incubated with the standard JPC maintenance medium during the same 

time served as controls.  

Analysis was performed using the Sensolyte pNPP alkaline phosphatase colorimetric 

assay kit (AnaSpec, Fremont, CA, USA). For extraction of cell lysates, scaffolds were 

crushed using MagNA Lyser Green Beads tubes (Roche Diagnostics, Rotkreuz, Switzer-

land) and a FastPrep®-24 device (MP Biomedicals, Santa Ana, CA, USA). For this purpose, 

MagNA Lyser Green Beads tubes (Roche Diagnostics, Germany) were first filled with 600 

µL lysis buffer and placed on ice. The scaffolds were washed twice with 200 µL assay 

buffer and four scaffolds of the same condition were transferred into one tube. Subse-

quently, the scaffolds were disrupted using the FastPrep®-24 device (MP Biomedicals, 

Santa Ana, CA, USA) and the cells were lysed during this process. After cooling on ice, 

the tubes were centrifuged (10,000× g at 4 °C, 10 min) and 400 µL of the supernatant was 

pipetted into a fresh 2 mL tube. Then, the sample was centrifuged again (2500× g, 4 °C, 10 

min) and 350 µL of the clear cell lysate was transferred to a fresh 2 mL tube. Samples were 

diluted 1:5 and 1:10 with assay buffer and standards with a known ALP concentration 

were prepared. 50 µL of the diluted cell suspensions and standards were pipetted into a 

96-well plate and 50 µL of pNPP substrate solution was added. After 30 min of incubation 

at room temperature, 50 µL of stop solution was added to terminate the reaction. Subse-

quently, absorbance was measured at a wavelength of 405 nm using an ELx800 plate 

reader (Bio-Tek, Winooski, VT, USA).  

To account for possible differences in cell numbers on the scaffolds, the determined 

ALP concentration was normalized to the total protein concentration. This was deter-

mined using the Pierce BCA Protein Assay Kit (Thermo Fisher Scientific Inc., Waltham, 

MA, USA) according to the manufacturer’s instructions. Using an ELx800 plate reader 

(Bio-Tek, Winooski, VT, USA), the absorbance at a wavelength of 550 nm was measured. 

KC4 software was used for analysis. Based on the ALP concentration and the total protein 

concentration, the ALP fraction in the total protein concentration (ng AP/mg protein) was 

calculated. 

4.8. Embedding and Generation of thin Polished Sections of β-TCP Scaffolds Seeded with JPCs 

After 15 days of cultivation, the scaffolds seeded with JPCs were washed twice in 

phosphate-buffered saline (PBS) without Mg2+ und Ca2+, fixed in 4% paraformaldehyde 

(PFA), and washed again twice in PBS. Ascending alcohol series (70%, 80%, 96%, 2 × 100% 
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EtOH, 15 min each) and xylene (2 x 100%, 30 min each) were used for dehydration and 

degreasing. To facilitate polymethyl methacrylate (PMMA) infiltration, the samples were 

incubated twice for 1 h in absolute acetone. Subsequently, the scaffolds were transferred 

into 2 mL microcentrifuge tubes and treated overnight at 4 °C with 300 µL of solution A 

(500 mL destabilized base solution, 25 g PMMA powder, 3 g hardener 1, Technovit 9100 

(Kulzer, Wehrheim, Germany)). The next day, samples were embedded in 2 mL embed-

ding solution (9 parts solution A with 1 part solution B (44 mL base solution, 4 mL hard-

ener, and 2.2 mL regulator), Technovit 9100). The embedding solution was cured over-

night at −18 °C in the absence of oxygen, and then for 24 h at 4 °C. Subsequently, the 

samples were transferred for 1 h into a 37 °C water bath for complete polymerization of 

the embedding solution.  

Embedded scaffolds were cut to sections of 5 µm using an electronic rotary micro-

tome (pfm Rotary 3006 EM; pfm medical AG, Cologne, Germany) with a hard-cutting 

blade (SH35W Feather microtome blade HP TC; Feather Safety Razor Co., LTD., Osaka, 

Japan). To stabilize the samples, sections were collected on transparent adhesive tape 

(tesafilm, Beiersdorf AG, Norderstedt, Germany) and transferred to microscope slides. 

4.9. Toluidine Blue Staining 

First, the sections were acidified with 10% acetic acid for 5 min, washed with distilled 

water, and dried. In the next step, a drop of the toluidine staining solution (0.1% (w/v) 

toluidine blue O (Sigma-Aldrich) in distilled water) was added and incubated for 15 min. 

The sections were then rinsed with distilled water and dried overnight and mounted us-

ing DePeX (Serva, Heidelberg, Germany) and coverslips. 

4.10. Analysis of Mineralization  

After 15 days of JPC cultivation and osteogenic stimulation on β-TCP scaffolds, con-

structs were analyzed via OsteoImageTM mineralization assay kit (Lonza, Basel, Switzer-

land). Briefly, microtome sections of PMMA (Technovit 9100) embedded scaffolds were 

first deacrylated and then stained with the OsteoImage Mineralization Assay Kit (Lonza, 

Walkersville, MD, USA) for the detection of hydroxyapatite. Hoechst 33,342 (PromoKine, 

Heidelberg, Germany) was used as a nuclear counterstain.  

For deacrylation, microtome sections were placed in a cuvette with 100% xylene for 

one min and then dried in a drying cabinet at 37 °C for at least 30 min. Next, the staining 

solution (Staining Reagent diluted 1:100 in Staining Reagent Dilution Buffer, OsteoImage 

Mineralization Assay)) was added to the samples and incubated for 30 min in the dark. 

After the washing with OsteoImage Wash Buffer, Hoechst 33,342 nuclear staining solution 

(1:1000 dilution of stock solution in PBS) was added to the samples for 10 min. After wash-

ing and drying, the sections were mounted with glycerol. 

4.11. Analysis of Hemocompatibility  

4.11.1. Collection of Human Blood 

Human whole blood was collected from the antecubital vein of non-medicated 

healthy volunteers (n = 3) via venipuncture in monovettes preloaded with 1 IU/mL so-

dium heparin (LEO Pharma Inc., Neu-Isenburg, Germany). The blood sampling proce-

dure was approved by the Ethics Committee of the medical faculty at the University of 

Tuebingen (287/2020BO2) and all subjects gave written informed consent. 

4.11.2. Incubation of Scaffolds with Whole Human Blood 

β-TCP scaffolds seeded with JPCs were cultivated in vitro for 15 days. The scaffolds 

were then transferred into 12 mL polypropylene round-bottom tubes (Becton Dickinson, 

Franklin Lakes, NJ, USA) containing 11 mL blood. Control tubes contained the same 

amount of fresh blood without scaffolds. The incubation with blood was performed at 37 

°C for 90 min using a tube rotator (neoLab, Heidelberg, Germany) with 10 rpm. After 90 
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min, blood was transferred into monovettes containing ethylenediaminetetraacetic acid 

(EDTA) (Sarstedt Inc., Nümbrecht, Germany) for the analysis of complement activation 

and detection of cell numbers. Blood cell numbers were determined using a Micros 60 cell 

counter (ABX Diagnostics, Montpellier, France). A citrate solution containing monovettes 

(Sarstedt Inc.) was used to analyze PMN-elastase and TAT. To analyze β-TG concentra-

tions, blood was transferred to citrate-theophylline-adenosine-dipyridamole (CTAD) con-

taining monovettes (BD Biosciences Inc.) and stored for 15 min on ice. EDTA and CTAD 

monovettes were centrifuged at 2500× g for 20 min at 4 °C. Citrate blood monovettes were 

centrifuged at 1800× g for 18 min at RT. The plasma of each sample was shock frozen in 

liquid nitrogen and stored at −20 °C (EDTA and citrate plasma) or −80 °C (CTAD plasma) 

until further investigations. 

4.11.3. Detection of Activation Markers 

Commercially available enzyme-linked immunosorbent assays (ELISA) were used to 

investigate the hemocompatibility. The PMN-elastase ELISA (Demeditec, Kiel, Germany) 

was used to detect the activation of leukocytes. The activation of coagulation was detected 

using TAT ELISA (Enzygnost Micro Assay, Siemens Healthcare, Erlangen, Germany). 

Furthermore, SC5b-9 ELISA (Osteomedical GmbH, Bünde, Germany) was used to detect 

the complement activation and platelet activation was determined using β-TG ELISA 

(ASSERA-CHROM®, Diagnostica Stago, Asnieres, France). The ELISAs were performed 

according to the manufacturer’s instructions. 

4.11.4. Scanning Electron Microscopy (SEM) 

After the incubation with blood, the β-TCP scaffolds were fixed overnight at 4 °C in 

2% glutaraldehyde (Serva, Heidelberg, Germany). Overview images were taken with a 

Canon reflex camera EOS 450D (Canon, Tokyo, Japan) and a NOVEX RZB-SF stereo mi-

croscope (Euromex, Arnhem, The Netherlands). Afterwards, the samples were washed 

with PBS for 10 min and dehydrated with an ascending ethanol series (40% to 100% etha-

nol; Merk, Darmstadt, Germany) in 10 min steps. The scaffolds were dried in a critical 

point drier (Polaron E3100, GaLa Instruments, Bad Schwalbach, Germany). Subsequently, 

the scaffolds were sputtered with gold-palladium particles (Emitech K550X, GaLa Instru-

ments, Bad Schwalbach, Germany) and analyzed by SEM (Zeiss LEO1430, Zeiss, Ober-

kochen, Germany).  

4.12. Statistical Analysis 

Data are shown as the mean + standard deviation (SD) or standard error of the mean 

(SEM). Means were compared using one or two-way analysis of variance (ANOVA) for 

repeated measurements followed by Bonferroni’s multiple comparison test or using the 

Kruskal–Wallis test followed by Dunn’s multiple comparisons test, depending on the dis-

tribution of the data. Statistical analyses were performed double-tailed using GraphPad 

Prism 6.01 (GraphPad Software, La Jolla, CA, USA). Differences of p < 0.05 were consid-

ered significant. 

5. Conclusions 

In this study, we demonstrated that uncoated and PLGA-coated β-TCP scaffolds are 

highly suitable for the colonization with JPCs and their further osteogenic differentiation. 

The osteogenic induction resulted in mineralization and increased expression of and ALP. 

Cell-free β-TCP scaffolds with and without PLGA coating showed no effect on blood cells, 

complement, and coagulation activation. In contrast, scaffolds seeded with JPCs led to 

increased levels of TAT and accumulation of fibrin fibers on the surface of the constructs, 

presumably through activation of the extrinsic coagulation pathway. These results 

demonstrated that hemocompatibility can not only be influenced by the scaffold material 



Int. J. Mol. Sci. 2021, 22, 9942 14 of 15 
 

 

alone but also by seeded cells inside the scaffolds, which can have an impact on tissue 

compatibility and the healing process within the bone defect.  

Supplementary Materials: The following are available online at www.mdpi.com/arti-

cle/10.3390/ijms22189942/s1. 
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