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Abstract: Endometriosis is a chronic gynecologic disease that negatively affects the quality of life of
many women. Unfortunately, endometriosis does not have a cure. The current medical treatments
involve hormonal manipulation with unwanted side effects and high recurrence rates after stopping
the medication. Sadly, a definitive diagnosis for endometriosis requires invasive surgical procedures,
with the risk of complications, additional surgeries in the future, and a high rate of recurrence. Both
improved therapies and noninvasive diagnostic tests are needed. The unique molecular features
of endometriosis have been studied at the coding gene level. While the molecular components of
endometriosis at the small RNA level have been studied extensively, other noncoding RNAs, such as
long intergenic noncoding RNAs and the more recently discovered subset of long noncoding RNAs
called circular RNAs, have been studied more limitedly. This review describes the molecular forma-
tion of long noncoding and the unique circumstances of the formation of circular long noncoding
RNAs, their expression and function in endometriosis, and promising preclinical studies. Continued
translational research on long noncoding RNAs, including the more stable circular long noncoding
RNAs, may lead to improved therapeutic and diagnostic opportunities.

Keywords: endometriosis; human disease; noncoding RNA (ncRNA); long noncoding RNA (lncRNA);
circular lncRNA (circRNA)

1. Introduction

Endometriosis is a progressive and debilitating gynecologic disease whereby endometrial-
like tissue grows outside the uterine cavity, invading adjacent organs, such as the ovaries,
bladder, colon, or pelvic peritoneum [1–3]. Endometriosis is often accompanied by chronic
pelvic pain, dysmenorrhea, dyspareunia, dysuria, and dyschezia and can cause infertil-
ity [4,5]. The prevalence of endometriosis ranges from 5 to 15% of reproductive age women
depending on the method of disease confirmation [3,6], affecting approximately 190 million
women worldwide and 5 million women and adolescent girls in the United States [2].

Diagnosing endometriosis is exceptionally challenging since it shares non-specific
symptoms, such as pelvic pain, with other conditions. The first-line imaging modality
is typically pelvic ultrasound as it can allow for the diagnosis of other conditions that
cause pelvic pain. However, the sensitivity and specificity of ultrasound are dependent on
endometriosis lesion type and location. For example, transvaginal ultrasonography has
high sensitivity and high specificity for ovarian endometriomas [7]. However, the diagnosis
of deep infiltrating endometriosis lesions by ultrasound is related to operator expertise [7,8].
Surgical visual inspection by laparoscopy with histologic confirmation is currently the
only way to diagnose pathology-proven endometriosis [5]. Surgery involves the risk of
surgical complications, adhesion formation, and the need for future surgeries [9]. Because
there is no gold standard for noninvasive diagnosis, there is often a significant delay in
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diagnosis [5]. The median time is seven years from the onset of symptoms with pain or
infertility to endometriosis diagnosis [10]. Better diagnostic strategies must be developed.

Unfortunately, there is no cure for endometriosis. Non-steroidal anti-inflammatory
medications are routinely used, but they are not more effective than a placebo [11]. Hor-
monal therapies, including gonadotropin-releasing hormone agonists and newer antago-
nists, can be prescribed only for a short time because of undesirable side effects, including
irregular menstrual bleeding, the development of menopausal symptoms, and the detri-
mental impact on bone density [7,9,12]. Moreover, both medical and surgical therapies
fail to prevent recurrence [2] as 20–50% of endometriosis recurs within five years of treat-
ment [13]. The economic burden of endometriosis in the United States is estimated at
$78 billion per year, including direct healthcare costs and indirect costs to patients [14].
Better treatment options are warranted.

Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs
(lncRNAs), and circular RNAs (circRNAs), encompass large segments of the transcriptome
that do not have apparent protein-coding roles [15]. ncRNAs are divided into two sub-
classes based on size: short ncRNAs and long ncRNAs. LncRNAs are commonly defined
as transcripts longer than 200 nucleotides. Short ncRNAs, including the ~22 nucleotide
long miRNAs, have emerged as critical post-transcriptional regulators of gene expression
that are fundamental for many disease processes [16]. Although numerous studies have
investigated the potential roles of miRNAs as diagnostic biomarkers, no particular miRNA
has been translated from bench to clinic for diagnostic purposes [17]. The role of miRNAs
in endometriosis has been recently reviewed [18] and will not be included again here.

Similar to messenger RNAs, most lncRNAs are transcribed by RNA polymerase II,
and then they undergo post-transcription processes, leading to a 5′ cap, alternative splicing,
and 3′ poly(A) tail [19]. Some lncRNAs have been re-defined as protein-encoding genes
by closer inspection of the transcriptome and proteome with next-generation sequenc-
ing and mass spectrometry [20]. lncRNAs represent the largest class of ncRNAs as over
60,000 lncRNAs have been identified [21]. Many lncRNAs have substantial roles in several
biological processes, including endometriosis [22]. As a unique subset of lncRNAs, circR-
NAs contain a circular secondary structure, characterized by a covalently closed continuous
loop structure without 5′-3′ polarity or a poly(A) tail [23]. CircRNAs are involved in the
pathogenesis of many diseases [24]. This review will discuss the fundamental roles of
both linear and circular long noncoding RNAs in the molecular features of endometriosis
and their relevance to current clinical practice. We will also discuss how these preclinical
insights into ncRNA biology could develop into diagnostics and therapies in endometriosis.

2. Biogenesis, Structure, and Function of Linear and Circular lncRNAs

While more than 90% of the genome is transcribed into RNA, only about 2–5% of that
genome contains protein-coding potential [25,26]. The remaining transcriptome comprises
ncRNAs transcripts, consisting of small ncRNAs and lncRNAs and both linear and circular
lncRNAs. To date, the GENCODE project has conservatively annotated the human genome
and believes that it contains 19,954 protein-coding genes and 40,293 noncoding RNA
genes [27]. Some 45% (17,957) of the noncoding RNA species are considered lncRNAs that
give rise to more than 48,000 distinct transcripts [27]. CircRNAs are different from other
long noncoding RNAs due to their single-stranded, circular secondary structure derived
from the back splicing of exons from mRNAs and antisense RNAs [28]. In total, there are
more than two million circRNAs present in all of the databases [29].

2.1. Biogenesis, Structure, and Function of Linear lncRNAs

The biogenesis of lncRNAs is like mRNA biogenesis since this process is mediated by
RNA polymerase II. Similar to mRNA molecules, lncRNAs are characterized by alternative
splicing, a 5′ 7-methylguanosine cap, and a 3′ poly (A) tail, although there is evidence
that certain lncRNAs lack the 5′-cap or 3′poly (A) tail [30]. A comparison of the global
features of lncRNAs and mRNAs shows that lncRNAs are less abundantly expressed, have
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less stability, are less evolutionarily conserved, and contain fewer numbers but longer
exons [31]. The expression of lncRNAs is considered more cell- or tissue-specific than
mRNA expression [32].

lncRNAs can be transcribed from the intergenic, exonic, or distal protein-coding
regions of the genome. Based on genomic locations and orientation, lncRNAs can be
classified into intergenic, intronic, sense, and antisense lncRNAs [33]. Intergenic lncRNAs
(long intergenic noncoding RNAs or lincRNAs) are located between two protein-coding
genes and transcribed in the same direction as those genes. Intronic lncRNAs are located
entirely within the intronic region of a protein-coding gene and do not overlap with any
exon. Sense lncRNAs are transcribed from the same strand and in the same direction
as the protein-coding gene, possibly being exonic and/or intronic. Antisense lncRNAs
are transcribed from the opposite strand of the protein-coding gene and can also be
exonic and/or intronic. Pseudogene-derived RNAs are key components of lncRNAs
with important functions in multiple biological processes [34].

Functionally, lncRNAs are classified under the mechanisms of action into these cat-
egories: signals (gene activators), decoys or sponges (gene repressors), guides (gene ex-
pression regulators), scaffolds (chromatin modifiers), and enhancer RNAs (eRNAs) [31,35].
As signals, lncRNAs function alone or combined with transcription factors or signaling
pathways to activate transcriptional activity in time and space. As decoys, lncRNAs bind to
functional sites to titrate the transcription factors away from chromatin or titrate miRNAs
away from their targets to modulate transcription. As guides, lncRNAs recruit regulatory
proteins to form ribonucleoprotein (RNP) complexes and direct them to their target sites
to regulate the expression of target genes, either in cis or in trans. As scaffolds, lncRNAs
provide platforms to bring different proteins together to form RNP complexes to activate
or repress transcription. eRNAs are regulatory sequences from enhancer regions that in cis
regulate the expression of target genes. LncRNAs can be nuclear, cytoplasmic, or both, and
the subcellular localization determines its function [31,35].

2.2. CircRNA Biogenesis and Structure

CircRNAs are a unique subtype of lncRNAs that are covalently closed, single-stranded
circular transcripts without 5′ caps or 3′ poly(A) tails. Although circRNAs were first
described in the late 1970s, research in the past decade has dramatically improved our
understanding of the expression and various biological functions due to the application of
new technologies, mainly deep RNA sequencing [36]. The single-stranded, closed RNA
molecules originate from precursor mRNAs (pre-mRNAs) and are usually from splicing
within a protein-coding gene. CircRNAs have several biological functions in normal cells,
including acting as sponges to efficiently subtract microRNAs and proteins [36].

CircRNAs can be classified into intronic circRNAs, exonic circRNAs, and exon-intron
circRNAs (EIcirRNAs) (Figure 1). Multiple mechanisms have been used to describe the
biogenesis of exonic circRNAs, including lariat-driven circularization, RNA binding protein
(RBP) mediated circularization, and intron pairing-driven circularization [36]. During
splicing, an exon skips, resulting in the back-splicing of RNA folding regions. EIciRNA
is formed when the spliced intron lariat, or loop-like structure, remains. The loop-like
structure can be mediated by an RBP or be intron-pairing-driven. The final structure is an
exonic circRNA when the intron sequence is removed. The intronic circRNAs are formed
both upstream and downstream of introns and are mainly accumulated in the nucleus. By
contrast, exonic circRNAs without introns are most wielded in the cytoplasm to regulate
past-transcriptional gene regulation [37].
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Figure 1. Biogenesis of circRNAs. Three types of circRNAs: exonic-intronic circRNA (EIciRNA),
exonic circRNA, and intronic circRNA. EIcirRNAs and intronic circRNAs are abundant in the nucleus.
Exonic circRNAs are exported from the nucleus to the cytoplasm and play functional roles in gene
transcription and post-transcription. Adapted from [36].

3. Approaches for Discovering lncRNAs

Most lncRNAs and circRNAs are challenging to discover due to their low expression lev-
els [38]. With the development of innovative technologies, an increasing number of novel linear
lncRNAs and circRNAs have been identified by computational analysis of the transcriptomic
datasets, high throughput sequencing, and experimental validation. Table 1 lists the techniques
readily available for studying linear lncRNA and circRNA expression and function.

Table 1. Key experimental approaches for identifying and validating lncRNA expression and function.

Technique Description Ref

Microarray Identify lncRNAs [39]
RNA-sequencing Identify lncRNAs [40,41]

Tiling arrays Identify and characterize lncRNAs [42]
CAGE (Cap analysis of gene expression) Identify lncRNAs [43]

ChIRP-seq (chromatin isolation by RNA purification sequencing) Identify lncRNA-chromatin interactions [44,45]
CHART-seq (capture hybridization analysis of RNA targets) Identify lncRNA-chromatin interactions [46]

3C (chromosome confirmation capture) Characterize lncRNA-genome binding site [47]
RAP (RNA antisense purification) Characterize lncRNA-genome binding site [48]

RIP-seq (RNA immunoprecipitation) Identify lncRNA-protein interactions [49,50]
PAR-CLIP (Photoactivatable-ribonucleoside-enhanced cross-linking

and immunoprecipitation) Identify lncRNA-protein interactions [51]

RNA pull-downs Identify lncRNA-protein interactions [52]
EMSA (Electrophoretic mobility shift assay) Characterize lncRNA-protein complexes [53]

RT-qPCR (real-time quantitative polymerase chain reactions) Cellular localization and expression [54]
RNA-FISH (RNA-fluorescent in situ hybridization) Cellular localization [55]

RNA-ISH (RNA- in situ hybridization) Cellular localization [54]
RNAi (RNA interference) Knockdown lncRNAs [56,57]

CRISPR-Cas9 Knockdown lncRNAs [58–61]
ASO (Antisense oligonucleotides) Knockdown lncRNAs [62]
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3.1. ncRNAs Databases

Public databases are one of the most important resources for ncRNAs research. More
than 200 public databases are providing comprehensive associations between ncRNAs
and their biological functions, including 25 for linear lncRNAs (i.e., TANRIC, CGS, Germl-
ncRNA, LNCat, LncSNP, Lnc2Cancer, lnCeDB, LNCMap, Lnc2Meth, lncATLAS, lncPe-
dia, lncRNAdisease, lncRNome, EVLnRNAs, GreeNC, LNCediting, and lncRNAdb for
humans), and 13 for circRNAs (i.e., Circbase, Circnet, CirclncRNAnet, CircRNADb, CIRC-
pedia v2, DeepBase v2.0, CSCD, Circ2Traits, CircR2Disease, and MiOncoCirc) [36,38,63].
These databases are supported by high throughput sequencing or experimental validation.

3.2. High Throughput Identification

Multiple methods provide the systematic expression profiling of lncRNAs (Table 1).
Although microarrays by predefined probes are not sensitive enough to identify low
expression lncRNAs, microarrays have been used to discover novel ncRNAs at the whole-
genome level [64]. The lncRNAs’ sequence may match the previously built microarrays
probe sequences and reannotate the initially protein-coding genes to lncRNAs [65]. A
microarray, which hybridizes a selected panel of circRNAs explicitly, can be used to
detect the annotated circRNAs expression [66]. For example, Shen et al. used a circRNA
microarray and identified 262 upregulated and 291 downregulated circRNAs in ovarian
endometriomas [67]. RNA-seq is currently the most widespread approach to discover
linear lncRNAs and circRNAs. For example, Bi et al. performed RNA-seq experiments
on six pairs of ectopic and eutopic endometria samples with endometriosis and identified
952 differentially expressed lncRNAs [68]. The limitations for RNA-seq data include the
limited ability to discern linear and circular lncRNAs of similar sequence and the depth of
sequencing required for low read count molecules, such as circRNAs [66,69,70]. Many deep
sequencing studies on endometriosis have listed lncRNAs, including circRNAs, within
the differentially expressed transcripts, but most of the manuscripts focus on protein-
coding genes. Wu et al. identified 8660 upregulated and 651 downregulated lncRNAs [71],
and Wang et al. detected 146 upregulated and 148 downregulated circRNAs in ovarian
endometriosis by high throughput RNA-seq [72].

3.3. Experimental Validation

After discovering linear lncRNAs and circRNAs by databases or high throughput
methods, experimental approaches can be used to study their expression and function
(Table 1). RNA interference (RNAi), antisense oligonucleotides (AOs), and CRISPR systems
have successfully been used to knock down lncRNAs [56–62,73]. However, RNAi and
AOs may have non-specific and off-target effects. Further, Goyal et al. found only 38%
of lncRNAs were safe to be targeted without deregulating neighboring genes by CRISPR
applications [61]. It might be necessary to use multiple strategies to select the best gene
silencing approach. Real-time quantitative reverse transcription-polymerase chain reaction
(QPCR) is employed to validate the expression of linear lncRNAs and circRNAs [54]. The
limitations of QPCR include the need for highly sensitive assays to detect low expression
molecules and selecting appropriate endogenous control genes of similar low expression
and transcript size. RNA in situ hybridization (ISH) is used to visualize and localize
lncRNAs [54]. Holdsworth-Carson et al. performed RNA-seq, RT-PCR, and ISH in en-
dometriosis samples. They found that the long intergenic non-protein coding RNA 339
(LINC00339) is localized in the nucleus of ectopic endometriotic lesions [74]. While ISH
allows for the localization of lncRNA, it is generally not quantifiable. Newer technolo-
gies, including single-cell RNA-sequencing and spatial transcriptomics, are being used
to quantify the expression and localization of protein-coding genes [31,75]. For example,
spatial transcriptomics allows both the quantification of expression and localization, but
the limited depth of sequencing at this time precludes the identification of low expression
molecules [31]. Several groups have used approaches based on protein precipitation to
detect key interactions of binding proteins with lncRNAs. Wang et al. used RNA immuno-
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precipitation to define the LINC00261/miR-132–3p/BCL2L11 regulatory networks [76]. In
addition to functional studies, studies correlating expression, localization, and endometrio-
sis phenotype (i.e., pain or infertility, anatomic location of disease, number of adhesions)
may significantly impact the field.

4. The Importance of Noninvasive Biomarkers in Endometriosis

Laparoscopy remains the gold standard for pathology-confirmed endometriosis di-
agnosis [77]. While definitive diagnosis and anatomic characterization are critical for
appropriate research studies, laparoscopy may not be ideal for all women with suspected
endometriosis. Even as a minimally invasive surgical procedure, laparoscopy is associ-
ated with high costs, surgical complications, and time away from work and/or family
obligations. The accurate diagnosis of visualized endometriosis lesions is surgeon-expertise-
dependent [78,79]. Unfortunately, the lesions may not be visible. Biopsies of uterosacral
ligaments without visible lesions in women undergoing laparoscopy for pelvic pain re-
vealed 7% with histologically proven endometriosis [80]. Moreover, endometriosis is
characterized by a broad panel of different symptoms depending on the localization of the
lesions and the characteristics of the patient. Patients often present with intermenstrual
bleeding, dysmenorrhea, dyspareunia, dyschezia, dysuria, or chronic pelvic pain. Non-
painful endometriosis can be discovered during the surgical evaluation of infertility [81].
Ultrasonography has been proposed as a very good, cost-efficient noninvasive diagnostic
tool. Still, this technique is strongly operator-dependent and, even in expert hands, can
miss some lesions, particularly superficial lesions [8,82]. Unfortunately, the median time
from the onset of symptoms to a diagnosis is seven years, leading to confusion, frustration,
and other problems in terms of quality of life. Another aspect that must be considered is
that it may be more successfully treated when endometriosis is diagnosed in the earlier
stages [10]. Hence, a noninvasive, reliable test is needed to avoid the risks of surgery and
shorten the time to diagnosis. Many studies in endometriosis have profiled linear lncRNAs
and circRNAs in endometriotic lesions as a means of biomarker discovery, followed by a
more focused examination of expression in circulation as a means of minimally invasive
diagnosis (Table 2).
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Table 2. Summary of the ncRNAs as biomarkers in endometriosis.

Clinical
Application ncRNA Methods Number of Patients Tissue Types Cycle Phase Diagnostic Value Study Type Ref.

Noninvasive
diagnostic
biomarkers

NR_038395,
NR_038452,

ENST00000482343,
ENST00000544649,
ENST00000393610

Genome-wide
transcriptome array

59 endometriosis
51 controls

Case:
Endometriosis tissue
(eutopic and ectopic

endometrium) and blood
samples
Control:

Eutopic endometrium,
blood sample

Follicular, 50;
luteal, 9 of 59
endometriosis

patients
Follicular, 44; luteal,

7 of 51 control
patients

ENST0000048234 alone: 72.41%
sensitivity and 71.74% specificity
Panel of NR_038395, NR_038452,

ENST00000482343, ENST00000544649
ENST00000393610:

89.66% sensitivity and 73.17%
specificity

Case-Control [83]

Biomarker discovery

86 total differently
expressed
SNORD3A

TCONS_00006582
ABO

TCONS_08347373

RNA Sequencing 17 endometriosis
17 controls

Case:
Ectopic endometrium

Control: eutopic
endometrium

Proliferative Not evaluated Case-control [84]

Noninvasive
diagnostic
biomarkers

UCA1 qRT PCR 98 endometriosis
28 controls

Case:
Serum, eutopic-ectopic

endometrium
Controls:

serum

Not evaluated

Stage I: specificity of 80.1% and
sensitivity of 76.7%

Stage II: specificity of 85.6% and
sensitivity of 81.1%

Stage III: specificity of 89.1% and
sensitivity of 88.1

Stage IV: specificity of 90.5 % and
sensitivity of 89.0%

Case-control [85]

Biomarker discovery circ_0004712
circ_0002198 CircRNA array 41 endometriosis

22 controls

Case:
Ectopic, eutopic
endometrium

Control:
Eutopic endometrium

Proliferative, 28;
secretive, 13 of 41

endometriosis
patients

Proliferative, 16;
secretive, 6 of 22
control patients

Not evaluated Case-control [86]

Biomarker discovery
Therapeutic target

discovery

circ_0004712,
circ_0002198,
circ_0003570,
circ_0008951,
circ_0017248

CircRNA array 41 endometriosis

Case:
Ectopic, eutopic
endometrium

Control:
Eutopic endometrium

Proliferative, 30;
secretory, 11 of 41

endometriosis
patients

Not evaluated Discovery [87]
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Table 2. Cont.

Clinical
Application ncRNA Methods Number of Patients Tissue Types Cycle Phase Diagnostic Value Study Type Ref.

Noninvasive
diagnostic
biomarkers

MEG8,
SNHG25,

LINC00293,
LINC00929,

RP5-898J17.1,
NEAT1,

H19

Small RNA
sequencing 6 endometriosis

Controls none

Case
Eutopic ectopic

endometrium, plasma,
peritoneal fluid (PF)

Not evaluated Not evaluated Discovery [88]

Noninvasive
diagnostic
biomarkers

TC0101441 FISH
qRT-PCR

10 endometriosis
10 control

Case:
Ectopic, eutopic

endometrium, serum
Controls:

Eutopic endometrium,
serum

Not evaluated Not evaluated Discovery [89]

Noninvasive
diagnostic
biomarkers

TC0101441 qRT-PCR 29 endometriosis
16 controls

Case:
Serum

Controls:
Serum

Not evaluated Not evaluated Discovery [89]

Noninvasive
diagnostic biomarker

Recurrence
H19 qRT-PCR 104 endometriosis

50 controls

Case:
Ectopic, eutopic
endometrium

Controls:
Eutopic endometrium

Proliferative sensitivity 90.9% and specificity
61.0%, for predicting recurrence Case-control [90]
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The mechanism by which lncRNAs get from endometriotic tissues to circulation may
be extracellular vesicles. Extracellular vesicles (EVs) are small membrane-bound vesicles
that have emerged as mediators of cell-cell communication by transferring their contents,
including lncRNAs [91]. Evidence has highlighted that miRNA, linear lncRNAs, and
circRNAs can enter circulation and serve as noninvasive serum biomarkers for diagnosis or
prognosis in other diseases, such as lung, colorectal, or prostate cancer [92]. For example,
Qiu et al. found that serum extracellular vesicular TC0101441 levels are increased in
patients at stage III/IV endometriosis in comparison with stage I/II endometriosis and
non-endometriosis control patients. They further showed that this lncRNA played a role in
the migration and invasion in cell lines through interaction with metastasis-related proteins,
suggesting a possible role in endometriosis pathogenesis [89]. Beyond a functional role
for lncRNAs, a potential diagnostic role of EVs lncRNAs has been proposed. Khalaj and
collaborators showed a role for nuclear paraspeckle assembly transcript 1 (NEAT1) and H19
imprinted maternally expressed transcript (H19) in the context of a broad interaction with
the miR-375, miR–30d-5p, and miR–27a-3p networks [88]. In this study, after the isolation
of EVs, an analysis of the contents of the vesicles was performed. The EVs obtained from
endometriotic lesions carried a unique miRNA signature compared with the EVs derived
from matched patient eutopic endometrium and normal healthy endometrium. Moreover,
endometriosis patient plasma-derived EVs carried unique ncRNAs compared with EVs
from healthy control eutopic endometrium [88].

ncRNAs promise great results as biomarkers for noninvasive diagnosis purposes
because they are resistant to RNase degradation and remain stable in biologic fluids, such
as blood (i.e., serum or plasma), saliva, and urine [93]. Recently, circulating linear lncRNAs
and circRNAs have been studied in gynecological diseases, gastric cancer, and hepatocel-
lular carcinoma [83,94,95]. Specific to endometriosis, genome-wide profiling determined
that a signature-based lncRNA profile, including the lncRNAs NR_038395, NR_038452,
ENST00000482343, ENST00000544649, and ENST00000393610, can differentiate patients
with and without endometriosis [83]. Notably, this group performed a genome-wide
lncRNA analysis with the Glu Grant Transcriptome array in serum samples and eutopic
and ectopic endometrium in endometriosis patients and a control group. While the control
group had pelvic pain, the control group that had laparoscopy confirmed no evidence
of endometriosis. This analysis identified 1682 lncRNAs with dysregulated expression
in the sera of patients with endometriosis compared with controls and 1435 lncRNAs in
the ectopic endometrium compared with the eutopic endometrium of negative controls.
Of these differentially expressed lncRNAs in endometriosis tissues or serum, only 125
were differentially expressed in serum and tissue. After selecting for a similar change in
gene expression direction (i.e., down or upregulated), they had a shortlist of 16 lncRNAs.
The receiver operating characteristic (ROC) curve analysis used for cross-validation in
the study population showed the highest area under the curve (AUC) of a circulating
lncRNA was for ENST00000482343. Combining the expression of multiple lncRNAs into a
signature-based profile revealed the highest AUC for a panel of NR_038395, NR_038452,
ENST00000482343, ENST00000544649, and ENST00000393610. Significantly, the authors
correlated the expression of this panel of lncRNAs with clinically relevant laparoscopic
features (i.e., pelvic adhesions, ovarian involvement) [83]. A limitation of this study was
the lack of external validation of results. The possibility of predicting a challenging surgery
with a simple circulating biomarker during the preoperative workup would offer great
help to make the right choices in terms of surgeons, surgical team, and surgical equipment.
Additionally, women with endometriosis in remote areas without surgeons with expertise
in endometriosis surgery could be referred appropriately.

The lncRNA urothelial cancer-associated 1 (UCA1) is another possible diagnostic
biomarker for endometriosis. UCA1 was downregulated in the ectopic endometrium of
a cohort of 98 endometriosis patients compared to 28 healthy controls. Endometriosis
patients were classified with the American Fertility Society (AFS) staging: 19 patients in
stage I, 21 patients in stage II, 33 patients in stage III, and 25 patients in stage IV. The relative



Int. J. Mol. Sci. 2021, 22, 10626 10 of 18

expression of UCA1 in the serum was lower in women with increased AFS stage. A ROC
curve analysis was performed among the study population to evaluate the diagnostic value
of serum UCA1. The AUC for Stage I was 0.7509 [95% CI (0.6109 to 0.8910), p = 0.003820];
AUC for stage II was 0.9175 [95% CI (0.8308 to 1.004), p < 0.0001]; AUC for stage III was
0.9605 [95% CI (0.8982 to 1.023), p < 0.0001]; AUC for stage IV was 0.9921 [95% CI (0.9747 to
1.010), p < 0.0001]. To evaluate further, circulating UCA1 was examined immediately after
surgery and periodically during follow-up. Interestingly, the serum levels of UCA1 were
upregulated after treatment and downregulated in cases of relapse. These results suggest
that UCA1 is a useful tool for diagnosis and monitoring recurrence [85]. A limitation of
this study was the lack of external validation of the results. Similar studies should be
performed for other treatment modalities, including medical management.

Up to 50% of women who experience infertility have endometriosis. Studies showed
that women with endometriosis have endometrial dysfunction, including progesterone
resistance, which may play a role in the timing of endometrial receptivity [96]. Understand-
ing the appropriate timing for embryo transfer may improve pregnancy rates. Studies have
examined miRNAs in the eutopic endometrium and peritoneal fluid for infertility evalu-
ation [97–99]. Further, an association between endometriosis and some specific ovarian
cancer histotypes, particularly endometrioid and clear cell carcinomas, have been shown
epidemiologically [100]. Hence, a possible application of peritoneal fluid analysis could
help in the early prediction of endometriosis-associated ovarian cancer, as already has been
demonstrated for miRNAs [101,102]. Future work in lncRNAs is needed in these areas.

5. Therapeutic Opportunities for lncRNAs

As lncRNAs function to regulate gene expression, lncRNAs represent novel therapeu-
tic molecules. Therapeutic noncoding RNAs as targeting molecules, including small inter-
fering RNAs (siRNAs), short hairpin RNAs (shRNAs), miRNA mimics, miRNA sponges,
and CRISPR–Cas9-based gene-editing technologies, have been experimentally developed
to regulate gene expression and potentially treat disease, but therapeutic targeting using
noncoding RNAs is in its infancy [103]. To date, 11 RNA-based therapeutics are approved
by the United States Food and Drug Administration (US FDA) and/or the European
Medicines Agency (EMA) [104]. While no RNA-based therapeutics are indicated for en-
dometriosis, therapeutic linear lncRNAs and circRNAs may act to inhibit downstream
genes and subsequent cellular function and offer significant promise for non-hormonal
therapy. Understanding the precise mechanisms of lncRNAs and their antagonists is the
first step towards translational applications, as indicated by several preclinical studies
highlighted below.

First, the lncRNA H19 imprinted maternally expressed transcript (H19) regulates
insulin grown factor receptor (IGF1R) expression by acting as a molecular sponge to let-
7 [105]. An in vitro knockdown of H19 with siRNA led to the higher expression of let-7
by real-time quantitative polymerase chain reaction (qPCR) and subsequent inhibition of
IGF1R transcript and protein. Functionally, the H19 knockdown resulted in the reduced
proliferation of primary endometrial stromal cells isolated from the eutopic endometrium
of subjects with endometriosis [105]. Secondly, the molecular sponge mechanism in a
preclinical in vitro model can also be found for long intergenic non-protein coding RNA 261
(LINC00261), which binds miR-132-3p and subsequently acts as a regulator of BCL-2-like
11 (BCL2L11) expression. The overexpression of LINC00261 inhibited the proliferation and
invasion of the endometriosis cell line CRL-7566 through the BCL2L11 network. Further, the
overexpression of LINC00261 revealed a decrease in miR-132-3p expression and increased
BCL2L11 expression [76]. The role of BCL2L11 in endometriosis was investigated by siRNA
knockdown. BCL2L11 knockdown reduced epithelial-mesenchymal transition (EMT)
markers and reduced invasion [76]. While clinically promising, the scientific reproducibility
of this effect has not been tested due to the original study being performed in a single cell
line, CRL-7566. The CRL-7566 cell line is derived from an ovarian endometrioma. While
it was commercially available from American Type Tissue Culture Collection (ATCC), it
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is no longer available due to its slow growth rate. Further, while the CRL-7566 line was
authenticated with short tandem repeat (STR) profiling, it was not well characterized in
terms of molecular markers for endometrial epithelium and endometrial stroma [106,107].
Thus, these promising effects need to be replicated.

The in vitro studies on lncRNAs in endometriosis above led to preclinical mouse
model studies. First, the lncRNA AFAP1 antisense RNA1 (AFAP1-AS1) mediates the
signal transducer and activator of the transcription-transforming growth factor beta-SMAD
(STAT3/TGF-β/SMAD) signaling pathway through miR-424-5p to influence endometriosis
progression. Huan et al. reported that AFAP1-AS1 knockdown inhibited proliferation
and migration and promoted apoptosis in an SV40-transformed, endometriosis eutopic
endometrium stromal cell line, hEM15a [108]. Additionally, AFAP1-AS1 regulates EMT.
Specifically, AFAP1-AS1 is thought to act in concert with steroid hormones, such as estra-
diol, to induce the expression of the transcription factor zinc finger E-box binding homeobox
1 (ZEB1). Interestingly, the shRNA knockdown of AFAP1-AS1 reduced the expression of
ZEB1 in the spontaneously transformed endometrial cancer cell line Ishikawa. Further,
Ishikawa cells with a knockdown of AFAP1-AS2 showed reduced tumor dimensions in a
nude mouse model compared to non-targeted Ishikawa cells [109]. These studies highlight
the impact of AFAP1-AS1 on proliferation and growth. While promising, the studies
in an endometrial cancer cell line highlight the potential lack of clinical applicability to
endometriosis. Finally, endometriosis is a disease of significant immunologic features.
The use of nude mice, which are immunocompromised, may not be biologically applica-
ble to endometriosis. Improved in vivo and in vitro models are needed to improve the
translatability of studies.

Second, Liu and colleagues studied the lncRNA small nucleolar host gene 4 (SNHG4)
in a heterologous mouse model of endometriosis. In this model, nude mice were injected
subcutaneously with primary endometrial stromal cells (ESCs) isolated from ectopic en-
dometrium and transfected with either NC-si, SNHG4-si1, or SNHG4-si1 combined with
anti-miR-148-3p. After silencing SNHG4, the volume of endometriotic lesions was con-
siderably reduced compared to the non-targeting control. Further, the expression of MET
proto-oncogene receptor tyrosine kinase (MET) was inhibited, while miR-148a-3p was
upregulated. The inhibitor of miR-148a-3p combined with SNHG4 knockdown rescued
endometriotic lesions growth and upregulated the MET expression. The authors postu-
lated that SNHG4 might upregulate proto-oncogene expression, in particular MET, via
the suppression of miR-148a-3p, to promote the increased growth of endometrial tissue
outside the uterine cavity and endometriosis lesions [110]. The impact of oncogenes and the
manipulation of oncogenes in therapy for endometriosis deserves future study, particularly
as non-hormonal therapies.

Third, studies showed that lncRNA maternally expressed 3 (MEG3-210) has a reg-
ulatory mechanism in endometriosis. MEG3-210 was downregulated in the eutopic en-
dometrium of endometriosis patients and the primary cultures of endometrial stromal cells
from women with endometriosis. The overexpression of MEG3-210 in the primary cultures
of endometrial stromal cells from women with endometriosis revealed reduced invasion
and migration. Further, flow cytometry detected a reduction in apoptosis. They examined
two molecular pathways, including p38 signaling for its role in the endometriosis inflam-
matory response and PKA/SERCA2 signaling for its effects on cell motility and apoptosis.
Western blotting showed that the protein levels of phosphorylated mitogen-activated pro-
tein kinase 14 (better known as p38) and phosphorylated activating transcription factor 2
(ATF2) were significantly increased after the downregulation of MEG3-210. Furthermore,
the protein levels of protein kinase cAMP-activated catalytic subunit alpha (PRKACA,
better known as PKA) and ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting
2 (SERCA2) were decreased after MEG3-210 downregulation [111]. Previously, p38 activity
was found to be higher in the eutopic and ectopic endometria in endometriosis patients.
Increased p38 MAPK activity in endometriotic cells correlated with the activation of in-
flammatory cytokines, such as interleukin one beta (IL1b) and tumor necrosis factor-alpha
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(TNFα) [112]. Finally, they found that p38/MAPK and PKA/SERCA2 signaling pathways
act through Galectin1. Galectin-1 is a member of the sub-family of galectins that play a role
in intracellular signal processing, molecular modification, cell motility, and malignant bio-
logical behavior [111,113]. Recently, MEG3 has regulated transforming growth factor-beta
(TGFβ) signaling [114]. Previous work has shown the role of TGFβ signaling in ovarian
endometriomas through small RNA signaling [115]. Further studies should examine the
connection of lncRNA MEG3 in TGFβ signaling in endometriomas.

Like lncRNA, circular RNAs share the sponge mechanism of action. For example,
the circular RNA circ_0007331 targets miR-200c-3p and, consequently, targets hypoxia-
inducible factor 1 subunit alpha (HIF1A), a key transcription factor for angiogenesis and
hypoxia mechanisms. Through this mechanistic axis, circ_0007331 knockdown, with the
cooperation of HIF1A downstream, reduced the proliferation and invasion of primary
endometrial cell cultures from women with endometriosis. With the overexpression of miR-
200c-3p, proliferation and invasion increased, as did HIF1A. The inhibition of miR-200c-3p,
conversely, reduced the proliferation and invasion caused by circ_0007331 knockdown, con-
firming that the circ_0007331/miR-200c-3p/HIF-1α axis has an important role in cell prolif-
eration and invasion in endometriosis [116]. Using a homologous endometriosis mouse
model, treatment with circ_0007331 shRNA, shRNA NC, or anti-miR-200c-3p showed that
circ_0007331 knockdown reduced the lesion sizes. Further, treatment with anti-miR-200c-
3p did not. Using immunohistochemistry, endometriosis lesions from mice treated with
circ_0007331 shRNA were negative for HIF1A, but mice treated with anti-miR-200c-3p
treatment maintained HIF1A expression [116]. These results show the importance of the
circ_0007331/miR-200c-3p/HIF-1α axis in the endometrium of endometriosis patients.

Finally, the sponge mechanism of action has been proposed for the circular RNA
circ_0004712, and miR-148a-3p. Notably, this axis plays an important role in estradiol
(E2)-induced EMT processes in the development of endometriosis, potentially through the
β-catenin pathway. The E2 treatment of either the endometrial cancer cell line Ishikawa or
the human papillomavirus (HPV)-16 E6/E7 transformed endometriosis endocervical cell
line End1/E6E7 showed the overexpression of circ_0004712. Further, E2 treatment increased
migration in transwell assays and the induction of EMT through the b-catenin pathway.
The E2- treatment effect was suppressed with the knockdown of circ_0004712 [117]. Interest
in circRNA application in endometriosis is a relatively new area of research. However, the
exciting data to date support additional preclinical studies.

While lncRNAs offer opportunities for targeting cellular function, lncRNAs them-
selves offer options as therapeutic targets. The dysregulation of lncRNA expression has
been linked to diseases and complex biological processes [118]. Recently, lncRNA HOX
transcript antisense RNA (HOTAIR) has been associated with a genetic susceptibility to
endometriosis. Functional single nucleotide polymorphisms, including rs1838169 and
rs17720428, were frequently found in endometriosis patients [119]. Moreover, endometrio-
sis pathogenesis may revolve around a functional axis of HOTAIR/homeobox D10 and HO-
TAIR/homeobox A5. Homeobox proteins (HOXs) are critical in maintaining endometrium
homeostasis during embryo implantation and menstrual cycles, highlighting their impor-
tance in endometriosis [120]. HOTAIR knockdown reduced cell proliferation and migration
and increased HOXD10 and HOXA5 expression in two ovarian clear cell cancer cell lines,
ES-2 and TOV-21G [119]. The overexpression of HOTAIR in epithelial ovarian cancer cells
increases cancer invasiveness and metastasis. Moreover, the involvement of HOTAIR
in cancer progression and response to standard chemotherapy, possibly promoting mes-
enchymal stem cell formation, has been highlighted [121,122]. Since endometriosis shares
features with cancer, these results make HOTAIR a possible target for future endometriosis
or ovarian cancer therapies. Secondly, Zhang et al. discovered that another potential
target, CCDC144NL antisense RNA1 (CCDC144NL-AS1), was found to be upregulated in
ectopic endometriosis and eutopic endometrium from women with endometriosis. The
in vitro knockdown of CCDC144NL-AS1 in the SV40-transformed, endometriosis eutopic
endometrium stromal cell line hEM15a was associated with decreased migration and in-
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vasion. Assuming that alterations in motility and invasion were related to cytoskeleton
alteration, the authors found an altered distribution of cytoskeletal F-actin stress fibers
compared to lower protein levels of vimentin filaments and matrix metallopeptidase 9
(MMP9) after CCDC144NL-AS1 knockdown [123]. Although there are yet no clinical
studies, preclinical studies reveal a potential application of lncRNAs.

In the last few years, a growing interest in diet and nutrition as complementary
therapeutic support for endometriosis was established even if randomized clinical trials
do not show benefits [124]. Moreover, a connection between nutrition and ncRNA epi-
genetics has been found with sulforaphane, epigallocatechin gallate (EGCG), genistein,
resveratrol, and curcumin in female reproductive tract cancers. A possible therapeutic
role of these compounds combined with traditional therapies has been highlighted. As
we know, endometriosis shares some pathways with neoplastic disease. Phytochemicals
and nutraceuticals have been shown to influence pathways involving the miR-200 family,
let-7 family, or miR-34a that can interact with inflammatory and oxidation mechanisms
that play an important role in endometriosis [125].

6. Challenges to Clinical Application and Future Directions

Linear lncRNAs and circRNAs promise great results as biomarkers for the early detec-
tion and disease recurrence of endometriosis. ncRNAs are resistant to RNase degradation
and remain stable in biologic fluids, allowing for transport stability to specialized clinical
laboratories that may not be local for all women. Studies show promising results but with
little consistency among them, especially if considering single lncRNAs as biomarkers.
Signature panels of miRNAs, such as the miR-20 or miR-200 families, have been widely
investigated but partially have the same problem [126]. A possible solution could be to
combine different molecules to obtain a more powerful signature of lncRNAs and miRNAs
or other circulating markers (such as CA125) to create a more accurate diagnostic tool.

The main contemporary challenge is the heterogeneity of endometriosis cases and con-
trols. The World Endometriosis Research Foundation (WERF) Endometriosis Phenome and
Biobanking Harmonisation Project (EPHect) has provided guidelines [127]. The detailed
characterization of women with endometriosis in terms of pain symptoms, lesion location,
and molecular profiles is critical to homing in on useful diagnostic tools. While most of
the studies interrogate the use of medications, most do not consider nutritional factors,
over-the-counter supplements, or drugs. For example, the dietary intake of omega-6 fatty
acids, omega-3 fatty acids, vitamin D, and N-acetylcysteine may affect endometriosis devel-
opment. Further, supplements containing quercetin and L-carnitine may be involved in the
progression of endometriosis [128]. Nutraceuticals, nutritional products that are also used
as medicines [129], are emerging within the realm of endometriosis therapy [130]. As stud-
ies within other gynecologic diseases have shown an effect of nutraceuticals on noncoding
RNA expression [125], the role of these natural products, nutrients, and supplements on
lncRNAs requires additional study in endometriosis.

Each woman with endometriosis is a unique individual, and small studies are insuffi-
cient to evaluate a large number of clinical features. The collaborative, detailed characteri-
zation of the phenotype of women with endometriosis is critical. Unfortunately, an optimal
non-endometriosis control population is challenging without putting healthy women
through laparoscopic surgery for research purposes. While detailed guidelines are helpful
for translational studies, additional guidelines are needed to report endometriosis mouse
models and in vitro model systems, including multicellular aggregates, spheroids, and
organoids. Preclinical studies on lncRNAs and circRNAs show promise for the translation
to well-characterized human studies.
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