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Abstract: This study deals with the green synthesis of chromium oxide (Cr2O3) nanoparticles using a
leaf extract of Abutilon indicum (L.) Sweet as a reducing and capping agent. Different characterization
techniques were used to characterize the synthesized nanoparticles such as X-ray diffraction (XRD),
Scanning electron microscope (SEM), Transmission electron microscope (TEM), Energy-dispersive X-
ray (EDX), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and ultraviolet-
visible (UV-VIS) spectroscopy. The X-ray diffraction technique confirmed the purity and crystallinity
of the Cr2O3 nanoparticles. The average size of the nanoparticles ranged from 17 to 42 nm. The
antibacterial activity of the green synthesized nanoparticles was evaluated against four different
bacterial strains, E. coli, S. aureus, B. bronchiseptica, and B. subtilis using agar well diffusion and
a live/dead staining assay. The anticancer activities were determined against Michigan Cancer
Foundation-7 (MCF-7) cancer cells using MTT and a live/dead staining assay. Antioxidant activity
was investigated in the linoleic acid system. Moreover, the cytobiocompatibility was analyzed against
the Vero cell lines using MTT and a live/dead staining assay. The results demonstrated that the
green synthesized Cr2O3 nanoparticles exhibited superior antibacterial activity in terms of zones
of inhibition (ZOIs) against Gram-positive and Gram-negative bacteria compared to plant extracts
and chemically synthesized Cr2O3 nanoparticles (commercial), but comparable to the standard drug
(Leflox). The green synthesized Cr2O3 nanoparticles exhibited significant anticancer and antioxidant
activities against MCF-7 cancerous cells and the linoleic acid system, respectively, compared to
chemically synthesized Cr2O3 nanoparticles. Moreover, cytobiocompatibility analysis displayed that
they presented excellent biocompatibility with Vero cell lines than that of chemically synthesized
Cr2O3 nanoparticles. These results suggest that the green synthesized Cr2O3 nanoparticles’ enhanced
biological activities might be attributed to a synergetic effect. Hence, green synthesized Cr2O3

nanoparticles could prove to be promising candidates for future biomedical applications.

Keywords: green synthesis; Cr2O3; Abutilon indicum (L.) Sweet; antibacterial; anticancer; antioxi-
dant; biocompatibility

1. Introduction

Nanobiotechnology is the intersection of biology and nanotechnology that deals with
nanotechnology’s application in different biological systems. Nanobiotechnology further
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deals with the fabrication of biocompatible, ecofriendly, and biogenic nanomaterials and
nanoparticles [1]. The nanoparticle Cr2O3, is of high significance and interest among
various metal oxides-based nanoparticles because of its unique physicochemical properties
such as a wide bandgap (~3.4 eV), high melting temperature, and increased stability [2].
The Cr2O3 nanoparticles have been widely utilized in different applications, including
catalysis, photonics, coating materials, advanced colorants, etc. [3–6]. The trivalent Cr2O3
nanoparticles are considered the most stable compared to other chromium oxides [7].
Despite being a promising material, few studies have evaluated Cr2O3 nanoparticles for
different biological applications because of their potential toxic effects that have been
reported in many studies [8]. The biocompatibility of Cr2O3 nanoparticles is an essential
parameter for their utilization in different biological systems. The poisonous effects of
Cr2O3 nanoparticles can be reduced by coating or functionalization their surfaces with
biogenic materials. One of the most promising ways of achieving this, is surface coating
Cr2O3 with plants’ biogenic phytomolecules [9].

The synthesis of nanoparticles using plants as a precursor has attracted much at-
tention recently. As an alternative to conventional chemical and physical methods, the
green synthesis of nanoparticles using biological sources (plants) is an economical, robust,
ecofriendly, and easily scalable technique [10]. Most importantly, nanoparticles synthesized
using plants appear to be more biocompatible than those prepared with chemical and
physical methods. This is because of the fact that toxic chemicals are used in traditional
chemical and physical techniques for synthesizing nanoparticles. After several rounds
of washing, these toxic chemicals cannot easily be removed from the nanoparticle’s sur-
face. Therefore, poisonous chemicals present on the nanoparticle’s surface making them
less biocompatible and limiting their biological applications. Instead, plant based green
synthesis of nanoparticles uses phytomolecules as the reducing and capping agents, and
no additional chemicals are required. Moreover, plant biogenic phytomolecules have
molecular functionalities that are biologically active and have antibacterial, antioxidant,
anticancer, etc. properties. So, green synthesis using plants enhances the nanoparticle’s
biocompatibility and is responsible for the synergetic effect [9,10].

In this work, we synthesized Cr2O3 nanoparticles using leaf extracts of a medicinal
plant (Abutilon indicum (L.) Sweet) for the first time, as per the author’s best knowledge.
Abutilon indicum (L.) Sweet has been widely employed for treating different kinds of diseases
in Tamils, Siddha, Chinese, and traditional Ayurvedic medicine [10–12]. Abutilon indicum (L.)
Sweet is a rich source of different biogenic phytomolecules such as terpenoids, alkaloids,
saponins, polyphenols, tannins, etc., with various biological applications [13]. Many useful
and biologically active compounds have been isolated from leaf extracts of Abutilon indicum
(L.) Sweet [14]. Many reports are available that highlight the biological importance of this
plant [15]. Till now, many plants have been utilized for the synthesis of nanoparticles. Among
the plants used, some are either not biologically active or they are biologically active but have
toxic effects. Therefore, nanoparticles for biological applications need to be synthesized with
such plants that are biologically active with no toxic effects. In this regard, Abutilon indicum
(L.) Sweet appeared as a more prominent plant that has both of these properties compared
to other plants [10]. Many nanomaterials such as nanoparticles (gold, silver, ZnO, etc.) and
nanorods (1D-MoO3, etc.) have also been synthesized using leaf extracts of Abutilon indicum (L.)
Sweet [11,12,16]. We have previously reported the green synthesis of MnO and CuO using leaf
extracts of Abutilon indicum (L.) Sweet [10,17]. In this study, we have further utilized this plant
for the green synthesis of Cr2O3 nanoparticles. The synthesized Cr2O3 nanoparticles using
leaf extracts of Abutilon indicum (L.) Sweet were further evaluated for antibacterial, anticancer,
biocompatibility, and antioxidant activities. They have presented excellent antioxidant and
anticancer activities. The synthesized nanoparticles exhibited outstanding antibacterial activity
by inhibiting the growth of both Gram-positive and Gram-negative bacterial strains. Moreover,
the green synthesized Cr2O3 nanoparticles demonstrated excellent biocompatibility compared
to chemically synthesized and already reported Cr2O3 nanoparticles.
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2. Results and Discussion
2.1. Characterization

Abutilon indicum (L.) Sweet leaf extract was used as a reducing and capping agent for
the synthesis of Cr2O3 nanoparticles. The Cr2O3 nanoparticles synthesis was monitored
visually by detecting color change upon the addition of metal salt precursor in leaf extract.
The color change of the reaction mixture from red to black indicated the formation of
desired nanoparticles. This color transition occurred due to the surface plasmon resonance
(SPR) phenomenon on the nanoparticle’s surface [2,18]. Abutilon indicum (L.) Sweet leaf ex-
tract contains a rich source of biologically active phytomolecules (polyphenols, flavonoids,
terpenoids, alkaloids, tannins, saponins, proteins, etc.) [10,13,19]. These phytomolecules
can act as ligands and chelate with different metal ions to reduce and stabilize their ions
to nano form [20,21]. The chromium sulfate salt (Cr2(SO4)3), upon dissolution in water,
becomes a freely moving ion. The freely moving Cr3+ ions due to electron-deficiency are
attracted towards the plant’s phytomolecules (polyphenols, etc.). As a result of this, chelate
complex formation occurs between metal ions and the plant’s phytomolecules upon trans-
ferring electrons (donor–acceptor mechanism) from oxygen to Cr3+ (Figure 1) [20,21]. This
leads to the oxidation of polyphenols, flavonoids, etc., and converts them into keto form
(Figure 1). On the other hand, Cr3+ is reduced to zero-valent specie Cr0 and simultaneously
stabilized by the other plant’s phytomolecules (alkaloids, flavonoids, tannins, etc.) present
in their vicinity. During air-drying and calcination, they are readily oxidized and converted
into Cr2O3 nanoparticles capped with phytomolecules of Abutilon indicum (L.) Sweet leaf
extract [20–22]. A similar green synthesis mechanism was also reported to synthesize ZnO,
zinc oxide–silver, Fe3O4, and magnetite (Fe3O4) using different plants by Khalafi et al.,
Gurgur et al., López et al., and Yew et al., respectively [20–23].
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Further, the green synthesized Cr2O3 nanoparticles were analyzed using a UV–Visible
spectrophotometer, and the results are presented in Figure 2a,b. UV–Visible spectrum re-
sults indicated the presence of two absorption peaks at 280 nm and 415 nm. The absorption
band in the UV region is attributed to phytomolecules such as polyphenols and flavonoids,
and these molecules absorb UV light because of the OH moieties [13,24,25]. The absorp-
tion band in the visible region corresponds to Cr2O3 [26–29]. Moreover, the plant leaf
extracts presented the UV region’s absorption band (200–390 nm) [10]. The FTIR analysis
was further performed to determine the phytomolecules involved in synthesizing Cr2O3
nanoparticles as reducing and capping agents. Figure 2b,c presented the FTIR spectrum of
plant leaf extract and nanoparticles. The results demonstrated that the synthesized nanopar-
ticles displayed different FTIR peaks corresponding to O-H (3430 cm−1), C-H (2921 cm−1),
C=O (1702 cm−1), N-H (1646 cm−1), C=C (1517 cm−1), and C-O-C (1061 cm−1). These
peaks are matched with the FTIR signals of the leaf extracts with slight shifting. These re-
sults suggest that many biologically active phytomolecules are left adsorbed on the surface
of the Cr2O3 nanoparticle [9,10]. Moreover, the FTIR signal at 612 cm−1, corresponding to
Cr-O, further validated the metal-oxygen bond formation [2,7,18].
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The crystallinity of the green synthesized Cr2O3 nanoparticles was determined by
XRD analysis, and the results are presented in Figure 3a. The XRD spectrum of synthesized
nanoparticles revealed nine different Bragg’s diffraction peaks, indexing to crystal planes of
(012), (104), (110), (113), (024), (116), (214), (220), and (306) at 2θ = 24.5◦, 33.6◦, 36.2◦, 41.5◦,
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50.2◦, 54.9◦, 63.4◦, 76.8◦, and 79.1◦, respectively. The diffraction peaks of Cr2O3 nanopar-
ticles are well-matched with Joint Committee on Powder Diffraction Standards (JCPDS)
38–1479 [30,31]. The peaks associated with impurities were not observed, indicating the
purity of the nanoparticles. The peak’s intensity further displayed the high crystalline
nature of the nanoparticles. Figure 3b,c shows the SEM and TEM images of the synthesized
Cr2O3 nanoparticles. SEM and TEM images displayed that the synthesized nanoparticles
have spherical morphology. The Cr2O3 nanoparticles size determined by TEM ranged from
35–60 nm. The average nanoparticle size determined using DLS was 27.76 nm and ranged
from 17–42 nm (Figure 3d). TEM and DLS particle size analysis results are consistent with
each other.
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The compositional analysis of the synthesized nanoparticles was performed using
Energy-dispersive X-ray spectroscopy. EDX spectra results showed that the nanoparti-
cles were mainly composed of chromium (63.76%) and oxygen (32.15%), as shown in
Figure 3e [2]. One extra peak associated with carbon (4.09%) is also evident in the EDX
spectrum. The carbon peak could be attributed to the presence of phytomolecules (polyphe-
nols, alkaloids, flavonoids, etc.) of leaf extract of A. indicum (L.) Sweet adsorbed on Cr2O3
nanoparticle’s surface [9,10].

Further, the elemental analysis was also carried out using X-ray photoelectron spec-
troscopy (XPS), and the results are presented are shown in Figure 3f. XPS spectrum results
indicated the presence of five peaks at binding energies of 284.5, 400.9, 530.9, 576.9, and
586.8 eV. These XPS peaks correspond to C1s, N1s, O1s, Cr2p3/2, and Cr2p1/2, respec-
tively [32,33]. The carbon and nitrogen XPS peaks, other than oxygen and chromium,
might be attributed to the adsorption of phytomolecules of Abutilon indicum (L.) Sweet leaf
extract on the surface of nanoparticles. The phytomolecules of Abutilon indicum (L.) Sweet
leaf extract has different molecular functionalities such as -OH, -NH2, -CHO, -CHO2, etc.,
in their molecules [13]. Both EDX and XPS analysis results are found to be consistent with
each other. All these characterization results corroborated that the Cr2O3 nanoparticles of
interest have been successfully green synthesized.

2.2. Antibacterial Propensity

The green synthesized Cr2O3 nanoparticles were evaluated for their antibacterial
potential compared to the plant extract, chemically synthesized Cr2O3 nanoparticles, and
the standard drug against four different pathogenic bacteria, including two Gram-positive
and two Gram-negative. The results showed that all the samples presented concentration-
dependent antibacterial activity, and the maximum inhibition in the bacteria’s growth was
observed with a 20 µg/mL concentration (Figure 4a–d). Moreover, the green synthesized
Cr2O3 nanoparticles exhibited superior antibacterial activity in terms of ZOIs against
Gram-positive and Gram-negative bacteria compared to the plant extract and chemically
synthesized Cr2O3 nanoparticles. At all the concentration levels, they presented compara-
ble inhibitory efficacy compared to the standard drug. The results further demonstrated
that Gram-positive bacteria were found to be more susceptible than Gram-negative bacteria
towards the green synthesized Cr2O3 nanoparticles. This might be due to the variances
in the chemical structure and composition of both the bacteria’s cell wall, and further,
their different level of susceptibility towards metal oxide nanoparticles. The cell wall of
Gram-negative bacteria is composed of lipopolysaccharides, lipoproteins, and phospho-
lipids. In contrast, Gram-positive bacteria’s cell walls include a thin layer of peptidoglycan
and teichoic acid and large pores. Moreover, compared with Gram-negative bacteria,
Gram-positive bacteria have a high negative charge on the cell wall surface, attracting
nanoparticles more efficiently. Hence, the small size of nanoparticles at low tempera-
tures can penetrate, spread, and damage the bacterial cell wall, which leads to bacteria
demise [34].

The antibacterial activity of the green synthesized nanoparticles was further confirmed
by CLSM, and the results are presented in Figure 5. SYTO-9 is a membrane-permeant dye
which stains live/dead cells. In comparison, PI is an impermeant dye and can only stain
dead cells upon its penetration. The PI penetrates the cells only via the dead cells’ burst
membrane and subsequently binds to the DNA, emitting a strong red fluorescence [35].
The results demonstrate that untreated bacterial cells (control) exhibited an intense green
color, indicating that all the cells were alive and intact. On the other hand, bacterial cells
treated with green synthesized Cr2O3 nanoparticles appeared red, which showed that the
nanoparticles destroyed the bacterial cell’s membrane’s permeability and integrity, leading
to cell demise.
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2.3. Anticancer Activity

The green synthesized Cr2O3 nanoparticles were evaluated for their anticancer potential in
terms of cell viability percentage against MCF-7 cancerous cells compared to Abutilon indicum (L.)
Sweet leaf extract, chemically synthesized Cr2O3 nanoparticles, and the standard drug. The
results were shown that all the samples presented concentration-dependent anticancer activity.
The maximum cytotoxic effect on MCF-7 cancer cells was observed with 120 µg/mL concen-
tration of all the samples (Figure 6). The superior anticancer activity was demonstrated by the
green synthesized Cr2O3 nanoparticles compared to Abutilon indicum (L.) Sweet leaf extract
and chemically synthesized Cr2O3 nanoparticles at all tested concentrations. Moreover, the
green synthesized Cr2O3 nanoparticles displayed slightly less anticancer activity against MCF-7
carcinoma cells than the standard drug. However, this difference was not sufficient, so we
can suggest that they presented comparable levels of anticancer activity to the standard drug
at all the tested concentrations. Our green synthesized Cr2O3 nanoparticles displayed better
anticancer activity against human breast cancer cells at the 120 µg/mL concentration compared
to (500µg/mL) single-phase Cr2O3 nanoparticles synthesized using Nephelium lappaceum L. [36].
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Using an inverted microscope (Nikon Eclipse TE200), we further observed the mor-
phological changes in MCF-7 carcinoma cells after their treatment with green synthesized
Cr2O3 nanoparticles, plant extract, and chemically synthesized Cr2O3 nanoparticles at
the concentration of 120 µg/mL. Figure 7a–d shows the inverted micrograph of MCF-7
cancerous cells. The images show that after treatment, drastic changes occurred in the
morphology of MCF-7 cancer cells. The MCF-cells’ volume and cytoplasm have been
decreased, and the shape of the cells changed to round. All the samples induced toxicity,
but green synthesized Cr2O3 nanoparticles were appeared to pose a significant and severe
cytotoxic effect on MCF-7 cancer cells.
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To further affirm the anticancer activity against MCF-7 cancer cells, the live and dead
fluorescence staining assay was employed using CLSM. Figure 7e–h shows the live/dead
MCF-7 cancer cells stained with green and red dye, respectively. The results demonstrated
that green synthesized Cr2O3 nanoparticles exhibited a maximum cytotoxic effect on MCF-
7 carcinoma cells, and they had killed almost 90% cancerous cells (Figure 7h). On the other
hand, chemically synthesized Cr2O3 nanoparticles induced a mild toxic effect on MCF-7
cancer cells and destroyed almost 50% of cancer cells. It is interesting to note that leaf
extract also presented toxicity on MCF-7 cancer cells indicating that Abutilon indicum (L.)
Sweet has biologically active phytomolecules. Henceforth, these results are consistent with
the results of MTT and inverted microscopic analysis.

2.4. Antioxidant Activity

The antioxidant activity of green synthesized Cr2O3 nanoparticles was determined
in the linoleic acid system and compared to plant leaf extract, chemically synthesized
Cr2O3 nanoparticles, and standard (α-tocopherol). The results in the form of lipid per-
oxidation percentage are presented in Figure 8. The results demonstrate that maximum
lipid peroxidation inhibition was observed with the standard, followed by plant extract
and green synthesized Cr2O3 nanoparticles. Chemically synthesized Cr2O3 nanoparticles
displayed the lowest level of antioxidant activity in terms of lipid peroxidation inhibition.
It is interesting to note that the plant extract presented a comparable antioxidant activity
compared to the standard. The enhanced antioxidant activity of green synthesized Cr2O3
nanoparticles might be attributed to the presence of phytomolecules of the plant leaf extract
on the nanoparticle’s surface, as evident from the FTIR, EDX, and XPS results. Hence,
these results suggest that green synthesized Cr2O3 nanoparticles and plant extract can
be used as powerful antioxidant agents in different applications. Moreover, our green
synthesized Cr2O3 nanoparticles appeared to be more active in terms of antioxidant activity
than previously reported for Cr2O3 nanoparticles synthesized using leaf extract of Rhamnus
virgate [2].
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2.5. Cytobiocompatibility Analysis

The green synthesized Cr2O3 nanoparticles were further evaluated for their cytobio-
compatibility analysis against the Vero cell lines (Kidney epithelial cells) in comparison to
plant leaf extract and chemically synthesized Cr2O3 nanoparticles. As per International
Organization for Standardization (ISO) 10993-5, a material could be considered toxic, mod-
erately toxic, weak toxic, and cytobiocompatible if the cell viability (%) is less than 40%,
40 to 60%, 60 to 80%, and greater than 80% respectively. The results are presented in
Figure 9a. The results of cell viability (%) demonstrated that the chemically synthesized
Cr2O3 nanoparticles exhibited the least cytobiocompatibility (77.46 ± 0.31%). On the other
hand, plant extract and green synthesized Cr2O3 nanoparticles presented excellent cyto-
biocompatibility (93.63 ± 0.24% and 88.50 ± 0.85%) with the Vero cell lines, respectively.
Our green synthesized Cr2O3 nanoparticles exhibited good cytobiocompatibility with the
normal cells compared to previous reports [2].

We further analyzed the cytobiocompatibility of the green synthesized Cr2O3 nanopar-
ticles with Vero cell lines compared to the plant extract and chemically synthesized
Cr2O3 nanoparticles using the live/dead staining technique. The results are displayed in
Figure 9b–e. The results demonstrated that the plant leaf extract and green synthesized
Cr2O3 nanoparticles exerted the lowest levels of cytotoxic effects on Vero cells as fewer
cells died (Figure 9c,e). In contrast, chemically synthesized Cr2O3 nanoparticles exerted
more cytotoxicity, and many cells appeared dead (Red) (Figure 9d). The good cytobiocom-
patibility of the green synthesized Cr2O3 nanoparticles with the Vero cell lines might be
attributed to the presence of phytomolecules of plant leaf extract.
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3. Materials and Methods

The present research work was performed in the chemistry laboratory, Department
of Chemistry, University of Management and Technology, Lahore. All the chemicals
used were of analytical grade and available commercially. The chemicals used in the
research work were purchased from Merck (Darmstadt, Germany) and Sigma Chemicals
Co. (St. Louis, MS, USA). The commercially available Oleic acid-coated Cr2O3 nanoparticles
were purchased with a 18 nm size for comparative biological analysis—these nanoparticles
are named as chemically synthesized nanoparticles.

3.1. Collection of the Plant Material

Abutilon indicum (L.) Sweet plant was collected from the wild area native to tropical
and subtropical regions. Its identification was made by Dr. Zaheer (Department of Botany,
Punjab University, Lahore, Pakistan).

3.2. Preparation of Plant Extract

A total of 20 g of the plant’s fresh leaves were taken. The leaves were washed with
deionized (DI) water and dried in an oven at 80 ◦C. The dried leaves were crushed with a
mortar and pestle. After fine crushing, the crushed leaves were mixed in 150 mL DI water
and 100 mL methanol and heated at 50 ◦C for 1 h. After heating, the sample was kept
for one day and then filtered, and the subsequent filtrate (plant extract) was stored in an
air-tight bottle for further use (Figure 10).
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3.3. Green Synthesis of Chromium Oxide (Cr2O3) Nanoparticles

For the green synthesis of Cr2O3 nanoparticles, 10.20 g of Cr2(SO4)3 was added to
100 mL of plant extract and stirred the resultant mixture for 60 minutes at 35 ◦C. After, a
change in the color of the resulting mixture solution from red to black was observed, due
to surface plasmon resonance indicating the formation of the required Cr2O3 nanoparticles.
The nanoparticles were then centrifuged at 3000 rpm twice and then filtered and washed
with deionized water/ethanol three times. Then, the Cr2O3 nanoparticles were dried in an
oven at 40 ◦C and further calcinated at 500 ◦C in a muffle furnace for 3 hours (Figure 10).
Finally, the obtained nanoparticles were stored in an air-tight container for characterization
and biological applications.

3.4. Characterization
3.4.1. X-ray Diffraction

The crystallinity and purity of the green synthesized Cr2O3 nanoparticles in powder
form were determined using the powder X-ray diffraction (XRD) (Bruker D2 PHASER with
LYNXEYE XE-T detector, Haidian, Beijing, China) with a wavelength (λ) of 0.154 nm over
the 2θ range 4–90◦.

3.4.2. Scanning Electron Microscope (SEM) and Energy-Dispersive X-ray (EDX)
Spectroscopy

The synthesized nanoparticles’ morphology was characterized using an SEM (Quattro
S) by placing the dried powder sample on the carbon tape. The compositional analysis
was carried out with an energy-dispersive X-ray (EDX) spectroscopy using Thermo Fisher
Scientific Ultradry (Madison, WI, USA) attached with SEM.

3.4.3. Transmission Electron Microscope (TEM)

The green synthesized Cr2O3 nanoparticles were dissolved in methanol, and sonica-
tion was performed at 25–30 ◦C and then they were transferred to a copper grid. The copper
grid was set aside for drying for 5–10 min, then TEM (FEI/Philips Tecnai 12 BioTWIN,
Baltimore, MD, USA) was used to acquire TEM images with an acceleration voltage of
200 kV [37].
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3.4.4. Zetasizer Dynamic Light Scattering (DLS)

The green synthesized Cr2O3 nanoparticles were dissolved in DI water and soni-
cated for 5 min at 25–30 ◦C. About 10 mm sample solution was taken out and placed
on glass cuvette. After that, the cuvette was placed in the cell holder, and scanning was
performed using a dynamic light scattering particle size analyzer (Malvern Zetasizer Nano
ZS, Worcestershire, WR14 1XZ, UK) from 1 to 100 nm at 25–30 ◦C [37].

3.4.5. X-ray Photoelectron Spectroscopy (XPS)

The XPS of green synthesized Cr2O3 nanoparticles was performed using ULVAC-PHI
Quantera II (Ulvac-PHI Inc., Chigasaki. Kanagawa, Japan) with the following conditions
monochromatic AlKα (hυ= 1486.6 eV) at 25.6 W with a beam diameter of 100 µm. Ad-
ditionally, pass energy of 280 eV with 1 eV per step was used to perform a wide scan
analysis.

3.4.6. UV-Visible Spectrophotometric Analysis

The green synthesized Cr2O3 nanoparticles were dissolved in DI water and sonicated
for 5 min at 25–30 ◦C. The nanoparticles solution and plant extract were then transferred in
a quartz cuvette, and after being placed in the cell, the absorption maxima were determined
from 200 to 800 nm using a UV–Visible spectrophotometer (Shimadzu 1700, Columbia,
Maryland, U.S.A.) at 25–30 ◦C [37].

3.4.7. Fourier Transform Infrared (FTIR)

The dried powder of green synthesized Cr2O3 and plant extract was placed on the
quartz slide, and then the FTIR spectrum was measured from 450 to 4000 using Perkin
Elmer Spectrum 100 spectrophotometer (Bridgeport Avenue Shelton, CT 06484-4794, USA)
at 25–30 ◦C.

3.5. Antibacterial Propensity

The antibacterial propensity of the green synthesized Cr2O3 nanoparticles was deter-
mined using agar well diffusion assay against four different bacterial strains (Staphylococcus
aureus ATCC® 23235™, Bacillus subtilis ATCC® 6051™, Escherichia coli ATCC® 25922™,
and Bordetella bronchiseptica ATCC® 4617™), following the protocol previously reported
by [9]. The antibiotic drug (Leflox) and dimethyl sulfoxide (DMSO) were used as a positive
and negative control, respectively. Four concentrations (5, 10, 15, and 20 µg/mL) of each
sample were prepared in DMSO. For antibacterial activity, washed petri-dishes and freshly
synthesized media (nutrient agar) were sterilized by an autoclave for 15 min at 121 ◦C. The
sterilized molten nutrient agar (30 mL) was poured into petri-dishes as a basal layer and set
aside for a moment to form a solid gel, and subsequently, 3.5 mL of inoculum of each bac-
terium inoculated. The inoculum of each bacteria strain was prepared at 1 × 108 CFU/mL.
The holes were then bored at four peripheral positions using a sterilized hollow iron rod.
The holes were then filled with 20 µL of sample, positive and negative control dilutions.
The petri-dishes were incubated for 24 h at 37 ◦C in an incubator. After 24 h, the clear
zones of inhibition (ZOIs) were observed around the holes. The diameter of the ZOIs was
recorded using a ruler in millimeters. The experiment was repeated three times.

Live/dead Bacteria Staining Assay

To further confirm the antibacterial activity of green synthesized Cr2O3 nanoparticles,
a live and staining assay was performed using a confocal laser scanning microscope
(CLSM, FV-1200, Olympus, Tokyo, Japan) following the protocol reported by [38]. The
two fluorescent dyes SYTO-9 and propidium iodide (PI) were used for staining the live
(green) and dead (red) bacteria, respectively. Each bacterium was cultured in a nutrient
broth and incubated at 37 ◦C for 24 h to obtain the confluence of 105–106 colony forming
units (CFU) per mL. After, bacteria were inoculated onto pasteurized cover glass coated
with poly-L-lysine in 24-microtitre well plate and placed in an incubator for incubation
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for 1 hour to allow bacterial cells to attach to the cover glass. The suspended bacterial
cells were then removed, and the cover glass was gently rinsed three times using a saline
solution. Each bacterium on the cover glass was treated with 20 µg/mL concentration
of green synthesized Cr2O3 nanoparticles and incubated again at 37 ◦C for 24 h. The
bacteria on cover glass were then stained with a live/dead bacterial viability kit, as per
the manufacturer’s instructions. The bacterial cells were analyzed with CLSM at 485 nm
excitation wavelength for SYTO-9 and PI and 530 nm emission wavelength for SYTO-
9 while 630 nm for PI. We only considered green synthesized Cr2O3 nanoparticles for
live/dead staining assay as they presented excellent antibacterial properties in terms of
ZOIs.

3.6. Anticancer Activity

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) colorimetric as-
say was used for determining the anticancer activity of chromium oxide nanoparticles
against MCF-7 (breast cancer cells) [10]. The MCF-7 carcinomatous cells were placed in Dul-
becco’s Modified Eagle’s Medium (DMEM) in a humidified atmosphere consisting of 5%
CO2 and 95% air at 37 ◦C. To obtain the 5 × 108 cells/well, the MCF-7 cells were cultured in
96-well plates containing the 100 µL of DMEM for 24 h at 37 ◦C. The 50 µL of each sample
(green synthesized Cr2O3 nanoparticles, plant extract, and pristine) at concentrations of 1,
5, 10, 15, 30, 60, and 120 µg/mL was added separately in each well, and the plate was then
incubated for 24 h at 37 ◦C. After the plate was centrifuged to remove the supernatant and
then washed with phosphate buffer saline. The 15 microliters of MTT reagent (0.5 mg/mL)
was added to each well. The plate was placed in an incubator for incubation for 4 hours at
37 ◦C. To dissolve the crystals of formazan, a reduced product of MTT, 150 µL of DMSO
were added in each well and stirred on a shaker for 10 min. The optical density (OD) of
formazans products was measured at 570 nm using a spectrophotometer. The cell viability
percentage was calculated using the following formula; with the help of the following
equation;

% Cell viability = ODsample/ODcontrol ×100 (1)

Live/Dead Cells Staining Assay

We further investigated the MCF-7 carcinomatous cell viability with the fluorescent
staining technique to affirm the cytotoxicity using the live/dead double staining kit (viable
cells stain with green and dead cells with red). The same experiment was repeated as
described above till cancer cells treated with different samples (10 µL of 120 µg/mL) and
subsequent incubation. After, the staining solution (4 µg/mL) was added to each well at
37 ◦C and incubated for 20 min. Photographs were taken with a fluorescence microscope
(excitation wavelength 488/545 nm for viable/dead cells).

3.7. Antioxidant Activity in Terms of Linoleic Acid (%) Inhibition

The antioxidant activity of the green synthesized Cr2O3 nanoparticles in terms of
linoleic acid (%) inhibition was determined compared to plant extracts and chemically syn-
thesized Cr2O3 nanoparticles, following the protocol reported by [39]. In detail, 100 µg/mL
concentration of each sample was added to the solution mixture of 0.2 M sodium phosphate
buffer (pH 7.0, 10 mL), 99.99% ethanol (10 mL), and linoleic acid (0.13 mL). The resulting
solution’s total volume was made up to 25 mL with DI water and subsequently incubated
for 360 hours at 40 ◦C. The extent of oxidation was measured using the thiocyanate method.
Accordingly, 0.2 mL of the sample solution was taken and then added to 10 mL of ethanol
(75%). Subsequently, 0.2 mL of aqueous ammonium thiocyanate solution (30%) and 0.2 mL
FeCl2 (20 mM in 3.5% HCl) was added. The reaction mixture was stirred for 3 min, and the
absorption maxima were then measured at 500 nm wavelength. The percentage inhibition
of linoleic acid was calculated using the following formula:

% Inhibition = [100 − (Absorbance of sample)/(absorbance of control)] × 100 (2)
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The alpha-tocopherol was used as an external standard, and the control only consisted
of linoleic acid without any treatment.

3.8. Cytobiocompatibility Analysis

The green synthesized Cr2O3 nanoparticles were further evaluated for their cytobio-
compatibility analysis against the Vero cell line (Kidney epithelial cells) in comparison to
chemically synthesized Cr2O3 nanoparticles. The MTT protocol was followed for deter-
mining the cytobiocompatibility analysis reported by [40].

3.9. Statistical Analysis

All the experiments (antibacterial, anticancer, antioxidant, and biocompatibility) were
conducted three times, and the results are presented as mean ± standard deviation. One-
way ANOVA at a fixed significance level (0.05) and the Tukey test were also applied to the
results to determine the significance.

4. Conclusions

In this work, Cr2O3 nanoparticles have been successfully green synthesized using
the leaf extract of Abutilon indicum (L.) Sweet as a reducing and capping agent. The green
synthesized Cr2O3 nanoparticles were successfully characterized using XRD, SEM, TEM,
EDX, FTIR, XPS, and UV-VIS spectroscopy. The green synthesized Cr2O3 nanoparticles
displayed excellent antibacterial performance against all tested bacterial strains (E. coli,
S. aureus, B. bronchiseptica, and B. subtilis) and were comparable to the standard available
drugs. However, they showed better bacterial inhibition than plant leaf extract and chemi-
cally synthesized Cr2O3 nanoparticles. The green synthesized Cr2O3 nanoparticles also
demonstrated significant anticancer and antioxidant activities against MCF-7 cancer cells
and the linoleic acid system, respectively, comparable to the employed standard drug and
external standard antioxidant, respectively. Moreover, green synthesized Cr2O3 nanopar-
ticles presented excellent biocompatibility with Vero cell lines compared to chemically
synthesized Cr2O3 nanoparticles. It is interesting to note that Abutilon indicum (L.) Sweet
leaf extract was also found to be active towards antibacterial, antioxidant, and anticancer
activities. These results suggest that the green synthesized Cr2O3 nanoparticles’ enhanced
biological activities might be attributed to the synergetic effect (physical properties and
adsorbed phytomolecules on their surface). Thus, the antioxidant, antibacterial, biocom-
patibility, and anticancer activities results displayed the potential of green synthesized
Cr2O3 nanoparticles for different future biomedical applications (antifungal, antilarvicidal,
etc.). Hence, nanoparticles synthesis using leaf extracts of Abutilon indicum (L.) Sweet
is an efficient, robust, economical, and green method that produces biocompatible and
biological active nanoparticles. The use of leaf extracts of Abutilon indicum (L.) Sweet can be
further extended for synthesizing various other biocompatible nanomaterials for biological
applications.
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