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Abstract: Glioblastoma (GBM) is the most common malignant brain tumor and its malignant pheno-
typic characteristics are classified as grade IV tumors. Molecular interactions, such as protein–protein,
protein–ncRNA, and protein–peptide interactions are crucial to transfer the signaling communica-
tions in cellular signaling pathways. Evidences suggest that signaling pathways of stem cells are also
activated, which helps the propagation of GBM. Hence, it is important to identify a common signaling
pathway that could be visible from multiple GBM gene expression data. microRNA signaling is
considered important in GBM signaling, which needs further validation. We performed a high-
throughput analysis using micro array expression profiles from 574 samples to explore the role of
non-coding RNAs in the disease progression and unique signaling communication in GBM. A series
of computational methods involving miRNA expression, gene ontology (GO) based gene enrichment,
pathway mapping, and annotation from metabolic pathways databases, and network analysis were
used for the analysis. Our study revealed the physiological roles of many known and novel miRNAs
in cancer signaling, especially concerning signaling in cancer progression and proliferation. Overall,
the results revealed a strong connection with stress induced senescence, significant miRNA targets
for cell cycle arrest, and many common signaling pathways to GBM in the network.

Keywords: glioblastoma; microRNA; senescence; molecular signaling; biochemical pathways

1. Introduction

Glioblastoma (GBM) is the most common aggressive brain tumor, rendering it in-
curable by surgery [1–4]. The mechanisms by which GBM cells migrate and invade the
brain is still poorly understood, and leads to limited targeted therapies. Several molecular
signaling pathways urge the abnormal growth of cells, such as epidermal growth factor
(EGF), platelet derived growth factor (PDGF), vascular endothelial growth factor (VEGF),
insulin-like growth factor (IGF), and hepatocyte growth factor/scatter factor (HGF/SF) [5].
It is significant to reveal the interactions of the significant proteins, protein–ncRNA, and
protein–peptide to target the crucial signaling pathway in GBM. microRNA signaling
communication tends to have an important role in GBM signaling, which needs further
validation and understanding [6,7].

Int. J. Mol. Sci. 2021, 22, 517. https://doi.org/10.3390/ijms22020517 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-5541-234X
https://doi.org/10.3390/ijms22020517
https://doi.org/10.3390/ijms22020517
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22020517
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/22/2/517?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 517 2 of 14

On the other hand, small non-coding RNA and microRNA (miRNA) signaling tend
to have an essential role in GBM signaling, requiring further validation and understand-
ing [6,7]. miRNAs of about ~22nucleotides in length primarily bind at the 3′ untranslated
region of the mRNA, causing degradation or translational repression [8]. GBM patient
miRNA microarray data analysis identified 752 miRNAs, in which 115 miRNAs were
upregulated and 24 miRNAs were downregulated. Specifically, miR-576-5p, miR-340, and
miR-626 were found to have significant overexpression and miR-320, let-7g-5p, miR-7-5P
have significant low expression in GBM [9]. The analysis of glioblastoma tissues and
glioblastoma cell lines has identified a group of microRNAs that significantly get dys-
regulated in GBM. It was also noted that miR-221 is strongly upregulated and miR-128,
miR-181a, miR-181b, and miR-181c are downregulated in GBM [10]. It has been identified
that stable microRNAs circulate in the blood of both healthy individuals and GBM patients.
Further, it is identified that the toll-like receptors (TLR) in cancer stem cells interact with
mRNA in the central nervous system to influence TLR-4 signaling pathway [11,12].

Senescence is one of the prominent factors in various cancers, including GBM [13,14].
In particular, age-related cancers, such as glioblastoma, have evident connections with
cellular aging (otherwise called senescence) [15–17]. In The Cancer Genome Atlas (TCGA),
a public repository of cancer genomes, GBMs are categorized into three important genetic
subtypes: (1) classical, (2) proneural or neural, and (3) mesenchymal, respectively [18]. A
careful literature survey suggests that the mesenchymal subgroup has the worst prognosis
and recent research focuses on understanding the underlying mechanisms regarding the
regulation of mesenchymal GBM. Due to robust gene expression by cancer cells, each
subtype greatly varies in terms of its cellular features, genetic contexts, and signaling com-
ponents [19]. Knowing new signaling components and mechanisms from the senescence
pathways will be a crucial step forward in decoding cancer mechanisms. Senescence itself
has many complex unknown roots, which are yet to be explored. It was reported that,
not a single molecule, but the alterations of a small regulatory module, can induce and
maintain a specific phenotypic state in glioma cells [20]. To expand the current view and
further understanding on the senescence-associated miRNAs in GBM, we performed a
high throughput study using micro array expression profiles from 574 samples. We used a
series of computational methods, including statistical analysis of miRNA expression, gene
ontology (GO) based gene enrichment, pathway mapping, and annotation from metabolic
pathway databases and network analysis. Our study emphasizes the physiological roles of
many known and novel miRNAs in cancer signaling, especially GBM, adding finer details
regarding the mode of signaling that takes place in cancer progression. Overall observation
of our high throughput study mainly emphasizes the involvement of aging related path-
ways in GBM. Moreover, we focused on senescence as one of the mechanisms responsible
for GBM cells, leading to failure on the treatment [21]. Our findings on senescence-related
signaling in GBM could lead to decoding the molecular mechanism of GBM, and help
discover the possible mode of treatment strategies.

2. Results
2.1. Significantly Overexpressed miRNAs in GBM

We identified novel senescence-related pathways involved in GBM through micro
array expression data. This helps to present new signaling interactions governed by
miRNA mediated molecular mechanisms. Differentially expressed miRNAs identified
were significantly expressed from the matrix (Figure 1), which we further filtered with probe
entries, having proper ENTREZ gene mapping and functional annotation. Overexpressed
genes were selected based on the log2 fold change with at least two-fold upregulated
genes, where about ~534 genes with ≥5 fold upregulated were identified. All ofthese
overexpressed genes were used further for the functional annotation search target mapping.
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Figure 1. Heat map representation of differentially expressing miRNAs among glioblastoma (GBM) arrays (each array in
the map represents an miRNA gene; due to more miRNA genes, gene names are not shown in the figure). Expression levels
are scaled into log2 fold change and it scales from −3 (blue) downregulated, to 3 upregulated (brown). Top overexpressing
miRNA genes selected from this matrix for further analysis.

2.2. Functional Relevance of Aging in GBM Identified from GO Enrichment Analysis

Reliability and coverage of functional annotation for over expressed genes were
further retrieved and confirmed by hypergeometric distribution analysis in two levels:
Gene Ontology and Reactome pathway. From the GO based enrichment analysis, we
obtained 90 GO terms (Supplementary Table S1) showing potential signaling relevance
and molecular signaling in GBM. Out of these, 79 terms are from biological process, nine
from molecular function, and two are cellular component related terms. Biological process
terms also have significant functionalities related to the development and organization of
the central nervous system. In particular, ageneration of neurons (GO: 0048699), central
nervous system development (GO: 0007417), and neuron differentiation (GO: 0030182) are a
few critical examples. Molecular function-based terms mainly have functional contributions
toward signal transduction (GO: 0004871, GO: 0060089) and transcriptional regulation (GO:
0001071, GO: 0003700). Cellular component terms are from cell junction (GO: 0030054) and
catalytic complex (GO: 1902494) formation sites.

2.3. Reactome Targeted Analysis Captures New Pathways Including Senescence

Reactome pathway database targeted hypergeometric distribution analysis resulted
in13 pathways (Figure 2 and Table 1) having 64 miRNAs, and their associated target genes,
including four senescence-related pathways. Identified pathways include many significant
connections with tumor phenotypes of the GBM. They are (1) transcriptional activation of
cell cycle inhibitor p21 (REACT_346) pathway, where p21 is transcriptionally activated by
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tumor suppressor protein p53 after DNA damage [22]; (2) DNA damage/telomere stress
induced senescence (REACT_169185). This stress induced DNA damage pathway arises
from reactive oxygen species (ROS), where concentration increases in senescent cells due
to the oncogenic RAS-induced mitochondrial dysfunction [23] or due to the environmental
stress, causing double strand breaks (DSBs) in DNA [24]. Additionally, persistent cell
division fueled by oncogenic signaling leads to replicative exhaustion, which is manifested
in critically short telomeres [25,26].
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Figure 2. miRNA targeted network of cancer signaling including senescence. Signaling networks of different pathways
identified from the analysis of over expressed miRNAs in GBM and their associated targets represented in this network.
Black filled circles represent the miRNA input target genes identified from our enrichment analysis and target mapping.
Filled Gray circles represent associated genes, having the closest functional relationships with input target genes. Gray
diamond shaped nodes represent sub-networks or pathways, having a functional relationship with the genes of interest.
Connecting edges are drawn based on the evidence from consolidated pathway databases, physical interactions, co-
expression profile, pathways, and co-localization profiles. A network also showing clusters of four different signaling
pathways, as highlighted; the top light purple ellipse shows that the most nodes and connections are linked to interleukin
and immune response. The small circle on the left, highlighted with light green, shows transcriptional regulation related
entries. The light red circle on the right most interestingly shows cancer-linked pathways in genes. The bottom yellow circle
shows signaling pathways, which are very essential to cell cycle regulation. Four senescence-linked pathways are present,
containing at least 14 genes, as listed in Table 2. Pathway information are selected, based onReactomePathway Database
entries, mapping to the identified miRNA target from the network.
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Table 1. Reactome pathways identified for overexpressed miRNA using hypergeometric testing.

Reactome ID Total Hypergeometric Description

REACT_346 1 0.0746269 Transcriptional activation of cell cycle inhibitor p21
REACT_169185 1 0.0746269 DNA damage/telomere stress induced senescence
REACT_169121 1 0.0746269 Formation of senescence-associated heterochromatin foci (SAHF)
REACT_264532 2 0.1442038 Binding of TCF/LEF:CTNNB1 to target gene promoters
REACT_264242 2 0.1442038 Formation of the beta-catenin:TCF transactivating complex
REACT_120734 5 0.3256145 SMAD2/SMAD3:SMAD4 heterotrimerregulatestranscription
REACT_264212 16 0.3404253 Transcriptional activation of mitochondrial biogenesis
REACT_160243 6 0.3778924 Constitutive signaling by NOTCH1 PEST domain mutants
REACT_160254 6 0.3778924 Constitutive signaling by NOTCH1 HD+PEST domain mutants
REACT_118780 6 0.3778924 NOTCH1 intracellular domain regulates transcription
REACT_169168 6 0.3778924 Senescence Associated Secretory Phenotype (SASP)
REACT_264617 6 0.3778924 POU5F1 (OCT4) SOX2 NANOG activate genes related to proliferation
REACT_169436 6 0.3778924 Oxidative-stress-induced-senescence

(3) Formation of senescence-associated heterochromatin foci (SAHF) (REACT_169121)
pathway. The processes of these pathways culminate in the formation of senescence-
associated heterochromatin foci (SAHF). These foci represent facultative heterochromatin
formed in the senescent cells. They contribute to the repression on the proliferation pro-
moting genes and play an important role in the permanent cell cycle exit that finally leads
to senescence [27,28]. (4) Binding of TCF/LEF: CTNNB1 to target gene promoters (RE-
ACT_264532). Regulation upon the binding of these genesare involved in a diverse range of
functions in cellular proliferation, differentiation, embryogenesis, and tissue homeostasis,
and include transcription factors, cell cycle regulators, growth factors, proteinases, and
inflammatory cytokines [29]. (5) Formation of the beta-catenin: TCF transactivating com-
plex (REACT_264242); this process takes place in chromatin and worksin association with
HMG-containing transcription factors that bind to the WNT responsive elements in target
gene promoters [30]. (6) SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription (RE-
ACT_120734); this complex formation takes place in the nucleus and getsphosphorylated by
cyclin dependent kinase CDK8 [31,32]. (7) Transcriptional activation of mitochondrial bio-
genesis (REACT_264212). Metabolic control of mitochondrial biogenesis happens through
the PGC-1 family phosphorylated PPARGC1A (PGC-1alpha) regulatory network [33]. (8)
Constitutive signaling by NOTCH1 PEST domain mutants (REACT_160243). NOTCH1
PEST is an intracellular domain, and its mutants are usually behaving like the wildtype
NOTCH1, upon ligand binding and proteolytic cleavage mediated activation of signal-
ing. However, after the release of NICD1 fragment of NOTCH1, PEST half-life period,
and transcriptional activity, extends through interference with FBXW7 (FBW7)-mediated
ubiquitination and degradation of NICD1 [34–36]. Identified roles of this pathway include
malignant tumor, malignant neoplasm, and primary cancer and T-cell leukemia.

(9) Constitutive signaling by NOTCH1 HD+PEST domain mutants (REACT_160254).
Functionality is highly similar to the previous complex and the roles observed were mainly
from the T cell acute lymphoblastic leukemia [34]. (10) NOTCH1 intracellular domain
regulates transcription (REACT_118780). Activation of NOTCH1 produces NICD1 in
response to Delta and Jagged ligands (DLL/JAG) presented in trans, and traffics to the
nucleus, where it acts as a transcription regulator in downstream signal transduction [37].
(11) Senescence-associated secretory phenotype (SASP) (REACT_169168). This mediates
cellular response to stress arising from RAS and p53 tumor suppressor [38], and DNA
damage signaling, and triggers the senescence-associated inflammatory cytokine secre-
tion [39]. (12) POU5F1 (OCT4), SOX2, NANOG activates genes related to proliferation
(REACT_264617).POU5F1 (OCT4), SOX2, and NANOG bind elements in the promoters
of the target gene playing a role in developmental biology, OCT4 regulatory networks in
embryonic stem cells, and embryonal carcinoma cells [40]. (13) Oxidative stress induced
senescence (REACT_169436) [23]. “Reactome ID” represents the Reactome curated Path-
way Database entry; “Total” is the number of identified miRNA targets from the pathway;
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“Hypergeometric” is the hypergeometric distribution value for the selected pathway; and
the “Description” gives the function of the mentioned pathway.

2.4. Semantic Similarity among the Interacting Genes

In total, 31 genes were found as the functional base of annotations resulting from the
90 GO terms identified from the network. The functional relationship among these genes
was measured in all three levels of GO annotation: biological process, cellular component,
and molecular function. Figure 3 highlights the strong one-to-one connections among these
levels. It also indicates the presence of senescence upon the overexpression of miRNAs
identified in this study. Further, to examine the interaction of these genes, pathwayanalysis
was performed.
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Figure 3. Gene Ontology based semantic similarity among differentially expressed genes. Pairwise comparison of these
genes computed using Cytoscape/GeneMANIA plugin (version 3.3.4). Upper diagonal is the semantic similarity matrix
excluding self-comparisons. Darker gray-scale represents higher gene ontological relatedness. Pairwise functional similarity
graded by the (A) cellular component based semantic similarity measured among the genes in pathways observed from the
network gene pairs IGFBP7-IL3, RBBP4-PCNA, RBBP4-CEBPB, RBBP4-CDKN1A, CDk6-CDKN1A, E2F1-TFDP1, having
some of the strongest connectivity in cellular component based ontology analyses. (B) In molecular function (MF) based
similarity analysis, ILE family genes are making the strongest pathway connections among themselves and cell-division
kinases. (C) Compared to cellular component and molecular function analysis, we observed the strongest connectivity in
biological process. Immunoglobulins/kinases are one of the strongest subgroups within these gene sets. This indicates
the complex and aggressive nature of tumor cells and strong roles of miRNA regulations as well. (D) Genes clustered
from the biological process-based similarity matrix, which highlights spatial arrangement of the DE genes in relation to the
pathways involved.
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2.5. Senescence as a Critical Player behind GBM

The analysis revealed that 4 out of 13 miRNA-mediated pathways in GBM were
related to senescence (Table 2). We also extracted target gene information for the senes-
cence pathway genes by miRNAs from the above-mentioned Reactome pathways. We
identified 13 target genes from senescence regulated by miRNA, which includes CDKN1A
(Cyclin-Dependent Kinase Inhibitor 1A), CDKN2A (cyclin-dependent kinase inhibitor 2A),
CDKN2B cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4), CEBPB (CCAAT/
enhancer binding protein (C/EBP), beta), CXCL8 (interleukin 8), EED (embryonic ecto-
derm development), EZH2 (enhancer of zeste homolog 2), IGFBP7 (insulin-like growth
factor binding protein 7), IL1A (interleukin 1, alpha), IL6 (interleukin 6 (interferon, beta
2), KDM6B (lysine (K)-specific demethylase 6B), MIR3074 (microRNA 3074), and SUZ12
(SUZ12 polycomb repressive complex 2 subunit). Extended network analysis of these
target proteins and associated miRNA reveals the signaling pathways from transcriptional
regulation, cell cycle control, and cancer related molecular mechanisms (Figures 2 and 3).

Table 2. Senescence linked pathways and miRNA targeting genes in GBM.

Reactome ID Pathway Description Genes

REACT_169185 DNA Damage/Telomere Stress Induced Senescence ENSG00000124762 (cyclin-dependent kinase
inhibitor 1A: CDKN1A)

REACT_169121 Formation of Senescence-Associated
Heterochromatin Foci (SAHF)

ENSG00000124762 (cyclin-dependent kinase
inhibitor 1A: CDKN1A)

REACT_169168 Senescence-Associated Secretory Phenotype (SASP) ENSG00000115008 (interleukin 1: IL1A)

ENSG00000136244 (interleukin 6: IL6)

ENSG00000147883 (cyclin-dependent kinase
inhibitor 2B: CDKN2B)

ENSG00000163453 (insulin-like growth factor
binding protein 7: IGFBP7)

ENSG00000169429 (chemokine (C-X-C motif) ligand
8: CXCL8)

ENSG00000172216 (CCAAT/enhancer binding
protein: CEBPB)

REACT_169436 Oxidative Stress Induced Senescence ENSG00000074266 (embryonic ectoderm
development: EED)

ENSG00000106462 (enhancer of zeste 2 polycomb
repressive complex 2 subunit: EZH2)

ENSG00000132510 (lysine (K)-specific demethylase
6B: KDM6B)

ENSG00000147889 (cyclin-dependent kinase
inhibitor 2A: CDKN2A)

ENSG00000178691 (SUZ12 polycomb repressive
complex 2 subunit: SUZ12)

ENSG00000207617 (microRNA 3074: MIR3074)

3. Discussion

Epigenetic variation can alter gene expression or gene regulation, thereby contributing
to gliomagenesis. Abnormal metabolism of cancer cells has shown correlation with mu-
tations in genes encoding metabolic enzymes, involved in tricarboxylic acid cycle (TCA).
The isocitrate dehydrogenase 1 (IDH1) gene is an example that is known to frequently
mutate in different types of cancer and influence EGFR expression [41,42]. Since 2008,
sequencing of gliomas has identified IDH1 mutations and the nature of these mutations
vary, according to cancer types. Interestingly, in some types of cancer, these mutations are
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rare and not observed. The metabolic enzymes encoded by IDH1 genes convert isocitrate to
α-ketoglutarate, producing NADPH, and participate in glucose sensing, lipid metabolism,
and oxidative respiration [43], and the activity of these enzymes are shown to protect
against replicative senescence by reducing oxidative DNA damage. In the post-genomic
era, the abnormal gene expressions linked with various tumors, including glioma, were
studied by miRNA sequence analysis. The miRNAs are small endogenous non-coding
RNAs, composed of 18–23 nucleotides that regulate gene expression in the cells. The results
of RNA sequence analysis indicate that the subset of miRNAs is deregulated in glioma that
plays a vital role in proliferation, invasion, and migration [44]. The differential expression
analysis of 574 samples from the TCGA database was performed. The differentially ex-
pressed miRNAs from glioma samples were considered and subjected to further validation
by hypergeometric distribution analysis. The hypergeometric distribution analysis uses
gene ontology enrichment and Reactome pathways direction to identify potential signaling
relevance and molecular signaling in GBM. Biological processes related GO terms include
many interesting terms having high correlation with cellcycle and aging functional path-
ways. Aging related terms includes regulation of programmed cell death (GO: 0043067),
apoptotic process (GO: 0042981), cell death (GO: 0010941), cell cycle (GO: 0051726), cell
differentiation (GO: 0045595). List of Reactome database pathway entries identified from
the mapping and annotation of over expressed miRNAs in GBM micro array data. There
are four pathways observed from senescence related mechanisms, which supports the
existing hypothesis about the link of GBM with aging. We used those senescence-linked
pathways for further detailed study using network analysis. Through our observations,
31 genes were found as the functional base of annotations resulting from the 90 GO terms
identified from the network based on the GO annotation, which includes biological process,
cellular component, and molecular function. The results from the computational investi-
gation of tumor and non-tumor samples indicated the presence of senescence upon the
overexpression of miRNAs identified, further biochemical and mutational experiments
will shed light on the influence of certain genes in modulating molecular mechanism of
senescence related signaling pathways.

4. Materials and Methods
4.1. GBM Data Retrieval

Agilent single channel (green) microarray data of 574 samples each containing 12,033
probes was retrieved from The Cancer Genome Atlas (TCGA) repository [18] using “Data
matrix and Bulk download” facility. We used Level 1 data (having raw signals) and
Level 2 data containing normalized signals of miRNA expression, per probe, set for each
participant’s tumor sample.

4.2. Microarray Data Processing and miRNA Differential Expression Analysis

Primary array data from 574 samples were merged into an expression matrix and
pre-processing was performed by normalization and differential expression analysis using
series of R/Bioconductor [45] packages. Agilent Microarray probes were mapped into gene
names using the AgiMicroRna [46] package. Data analysis, linear model for microarray, and
RNA-seq data (limma) [47] from Bioconductor was used to read all ofthe expression levels
into a data matrix. Quantile normalization was used between array normalization methods,
while background offset was set to 50. Normalized matrix was converted into log2 fold
to maintain uniform scale across arrays and genes. Linear model fit was performed for
the log2 scaled matrix followed by the Empirical Bayes fitting to maintain the stability of
the results (Figure 4A,B). Agilent miRNA annotation for all ofthe miRNAs and associated
targets were collected from miRbase [48] and TargetScan [49] using the RmiR Bioconductor
package. Top upregulated genes were selected based on the adjusted p-value cut-off of
0.05 from the linear model fit matrix. Adjustment method “BH” was used to control
the expected false discovery rate (FDR) with the specified p-value, which is the most
appropriate criteria for microarray studies.
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4.3. GO Annotation-Based Enrichment

Gene Ontology [50] annotation based analysis was carried out for upregulated miR-
NAs from the normalized matrix using GOStats package [51]. GOStats package has set
of tools to use with GO and microarray data, and it is used for a variety of basic data ma-
nipulation, hypothesis testing, and calculations. All three annotation levels for biological
process, molecular function, and cellular component were implied to get the relationships.
p-value threshold of 0.05 was used without any adjustments, and the minimum number
of genes required from any identified pathway was set to 5 to collect the GO terms. We
performed the hypergeometric test for all ofthe genes having annotations and associated
GO terms. Microarray probes that had no ENTREZ gene ID or GO term association were
filtered out. The hypergeometric test, also called hypergeometric distribution, is a probabil-
ity distribution describing the number of successes, selected from a population with no
replacement. Based on this distribution, we selected significant GO terms associated with
overexpressed miRNAs.

4.4. Pathway Mapping Using Reactome

We performed hypergeometric distribution analysis targeting the Reactome [52] path-
way with a similar approach applied to the GO term annotation search. Instead of searching
for GO terms for overexpressed miRNAs, we searched for appropriate pathway associa-
tions for the selected genes. Statistical test for the association of selected overexpressed
miRNA with ENSEMBL genes was identified using the CORNA package [53]. Significantly
overexpressed genes were used as sample, and associations between these genes and
miRNAs were obtained from miRbase [48]. For the mapping of miRNA transcripts to
ENSEMBL genes, we used the mapping function from the CORNA package. For every
miRNA having association with at least one target gene from any pathway, this function
counts the total number of genes and associates with it. A hypergeometric test was ap-
plied to infer whether this miRNA is more likely to associate significantly with genes
from Reactome pathways. The minimum population threshold of one gene was set for
the search and result, based on the hypergeometric value. Reactome pathways having a
hypergeometric distribution value of ≤0.4 were selected, and the results were saved as
separate files, having information about the miRNA target genes, Reactome pathways,
transcript to gene mapping, and miRNA to gene mapping.
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4.5. Hypergeometric Test

Minimum population threshold for a gene was set to five, and the result was sorted
based on the hypergeometric value. A set of significant genes were defined based on
the p-values less than the threshold. The hypergeometric test evaluated the pathway of
interest that contained more significant genes, compared to those outside the pathway than
expected. For a pathway with x significant genes, the p-value of enrichment of the pathway
p with m genes is calculated by the following Equation (1)

PHT = ∑Ks
j=x

(
K−m
Ks − j

)(
m
j

)
(

K
Ks

) (1)

where Ks is the length of the significant genes list, K is total number of the genes for
the evaluation. This test assumes that the list of significant genes is random and condi-
tions on a fixed pathway. This is a one-sided test thatallows to check if the pathway is
enriched/over-represented within the list of most significantly associated genes for the
given phenotype [54]. Reactome pathways having hypergeometric distribution (PHT)
values of ≤0.05 were selected. Results include information about the miRNA target genes,
Reactome pathways, transcript to gene mapping, and miRNA to gene mapping.

4.6. Network Analysis of miRNA Targets

All ofthe genes of Reactome pathways identified from the hypergeometric test were
used along with their targeting miRNAs for network analysis. Network analysis was
carried out in the Cytoscape [55] environment, using the geneMANIA plugin [56]. At-
tributes included for network construction were co-expression, co-localization, genetic
interactions, pathways, physical interactions, predicted, and shared protein domain-based
interactions. All ofthe evidence for these attributes were collected from consolidated path-
ways, drug-interactions, InterPro database, miRNA-targets predictions, and transcriptional
factor targets. For every input gene, the top 20 most connected genes and top 20 attributes
were searched.The resulted network had 48.39% of attributes from consolidated pathways,
25.06% from physical interactions, 14.07% based on co-expression, 10.31% from common
pathways, and 2.17% based on co-localization evidence.

4.7. Quantitative Measurement of Functional Relativeness

To express the quantitative functional relationships among the GO terms observed
(Supplementary Table S1), in relation to the gene entities in the signaling network, a
semantic similarity analysis was performed using Python module, FastSemSim [57]. In
total, 32 genes connected to 90 GO terms from the network were used for this analysis.
Resnik similarity measure and Best Match Average (BMA) mixing strategy implemented
in FastSemSim were used. Resnik similarity [58] calculated the similarity of terms (t1 and
t2), based on the information content (IC) of the maximum value of informative common
ancestor (MICA) [57–59].

sim Res (t1, t2) = IC [MICA (t1, t2)] (2)

where, MICA (t1, t2) = arg max, I (tj) and tjAancestors (t1, t2) and IC(t) = −log[p(t)]. BMA
provides the average similarity between the best-matching terms [60]. Resnik measure
and BMA mixing strategy is a preferred combination and are often identified as the best
measures [61,62]. Semantic similarity values were computed for all pairs of genes and the
similarity matrix was used to construct the interaction tree. Its representation was plotted
using iTOL [63].
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5. Conclusions

RNAseq analysis of cancer data can aid in identifying tumor-related miRNA that
function as an oncogene or tumor suppressor. In our analysis, the levels of certain miRNA in
glioma tissues were notably underexpressed or overexpressed compared to corresponding
non-tumor tissues. The differentially expressed miRNA targeted genes can be studied by
using cellular assays to understand the blocking of cell cycle and proliferation. Altogether,
these experiments reveal that certain miRNA loss facilitates malignant phenotype of glioma
cells through a specific biochemical pathway. GBM have strong communications with
aging induced stress and it is common among elderly males, which get aggressive as age
increases. In the present work, we performed a differential expression analysis between
all 574 glioblastoma tumor samples obtained from the TCGA database, with the goal
of identifying significant associations between miRNA targets, their enriched functional
categories, and tumor etiologies. Our analysis revealed the overexpressed Differentially
Expressed Genes (DEGs) and GO annotations related to many senescence-linked molecular
mechanisms in GBM. A major proportion of the genes identified as miRNA targets are the
inhibitors of cell cycle and proliferation. Blocking such inhibitors will make cells into an
aggressive proliferate condition, and virtually immortal, which is the hallmark mechanism
of any tumor, including GBM. Observation of other cancer pathways, including bladder
cancer and retinoblastoma in the network suggests the possible overlapping of signals
among these cancer types.

Supplementary Materials: Supplementary materials can be found at https://www.mdpi.com/1422
-0067/22/2/517/s1.

Author Contributions: Conceptualization, M.G. and M.K.; methodology, M.G. and A.M.; software,
M.G. and S.K.M.; validation, O.Y.-H., M.K., and A.M.; formal analysis, M.G.; investigation, S.K.M.;
resources, M.K.; data curation, M.G.; writing—original draft preparation, M.G.; writing—review and
editing, A.M. and S.K.M.; visualization, M.G.; supervision, M.K. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the Center for International Mobility (CIMO) Finland, grant
number TM-13-8898, KM-14-9107, and TM-15-9720 (M.G), and Finnish cultural foundation grant
number 0116947-3. We also thank ICMR-DHR fellowship program for supporting the salary of AM.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this paper is available from public repositories.

Acknowledgments: We thank CSC (Finnish IT Center for Science) for providing us a computational
facility to carry out the research work.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Holland, E.C. Glioblastoma multiforme: The terminator. Proc. Natl. Acad. Sci. USA 2000, 97, 6242–6244. [CrossRef]
2. Doan, P.; Musa, A.; Candeias, N.R.; Emmert-Streib, F.; Yli-Harja, O.; Kandhavelu, M. Alkylaminophenol induces G1/S phase cell

cycle arrest in glioblastoma cells through p53 and cyclin-dependent kinase signaling pathway. Front. Pharmacol. 2019, 10, 330.
[CrossRef]

3. Doan, P.; Musa, A.; Murugesan, A.; Sipilä, V.; Candeias, N.R.; Emmert-Streib, F.; Ruusuvuori, P.; Granberg, K.; Yli-Harja, O.;
Kandhavelu, M. Glioblastoma Multiforme Stem Cell Cycle Arrest by Alkylaminophenol through the Modulation of EGFR and
CSC Signaling Pathways. Cells 2020, 9, 681. [CrossRef]

4. Davis, M.E. Glioblastoma: Overview of Disease and Treatment. Clin. J. Oncol. Nurs. 2016, 20, S2–S8. [CrossRef]
5. Purow, B.; Schiff, D. Advances in the genetics of glioblastoma: Are we reaching critical mass? Nat. Rev. Neurol. 2009, 5, 419–426.

[CrossRef]

https://www.mdpi.com/1422-0067/22/2/517/s1
https://www.mdpi.com/1422-0067/22/2/517/s1
http://doi.org/10.1073/pnas.97.12.6242
http://doi.org/10.3389/fphar.2019.00330
http://doi.org/10.3390/cells9030681
http://doi.org/10.1188/16.CJON.S1.2-8
http://doi.org/10.1038/nrneurol.2009.96


Int. J. Mol. Sci. 2021, 22, 517 12 of 14

6. Møller, H.G.; Rasmussen, A.P.; Andersen, H.H.; Johnsen, K.B.; Henriksen, M.; Duroux, M. A systematic review of MicroRNA
in glioblastoma multiforme: Micro-modulators in the mesenchymal mode of migration and invasion. Mol. Neurobiol. 2013, 47,
131–144. [CrossRef]

7. Niyazi, M.; Zehentmayr, F.; Niemöller, O.M.; Eigenbrod, S.; Kretzschmar, H.; Schulze-Osthoff, K.; Tonn, J.-C.; Atkinson, M.; Mörtl,
S.; Belka, C. MiRNA expression patterns predict survival in glioblastoma. Radiat. Oncol. 2011, 6, 153. [CrossRef]

8. Bartel, D.P. MicroRNAs: Target Recognition and Regulatory Functions. Cell 2009, 136, 215–233. [CrossRef]
9. Dong, L.; Li, Y.; Han, C.; Wang, X.; She, L.; Zhang, H. miRNA microarray reveals specific expression in the peripheral blood of

glioblastoma patients. Int. J. Oncol. 2014, 45, 746–756. [CrossRef]
10. Ciafrè, S.A.; Galardi, S.; Mangiola, A.; Ferracin, M.; Liu, C.G.; Sabatino, G.; Negrini, M.; Maira, G.; Croce, C.M.; Farace, M.G.

Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem. Biophys. Res. Commun. 2005, 334, 1351–1358.
[CrossRef] [PubMed]

11. Litak, J.; Grochowski, C.; Litak, J.; Osuchowska, I.; Gosik, K.; Radzikowska, E.; Kamieniak, P.; Rolinski, J. TLR-4 signaling vs.
Immune checkpoints, mirnas molecules, cancer stem cells, and wingless-signaling interplay in glioblastoma multiforme—Future
perspectives. Int. J. Mol. Sci. 2020, 21, 3114. [CrossRef] [PubMed]

12. Mazurek, M.; Litak, J.; Kamieniak, P.; Osuchowska, I.; Maciejewski, R.; Roliński, J.; Grajkowska, W.; Grochowski, C. Micro RNA
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