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Abstract: Human cytomegalovirus (HCMV) is a human pathogenic herpesvirus associated with a
variety of clinical symptoms. Current antiviral therapy is not always effective, so that improved
drug classes and drug-targeting strategies are needed. Particularly host-directed antivirals, including
pharmaceutical kinase inhibitors (PKIs), may help to overcome problems of drug resistance. Here, we
focused on utilizing a selection of clinically relevant PKIs and determined their anticytomegaloviral
efficacies. Particularly, PKIs directed to host or viral cyclin-dependent kinases, i.e., abemaciclib,
LDC4297 and maribavir, exerted promising profiles against human and murine cytomegaloviruses.
The anti-HCMV in vitro activity of the approved anti-cancer drug abemaciclib was confirmed in vivo
using our luciferase-based murine cytomegalovirus (MCMV) animal model in immunocompetent
mice. To assess drug combinations, we applied the Bliss independence checkerboard and Loewe
additivity fixed-dose assays in parallel. Results revealed that (i) both affirmative approaches provided
valuable information on anti-CMV drug efficacies and interactions, (ii) the analyzed combinations
comprised additive, synergistic or antagonistic drug interactions consistent with the drugs’ antiviral
mode-of-action, (iii) the selected PKIs, especially LDC4297, showed promising inhibitory profiles, not
only against HCMV but also other α-, β- and γ-herpesviruses, and specifically, (iv) the combination
treatment with LDC4297 and maribavir revealed a strong synergism against HCMV, which might
open doors towards novel clinical options in the near future. Taken together, this study highlights
the potential of therapeutic drug combinations of current developmental/preclinical PKIs.

Keywords: human cytomegalovirus; antiviral drugs; activity in vitro and in vivo; combinatorial
drug analyses; pharmaceutical kinase inhibitors (PKIs); new synergistic combinations

1. Introduction

Human cytomegalovirus (HCMV), the prototype species of Betaherpesvirinae, repre-
sents an opportunistic human pathogen with a predominant, worldwide distribution. The
seroprevalence in the adult human population lies in the range between 40% and 95%
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dependent on socio-geographic factors [1,2]. The infection with HCMV generally remains
asymptomatic in immunocompetent individuals [3]. However, it can cause both morbidity
and mortality in immunocompromised individuals, such as patients under antitumoral
chemotherapy, stem cell/organ transplantation or coinfection with human immunodefi-
ciency virus (HIV/AIDS). Importantly, congenital HCMV infection of the unborn is the
main infection-based risk during pregnancy [4–6]. Congenital infection can cause a wide
range of symptoms from mild to severe or even life-threatening in the unborn or infants,
mainly manifesting as acute or late-onset embryonal developmental defects [7]. To date, a
small number of anti-HCMV drugs have been approved for the prevention and control of
infection, mostly comprising nucleoside/nucleotide or pyrophosphate analogs that inter-
vene with the activity of viral genome replication, i.e., ganciclovir (GCV), its oral prodrug
valganciclovir (VGCV), foscarnet (FOS) and cidofovir (CDV) [8,9]. By directly targeting the
viral DNA polymerase and inhibiting the synthesis of viral DNA, specifically GCV and
VGCV constitute the therapeutics of choice against HCMV infection. In 2017, letermovir
(LMV, Prevymis®), which targets the viral terminase, was additionally approved and
successfully used as an HCMV prophylaxis in recipients of hematopoietic stem cell trans-
plantation [10,11]. LMV represents the first approved, mechanistically novel terminase
inhibitor, which interferes with the packaging of viral DNA into mature capsids by the
terminase complex. The specificity of LMV targeting translates to a very narrow spectrum
of antiviral efficacy, being poorly effective against murine cytomegalovirus (MCMV) and
ineffective against other human herpesviruses [12]. LMV is a promising drug candidate
to be applied for further therapy options, possibly also including combination treatment.
However, the currently approved anti-HCMV drugs face limitations, such as the induction
of viral drug resistance and in many instances severe side effects. These side effects include
nephrotoxicity, myelotoxicity and anemia, which limit therapeutic compatibility partic-
ularly in long-term treatments [13,14]. To tackle these issues of HCMV prevention and
treatment, optimization of drug application schemes and novel targeting strategies are es-
sential. For this reason, the development of mechanistically novel antiviral drug candidates
and so far unexploited targeting strategies are the main goals of investigations (Figure S1).
The kinase inhibitor maribavir (MBV) constitutes an anti-HCMV drug candidate which is
in the advanced stages of development [15], currently being investigated in four phase III
clinical trials (NCT02931539, NCT02927067, NCT00497796, NCT00411645). MBV targets
the HCMV-encoded ortholog of cyclin-dependent kinases (CDKs), pUL97, which plays
important roles in viral replication, particularly the HCMV nuclear capsid egress [16–22].
By preventing the phosphorylation of lamin A/C by pUL97, MBV blocks nuclear egress
and thereby inhibits efficient viral replication and spread. MBV belongs to the class of
pharmaceutical kinase inhibitors (PKIs) and, together with the aforementioned approved
anti-HCMV drugs, to the class of direct-acting antivirals (DAAs), selectively targeting and
inhibiting viral proteins. Hence, attempts should be made to broaden this repertoire by
including host-directed antivirals (HDAs), such as artesunate-like drugs [23–27], as has
been achieved in HIV-AIDS therapy with maraviroc and additional candidates [28,29].
Promising compounds for this host-directed approach are further PKIs targeting human
CDKs. The selective CDK7 inhibitor LDC4297 exerts antiviral activity against HCMV
and other herpesviruses in a nanomolar concentration range in vitro [30] and significantly
reduces viral load in an MCMV mouse model [31]. Notably, no cellular antiproliferative
or cytotoxic activity was detected in the relevant concentration range [30]; additionally,
no adverse side effects were observed in mice [31]. HCMV inhibition by LDC4297 was
already detectable at the immediate early phase of viral replication and may involve cell
cycle modification through altered Rb phosphorylation [30]. Similarly, abemaciclib (ABE)
represents another PKI with potential use as an HDA, but its anti-HCMV activity has not
been assessed to date. ABE selectively inhibits cellular CDK4/6 and has been approved
for treatment of advanced or metastatic breast cancer since 2017 [32]. In this study, we
employed both in vitro and in vivo approaches to investigate the PKIs MBV, LDC4297
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and ABE and further characterize their antiviral efficacies against HCMV, MCMV and
additional herpesviruses.

In addition to new host-directed drugs, combination treatment represents another
promising avenue to combat the emergence of drug resistance. A combination between
GCV and FOS has been tested in patients with CMV infection and is recommended for CMV
encephalitis [33–36], but in general, combination treatment against HCMV is not common.
Combining antiviral drugs with different modes of action, however, may have significant
advantages over monotherapy such as increased efficiency and decreased toxicity or side
effects. In particular, HCMV combination treatments with both DAAs and HDAs might
overcome the limitations of viral resistance and drug compatibility. In this study, drug
combinations of two PKIs as well as combinations of one PKI and an approved direct-acting
anti-HCMV drug were assessed. To this end, an affirmative parallel approach involving
the Bliss independence checkerboard and Loewe additivity fixed-dose assays was applied
to analyze the putative additional benefit of combinatorial treatment. Due to differences in
the definition of synergism, in the employed calculations and the experimental procedures,
these two approaches complement each other and can be used together for a comprehensive
analysis of drug combinations. Based on the presented data, we report promising antiviral
profiles for combinations of PKIs that may expand clinical therapy regimens to control
HCMV infection.

2. Results and Discussion
2.1. Assessment of Antiviral Efficacies of a Selection of Clinically Relevant PKIs

Recently, we reported the strong antiviral properties of chemically distinct classes of
HDAs. These were most intensely investigated for anti-HCMV effects but also against
other viruses [23–25,37–41]. A broad spectrum of antiviral efficacy was revealed as a
typical hallmark of HDAs, with PKIs repeatedly showing a promising profile of activ-
ity [30,31,42–47]. Building on this experience, we investigated several PKIs for antiviral
activity here, focusing on a small number of drugs currently under preclinical (CDK7
inhibitor LDC4297) or clinical investigation (MBV) or approved for antitumoral therapy
(ABE). In all cases, the assessment of anticytomegaloviral activities, i.e., determined in the
present study for HCMV and MCMV, pointed to promising in vitro efficacies, with EC50
values in the low micromolar (ABE), submicromolar (MBV) or nanomolar range (LDC4297),
respectively (Table 1). Moreover, broad-spectrum antiherpesviral activity (covering α-, β-
and γ-herpesviruses) was assessed by including the animal oncogenic Marek’s disease
virus (MDV) and the human oncogenic Epstein-Barr virus (EBV). Here, LDC4297 showed
broad inhibitory activity against all analyzed viruses, in a consistently nanomolar concen-
tration range. ABE likewise displayed a broad antiviral efficacy, consistently within a low
micromolar concentration range. MBV, which represents an inhibitor of the HCMV kinase
pUL97, exerted a pronounced anti-HCMV activity with a submicromolar EC50 value of
0.56 ± 0.60 µM, but no in vitro activity against other herpesviruses. Only a concentration
of 30 µM of MBV resulted in some weak antiviral effect on EBV in vitro, which was only
partly in line with the ongoing clinical investigations of the EBV-directed MBV efficacy.

2.2. First Characterization of Abemaciclib as a New Investigational Antiviral Drug

While a substantial characterization of the antiviral properties of MBV and LDC4297
in vitro and in vivo has been reported [30,31,42,47–54], any similar antiviral activity of
ABE has not yet been assessed. To this end, the in vitro and in vivo inhibitory properties
of ABE were determined against HCMV and MCMV, respectively. For both viruses, a
concentration-dependent decline of viral replication was demonstrated, in the case of
HCMV in vitro (Figure 1) and MCMV in vivo (Figure 2). Note the slight, so far mechanisti-
cally unexplained, proviral effect of low concentrations of ABE (<1 µM) in vitro (Figure 1),
which was reproducibly observed in independent experimental replicates using varied
multiplicities of infection (MOIs). This effect was not reflected by the in vivo experimenta-
tion, in which all analyzed dosages, i.e., 20, 50 and 100 mg/kg/d, resulted in a detectable
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inhibition of MCMV replication in the spleen (Figure 2), although variability between
animals was relatively high.

Table 1. EC50 values determined for three preselected pharmaceutical kinase inhibitors (PKIs) against
representatives of α-, β- and γ-herpesviruses.

α-Herpesvirus β-Herpesvirus γ-Herpesvirus

MDV a HCMV b MCMV c EBV d

ABE 7.7 ± 5.6 µM 8.2 ± 4.1 µM 8.8 ± 0.1 µM 7.7 ± 0.9 µM

MBV none (>100 µM) 0.56 ± 0.60 µM none (>30 µM) weak (>30 µM)

LDC4297 0.02 ± 0.01 µM e 0.02 ± 0.00 µM e 0.07 ± 0.02 µM e 0.07 ± 0.06 µM
a Plaque reduction assay, see Section 3.4 (antiviral effects additionally confirmed using qPCR; data not shown).
b HCMV GFP-based replication assay, see Sections 3.1 and 3.5. c MCMV GFP-based replication assay, see
Sections 3.1 and 3.7. d EBV GFP- based replication assay in Akata-BX-1 cells, see Section 3.3. e Sonntag et al.,
2019 [31]. ABE, abemaciclib; MBV, maribavir.

Figure 1. Dose-response curve of ABE against HCMV in vitro. Data are presented as mean relative
HCMV replication compared to control ±SD over three independent experiments each consisting of
biological duplicates.
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(Figure 3A, #1–6, set as 100%). The individual parameters determined in this setting were 
based on in vitro luciferase assays performed on homogenates of three different organs, 
(spleen, liver and lung), qPCR assays using DNA extractions of two organs, (spleen and 
liver), as well as luciferase measurement via in vivo imaging (spleen, liver and lung; Fig-
ure 3B). As a control measurement of drug compatibility, none of the animals showed a 
reduction of body weight below 18.5 g (92.5% of maximum) under these treatment condi-
tions (Figure 3C). Combined, the data illustrate the anti-MCMV activity of ABE in this 
animal model with the highest efficacy observed for 100 mg/kg/d.  

Figure 2. In vivo antiviral drug dosage assessment: ABE-mediated concentration-dependent reduction of spleen-specific
MCMV viral load. Oral application of ABE in dosages of (A) 20 mg/kg/d over 4 days and (B) 50 mg/kg/d or 100 mg/kg/d
over 5 days, resulting in a reduction in viral load of 44%, 74% or 87%, respectively, compared to vehicle-treated animals.
Data are presented as mean + SD of viral replication across five animals per group as measured using in vitro luciferase
assay performed on spleen homogenates.
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This anti-MCMV activity of ABE in vivo was further evaluated via a comparison
with reference drug valganciclovir (VGCV) and LDC4297, which had been analyzed in
an immunodeficient mouse model previously [31]. In the present approach, MCMV
intraperitoneal infection was performed with immunocompetent Balb/c mice and drugs
were administered via oral gavage (Figure 3). Note that in this regimen, VGCV can be
considered the gold standard of oral treatment, showing the most efficient reduction of
viral load (Figure 3A, right panel). ABE at a higher dose of 100 mg/kg/d (ABE h) and
LDC4297 (20 mg/kg/d) showed substantial levels of inhibition, while the lower ABE dose
of 50 mg/kg/d (ABE l) showed limited efficacy, with one animal even displaying lack of
reduction of viral load (Figure 3A, #20). Quantities of viral load are expressed as a mean
of all eight analyzed organs/methods for each animal, given in percentage of the mean
vehicle control (Figure 3A, #1–6, set as 100%). The individual parameters determined in
this setting were based on in vitro luciferase assays performed on homogenates of three
different organs, (spleen, liver and lung), qPCR assays using DNA extractions of two
organs, (spleen and liver), as well as luciferase measurement via in vivo imaging (spleen,
liver and lung; Figure 3B). As a control measurement of drug compatibility, none of the
animals showed a reduction of body weight below 18.5 g (92.5% of maximum) under these
treatment conditions (Figure 3C). Combined, the data illustrate the anti-MCMV activity of
ABE in this animal model with the highest efficacy observed for 100 mg/kg/d.
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2.3. Assessment of Antiviral Drug Combinations Using an Approach with Both Bliss 
Independence Checkerboard and Loewe Additivity Fixed-Dose Assays 

The efficacy of combinatorial antiviral drug treatments in vitro was assessed using 
the two most approved methods in an affirmative parallel approach, in order to achieve 
highly reliable quantitative results (Figure 4). Volumes of drug synergy, additivity or an-
tagonism (measured as synergy volume in µM2%) were determined according to the Bliss 
independence checkerboard assay [55], and combination indices (CIs) were calculated ac-
cording to the Loewe additivity fixed-dose assay [56]. 

Figure 3. Reduction of viral load by PKI treatment. (A) Viral load in spleen, liver and lung was measured using in vitro
luciferase assay, in vivo luciferase imaging and viral genome-specific qPCR and was compared to the mean value of viral
load of six vehicle-treated mice. No, moderate or strong reduction is indicated by black, grey or white colored boxes,
respectively, as indicated in panel B. Grey bars on the right indicate mean values + SD of viral load for each animal in all
eight analyzed organs/methods (see also percentages given above of each bar). (B) Exemplary pictures of in vivo luciferase
imaging. Mice were fixed, sedated and injected with luciferin solution. Organ-specific luciferase activity was measured
according to regions of interest marked in image a. Pictures show exemplary animals for the categories used in panel A,
i.e., no reduction (image b), moderate reduction (image c), strong reduction (image d). (C) Weight of treated animals as
determined on days 0, 2, 4 and 6. Data are given as mean weight in each treatment group. VGCV, valganciclovir.



Int. J. Mol. Sci. 2021, 22, 575 6 of 20

2.3. Assessment of Antiviral Drug Combinations Using an Approach with Both Bliss Independence
Checkerboard and Loewe Additivity Fixed-Dose Assays

The efficacy of combinatorial antiviral drug treatments in vitro was assessed using
the two most approved methods in an affirmative parallel approach, in order to achieve
highly reliable quantitative results (Figure 4). Volumes of drug synergy, additivity or
antagonism (measured as synergy volume in µM2%) were determined according to the
Bliss independence checkerboard assay [55], and combination indices (CIs) were calculated
according to the Loewe additivity fixed-dose assay [56].
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For the Bliss independence model, serial drug dilutions were analyzed in checker-
board-like comprehensive combinations. This approach is labor-intensive, but has the ad-
vantage that minor inaccuracies of preceding EC50 value determinations can be compen-
sated by the relatively large amount of data (Figure 4A). Raw data were analyzed using 
MacSynergy II software (The University of Alabama at Birmingham, Birmingham, AL, 
USA) developed by Prichard and Shipman (1990, [55]). The program uses the independ-
ent-effects definition of additive interactions, meaning that theoretical additive interac-
tions are calculated from the dose-response curves for each drug alone. This calculated 
additive surface is then subtracted from the experimentally determined dose-response 
surface to reveal regions of non-additive activity. The resulting surface appears as a hori-
zontal plane at 0 µM%2 synergy volume (Figure 4B) when a drug combination is merely 

Figure 4. Characteristics of the Bliss independence checkerboard (A,B) and the Loewe additivity fixed-dose assays (C,D)
adapted to the assessment of anticytomegaloviral drug combinations in vitro. (A) Schematic depiction of exemplary
concentration combinations of drugs A (blue) and B (grey) employed in the Bliss independence checkerboard assay.
(B) Exemplary synergistic result of a checkerboard assay. Positive synergy volume (volume above the 0 plane, green) as
well as negative synergy volume (volume below 0 plane, red) are given in the table below. (C) Schematic depiction of
exemplary concentration combinations of drugs A (blue) and B (grey) employed in the Loewe additivity fixed-dose assay.
(D) Exemplary synergistic result of a fixed-dose assay. CI values at 50%, 75%, 90% and 95% virus inhibition as well as the
calculated weighted CI value (CIwt) are given in the table below. CIwt was calculated as (1 × CI50 + 2 × CI75 + 3 × CI90 + 4
× CI95)/10. Note that the data shown in panels B and C are exemplary data from Figures 5 and 6. CI, combination index.
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Figure 5. Bliss independence checkerboard assay results (HCMV-infected HFFs in all cases). (A) MBV + GCV (replicate I); 
(B) MBV + GCV (replicate II); (C) ABE + GCV (replicate I); (D) ABE + GCV (replicate II); (E) ABE + LDC4297 (replicate I); 
(F) ABE +LDC4297 (replicate II); (G) ABE + MBV (replicate I); (H) ABE + MBV (replicate II); (I) TF27 + GCV (replicate I); 
(K) TF27 + GCV (replicate II); (L) TF27 + LDC4297; (M) TF27 + LMV; (N) MBV + LDC4297 (replicate I); (O) MBV + LDC4297 
(replicate II). 
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UL97). To confirm the synergistic interaction in a second HCMV in vitro infection model, the 
combination of MBV + LDC4297 was assessed in epithelial ARPE-19 cells infected with an 
EYFP-expressing HCMV TB40 reporter virus. Importantly, the strong synergistic interaction 
of this drug combination was also detected in this setting, thus showing that this antiviral 
activity was not restricted to the laboratory strain AD169 in HFFs. In addition, moderately 
synergistic to clearly synergistic effects were measured for further drug combinations, i.e., 
ABE + GCV (HCMV and MCMV) and GCV + LDC4297 (HCMV and MCMV). Other combi-
nations, including ABE + LDC4297, were found additive in this approach (Table 3). Thus, the 
results obtained through combinatorial drug assessment using two affirmative methods 
showed a high degree of consistency and synergistic effects could be identified for specific 
drug combinations including the PKIs. 

Figure 5. Bliss independence checkerboard assay results (HCMV-infected HFFs in all cases). (A) MBV + GCV (replicate I);
(B) MBV + GCV (replicate II); (C) ABE + GCV (replicate I); (D) ABE + GCV (replicate II); (E) ABE + LDC4297 (replicate I);
(F) ABE +LDC4297 (replicate II); (G) ABE + MBV (replicate I); (H) ABE + MBV (replicate II); (I) TF27 + GCV (replicate I);
(K) TF27 + GCV (replicate II); (L) TF27 + LDC4297; (M) TF27 + LMV; (N) MBV + LDC4297 (replicate I); (O) MBV + LDC4297
(replicate II).
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Figure 6. Loewe additivity fixed-dose assay results. Numbers in brackets indicate fixed ratio of drugs in the respective 
combination. (A) MBV + GCV (1:1) against HCMV in HFFs; (B) ABE + GCV (1:1) against HCMV in HFFs; (C) ABE + GCV 
(1:1) against MCMV in MEFs; (D) ABE + LDC4297 (100:1) against HCMV in HFFs; (E) GCV + LDC4297 (100:1) against 
HCMV in HFFs; (F) GCV + LDC4297 (100:1) against MCMV in MEFs; (G) TF27 + GCV (1:100) against HCMV in HFFs; (H) 
MBV + LDC4297 (50:1) against HCMV in HFFs; (I) MBV + LDC4297 (100:1) against HCMV in HFFs; (K) MBV + LDC4297 
(100:1) against MCMV-UL97 in MEFs. (L) MBV + LDC4297 (100:1) against HCMV TB40 in ARPE-19 cells. Data are pre-
sented as mean CI values ± SD, extrapolated to 50%, 75%, 90% and 95% virus inhibition across the number of individual 
experiments (n = 1 to n = 3). 

2.5. Conclusions: Identification of Three New Synergistic Drug Combinations, Particularly the 
Most Efficient Combination between the Two PKIs MBV and LDC4297 

By applying the Loewe fixed-dose and Bliss checkerboard assays in this study, a con-
sistent profile of antiviral effects of combinatorial treatment was obtained. In Figure 7, CI 
values and synergy volumes of the two methods are plotted against each other, and the 
type of drug combination is designated by color: antagonistic (blue), additive (white) and 

Figure 6. Loewe additivity fixed-dose assay results. Numbers in brackets indicate fixed ratio of drugs in the respective
combination. (A) MBV + GCV (1:1) against HCMV in HFFs; (B) ABE + GCV (1:1) against HCMV in HFFs; (C) ABE + GCV
(1:1) against MCMV in MEFs; (D) ABE + LDC4297 (100:1) against HCMV in HFFs; (E) GCV + LDC4297 (100:1) against
HCMV in HFFs; (F) GCV + LDC4297 (100:1) against MCMV in MEFs; (G) TF27 + GCV (1:100) against HCMV in HFFs;
(H) MBV + LDC4297 (50:1) against HCMV in HFFs; (I) MBV + LDC4297 (100:1) against HCMV in HFFs; (K) MBV + LDC4297
(100:1) against MCMV-UL97 in MEFs. (L) MBV + LDC4297 (100:1) against HCMV TB40 in ARPE-19 cells. Data are presented
as mean CI values ± SD, extrapolated to 50%, 75%, 90% and 95% virus inhibition across the number of individual
experiments (n = 1 to n = 3).

For the Bliss independence model, serial drug dilutions were analyzed in checkerboard-
like comprehensive combinations. This approach is labor-intensive, but has the advantage
that minor inaccuracies of preceding EC50 value determinations can be compensated by the
relatively large amount of data (Figure 4A). Raw data were analyzed using MacSynergy II
software (The University of Alabama at Birmingham, Birmingham, AL, USA) developed
by Prichard and Shipman (1990, [55]). The program uses the independent-effects definition
of additive interactions, meaning that theoretical additive interactions are calculated from
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the dose-response curves for each drug alone. This calculated additive surface is then
subtracted from the experimentally determined dose-response surface to reveal regions
of non-additive activity. The resulting surface appears as a horizontal plane at 0 µM%2

synergy volume (Figure 4B) when a drug combination is merely additive (no antagonistic
or synergistic interaction). Any peaks above or below this plane of additivity indicate syn-
ergism or antagonism, respectively. The volumes of the peaks/depressions were expressed
as the respective synergy/antagonism volumes [µM2%], and types of drug interaction
were defined as follows: values below −100, strongly antagonistic; −100 to +50, additive;
+50 to +100, moderately synergistic; above +100 strongly synergistic [57,58] (Table 2).

Table 2. Combinatorial anti-CMV drug assessment using the Bliss independence checkerboard assay.

95% Confidence Interval
Synergy Volume [µM2%] b

Drug Combination Cell Type/Virus Replicates a Positive Negative Drug Interaction Type

MBV + GCV HFF/HCMV AD169 2 0.0 ± 0.0 −397.9 ± 39.2 strongly antagonistic

ABE + GCV HFF/HCMV AD169 2 5.0 ± 7.0 −76.4 ± 56.1 additive

ABE + LDC4297 HFF/HCMV AD169 2 389.8 ± 117.1 − 4.5 ± 6.3 strongly synergistic

ABE + MBV HFF/HCMV AD169 2 0.1 ± 0.1 − 67.7 ± 83.9 additive

TF27 + GCV HFF/HCMV AD169 2 20.4 ± 3.6 − 19.6 ± 26.7 additive

TF27 + LDC4297 HFF/HCMV AD169 1 10.0 −6.7 additive

TF27 + LMV HFF/HCMV AD169 1 61.1 −22.3 additive

MBV + LDC4297 HFF/HCMV AD169 2 138.6 ± 0.8 −1.5 ± 2.2 strongly synergistic

a Individual experimental replicates were performed with measurements in triplicate. b The synergy volume [µM2%] values defining the
drug interaction type are in bold print. The types of drug interaction were set as follows: values below −100, strongly antagonistic; −100 to
+50, additive; +50 to +100, moderately synergistic; above +100 strongly synergistic [57,58]. GCV, ganciclovir; LMV, letermovir.

For Loewe additivity evaluations, a lower number of drug concentration pairs was
analyzed. This approach is dependent on the preceding determination of EC50 values in a
very accurate way and has the advantage of largely reducing the number of test samples
(Figure 4C). Raw data were calculated using CompuSyn software (Version 1.0 [59], Com-
boSyn, Inc., Paramus, NJ, USA) based on the procedure developed by Chou and Talalay
(1984, [56]). Here, the program first converts the dose-effect curves for each drug or drug
combination to median effect plots, before CI values for the combinations are extrapolated
at 50% (CI50), 75% (CI75), 90% (CI90) and 95% (CI95) virus inhibition from actual calculated
CIs (Figure 4D). Here, a CI value of 1 implies additive interaction, <1 synergistic and >1
antagonistic. A weighted CI (CIwt) was calculated from the four aforementioned CI values,
giving higher weight with increasing virus inhibition. Synergy, antagonism or additivity
indicated by the CIwt were defined as follows: values <0.1 to 0.3, strongly synergistic; 0.3
to 0.7, synergistic; 0.7 to 0.85, moderately synergistic; 0.85 to 0.9, slightly synergistic; 0.90
to 1.10, (nearly) additive; 1.10 to 1.20, slightly antagonistic; 1.20 to 1.45, moderately antag-
onistic; 1.45 to 3.3, antagonistic; 3.3 to >10, strongly antagonistic [60] (Table 3). The two
independent methods were applied for the drug combinations analyzed in this study as an
affirmative parallel approach [55,56,59,60], and comprehensive data sets are given below.
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Table 3. Combinatorial anti-CMV drug assessment using the Loewe additivity fixed-dose assay.

Drug
Combination
(EC50 Ratio)

EC50 [µM] CI Values Extrapolated at % Virus Inhibition

Cell Type/Virus Replicates a Drug A Drug B 50 75 90 95 CIwt
b Type of Drug

Interaction c

MBV + GCV
(1:1) HFF/HCMV AD169 3 0.6 ± 0.9 1.5 ± 0.7 1.83 ± 1.46 1.81 ± 1.01 2.44 ± 0.45 4.00 ± 2.46 2.88 ± 0.83 antagonistic

ABE + GCV
(1:1)

HFF/HCMV AD169 3 5.1 ± 2.8 1.8 ± 2.4 0.83 ± 0.38 0.64 ± 0.22 0.55 ± 0.09 0.55 ± 0.16 0.59 ± 0.08 synergistic

MEF/MCMV 2 11.4 ± 3.5 2.5 ± 0.7 0.64 ± 0.01 0.71 ± 0.08 0.83 ± 0.14 0.94 ± 0.20 0.83 ± 0.14 moderately
synergistic

ABE + LDC4297
(100:1) HFF/HCMV AD169 2 6.2 ± 3.9 0.014 ± 0.018 3.40 ± 2.81 1.2 ± 0.24 0.70 ± 0.28 0.58 ± 0.35 1.03 ± 0.11 additive

GCV + LDC4297
(100:1)

HFF/HCMV AD169 3 0.9 ± 0.1 0.005 ± 0.003 1.25 ± 0.64 0.79 ± 0.18 0.59 ± 0.25 0.52 ± 0.31 0.66 ± 0.19 moderately
synergistic

MEF/MCMV 2 1.9 ± 1.3 0.086 ± 0.076 1.43 ± 0.78 0.98 ± 0.60 0.69 ± 0.43 0.54 ± 0.33 0.76 ± 0.46 moderately
synergistic

TF27 + GCV
(1:100) HFF/HCMV AD169 2 0.036 ± 0.005 0.9 ± 0.6 2.49 ± 2.15 1.37 ± 0.53 1.16 ± 0.02 1.25 ± 0.13 1.37 ± 0.28 moderately

antagonistic

MBV + LDC4297
(50:1) HFF/HCMV AD169 2 0.5 ± 0.2 0.007 ± 0.0056 0.22 ± 0.06 0.30 ± 0.18 0.47 ± 0.35 0.64 ± 0.52 0.48 ± 0.35 synergistic

MBV + LDC4297
(100:1)

HFF/HCMV AD169 2 0.5 ± 0.7 0.007 ± 0.0012 0.26 ± 0.10 0.28 ± 0.02 0.40 ± 0.03 0.70 ± 0.31 0.48 ± 0.15 synergistic

MEF/MCMV-UL97 1 1.3 0.004 0.57 0.46 0.38 0.33 0.40 synergistic

ARPE-19/HCMV TB40 1 1.7 0.9 0.30 0.10 0.03 0.02 0.07 synergistic

a Individual experimental replicates were performed with measurements in triplicate. b The CIwt values defining the drug interaction type are in bold print and were calculated as (1 × CI50 + 2 × CI75 + 3 × CI90
+ 4 × CI95)/10. c The types of drug interaction were set as follows: values <0.1 to 0.3, strongly synergistic; 0.3 to 0.7, synergistic; 0.7 to 0.85, moderately synergistic; 0.85 to 0.9, slightly synergistic; 0.90 to 1.10,
(nearly) additive; 1.10 to 1.20, slightly antagonistic; 1.20 to 1.45, moderately antagonistic; 1.45 to 3.3, antagonistic; 3.3 to >10, strongly antagonistic [60].
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2.4. Identification of Additive, Synergistic or Antagonistic Types of Drug Interaction for Various
Combinations of PKIs and Other Antiviral Compounds

The series of chosen drug combinations were assessed using the Bliss independence
checkerboard assay, using primary human foreskin fibroblasts (HFF), in the HFF/HCMV
in vitro infection model (Figure 5). The test settings comprised combinations between
two PKIs themselves, i.e., maribavir (MBV), abemaciclib (ABE) and LDC4297 (panels
C, F, G and H), or between one PKI and a mechanistically distinct antiviral reference
drug such as ganciclovir (GCV), letermovir (LMV) or trimeric artesunate (TF27; [61–63])
(panels A, B, D, E and I). Additional combinations between the latter reference drugs
were also analyzed in parallel (panels K, L and M). Most combinations showed additive
effects, but the combination MBV + GCV showed antagonism, as expected (MBV inhibits
viral kinase pUL97, while GCV needs activating phosphorylation through pUL97). Using
this Bliss independence checkerboard assay, most importantly, two examples of strong
synergism were newly identified with the combinations ABE + LDC4297 and MBV +
LDC4297 (Table 2). This result argues for a very promising potential of these PKIs in
anti-HCMV combinatorial drug development.

Applying the Loewe additivity fixed-dose assay in the parallel approach, these drug
combinations were assessed in both human and murine in vitro infection models, i.e.,
HFF/HCMV and primary mouse embryonic fibroblasts (MEF)/MCMV (Figure 6). In the
latter setting, the combination of MBV + LDC4297 was adapted to the murine system by
using a recombinant MCMV in which the coding region for kinase pM97 was replaced
by that for pUL97, thereby rendering the virus MBV-sensitive [64]. Here, the profile
of effects obtained for PKI combinations and additional drug combinations was highly
consistent with that obtained with the Bliss independence checkerboard assay. Also in
this approach (Loewe), antagonism was confirmed for MBV + GCV (HCMV) and synergy
was confirmed for MBV + LDC4297 (Figure 6, panels A, H, I, K and L; Table 2; HCMV
AD169, HCMV TB40 and MCMV-UL97). To confirm the synergistic interaction in a second
HCMV in vitro infection model, the combination of MBV + LDC4297 was assessed in
epithelial ARPE-19 cells infected with an EYFP-expressing HCMV TB40 reporter virus.
Importantly, the strong synergistic interaction of this drug combination was also detected
in this setting, thus showing that this antiviral activity was not restricted to the laboratory
strain AD169 in HFFs. In addition, moderately synergistic to clearly synergistic effects were
measured for further drug combinations, i.e., ABE + GCV (HCMV and MCMV) and GCV
+ LDC4297 (HCMV and MCMV). Other combinations, including ABE + LDC4297, were
found additive in this approach (Table 3). Thus, the results obtained through combinatorial
drug assessment using two affirmative methods showed a high degree of consistency and
synergistic effects could be identified for specific drug combinations including the PKIs.

2.5. Conclusions: Identification of Three New Synergistic Drug Combinations, Particularly the
Most Efficient Combination between the Two PKIs MBV and LDC4297

By applying the Loewe fixed-dose and Bliss checkerboard assays in this study, a
consistent profile of antiviral effects of combinatorial treatment was obtained. In Figure 7,
CI values and synergy volumes of the two methods are plotted against each other, and
the type of drug combination is designated by color: antagonistic (blue), additive (white)
and synergistic (red). In this illustration, solid blue/red fields indicate the overlapping
antagonistic/synergistic ranges of both approaches, while dashed blue/red areas designate
antagonistic or synergistic range in one method with additive values in the other method.

Combined, the results led to the following conclusions: (i) antagonistic interaction
was found for the MBV + GCV combination (both methods); (ii) synergistic interaction was
found for the MBV + LDC4297 combination (both methods); and (iii) intermediate effects
of interaction were found for TF27 + GCV (additive), ABE + GCV and ABE + LDC4297
(additive-to-synergistic). These results are primarily based on the analysis of HCMV
AD169 and were partly confirmed for HCMV TB40 and MCMV as described in detail
above. Our findings specifically highlight a very promising potential of the synergistic
interaction between the two PKIs MBV and LDC4297 (Figure 7). MBV is presently under
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clinical investigation in four phase III studies specific for HCMV infection and LDC4297
successfully passed preclinical investigations (unpublished data). The postulated mode of
action of LDC4297, i.e., a selective inhibition of the various CDK7 activities relevant for its
anti-HCMV efficacy, was experimentally addressed via an initial Western blot (Wb) analysis
of a typical CDK7 substrate, the retinoblastoma protein (Rb). After a 9-h treatment of HFFs
with 1 µM of LDC4297, cellular lysates were prepared and subjected to a standard Wb
analysis using phospho-dependent and phospho-independent Rb antibodies, indicating
a slight reduction of T821-phosphorylated Rb, while the phospho-independent Rb level
remained unaltered (data not shown). In addition, an LDC4297-mediated inhibition of Rb
phosphorylation at S807/811 in HCMV-infected HFFs has been reported previously [30].

Figure 7. Comparative alignment of HCMV-specific Loewe fixed-dose and Bliss checkerboard re-
sults. X-axis value of each drug combination indicates mean synergy volume across checkerboard
assays (positive and negative synergy volumes were added together to acquire one plottable value).
Y-axis value indicates mean CIwt across fixed-dose assays. Colored bars represent ranges of an-
tagonistic (blue), additive (white) and synergistic (red) interactions for each approach (specified in
Tables 2 and 3). Solid blue/red fields within the chart indicate overlapping antagonistic/synergistic
range of both approaches, respectively; dashed blue/red areas designate antagonistic or synergistic
ranges in one method with additive values in the other method.

It should be emphasized that the present data, based on both in vitro and in vivo
infections, as well as combinatorial treatment approaches, consistently show antiviral ac-
tivity of PKIs for those herpesviruses analyzed. Additionally, the observed effects of drug
interaction strongly support the postulate that two drugs with different antiviral modes of
action and compatible targeting mechanisms possess a substantial potential to act in an
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additive or even true synergistic manner. In this investigation, drug synergy was defined
on the basis of two methods, both well-established for the assessment of combinatorial
treatment. The presented data clearly illustrated significant levels of antagonistic inter-
action as measurable using either of the two methods for two drugs targeting molecular
mechanisms dependent on each other, e.g., MBV and GCV (MBV acts as an inhibitor of
viral kinase pUL97, while the inhibitory activity of GCV is dependent on active pUL97).
Both drugs possessing complex inhibitory mechanisms (e.g., artesunate-like compounds
such as TF27 or others), but exhibiting compatible targeting profiles, demonstrated additive
or even synergistic effects of interaction (TF27 + GCV, TF27 + LDC4297 or TF27 + LMV).
Similarly, for the combinations between monoselective PKIs, i.e., directed to CDK4/6,
CDK7 or the viral CDK ortholog pUL97, examples of additive effects were obtained (such
as ABE + MBV or ABE + LDC4297). This likewise holds true for many other mechanisti-
cally distinct, additive drug combinations, including GCV, which may nevertheless prove
beneficial as new HCMV treatments and therefore merit a closer investigation in clinical
approaches. As the computer-assisted prediction of a truly synergistic drug combination,
however, is almost impossible, an experimental assessment based on the two applied
approaches is crucial for ensuring reliability [26,27,65]. In the present study, we identified
strong synergism between the two PKIs MBV and LDC4297, constituting a very promising
experimental outcome of combinatorial assessment. Thus, these novel findings strongly
suggest further clinical developmental analysis of PKI drug combinations as future options
for anti-HCMV prophylaxis and treatment.

3. Materials and Methods
3.1. Cells and Viruses

Primary human foreskin fibroblasts (HFFs, derived from clinical samples, Children’s
Hospital, Erlangen, Germany) were grown in Eagle’s Minimal Essential medium (MEM)
supplemented with 1 × GlutaMAXTM (both Thermo Fisher Scientific, Waltham, MA, USA),
10 µg/mL gentamicin and 10% fetal bovine serum (FBS, Capricorn, Ebsdorfergrund, Ger-
many). Mouse embryonic fibroblasts (MEFs, ATCC, Manassas, VA, USA) were cultivated
in Dulbecco’s modified Eagle’s medium (DMEM), supplemented with 1 × GlutaMAXTM

(both Thermo Fisher Scientific, Waltham, MA, USA), 10 µg/mL gentamicin and 10% fetal
bovine serum (FBS, Capricorn, Ebsdorfergrund, Germany). ARPE-19 cells (repository of
William D. Rawlinson, The Prince of Wales Hospital, Sydney, Australia) were cultivated in
DMEM, supplemented with 1 × GlutaMAXTM (both Thermo Fisher Scientific, Waltham,
MA, USA), 10 µg/mL gentamicin and 10% fetal bovine serum (FBS, Capricorn, Ebsdor-
fergrund, Germany). Akata-BX-1 EBV-GFP producer cells [66] were grown in RPMI 1640
medium, supplemented with 1 × GlutaMAXTM (both Thermo Fisher Scientific, Waltham,
MA, USA), 10 µg/mL gentamicin and 10% fetal bovine serum (FBS, Capricorn, Ebsdorfer-
grund, Germany). Cultured cells were maintained at 37 ◦C, 5% CO2 and 80% humidity. All
cell cultures were regularly monitored for absence of mycoplasma contamination (Lonza™
Mycoalert™, Thermo Fisher Scientific, Waltham, MA, USA). Recombinant HCMV AD169
expressing green fluorescent protein (AD169-GFP, [67]), recombinant HCMV TB40 ex-
pressing enhanced yellow fluorescent protein (TB40-EYFP, [68]) and recombinant MCMV
Smith-GFP were used for in vitro replication assays. A recombinant MCMV, in which the
coding region for MCMV kinase pM97 was replaced by that for HCMV pUL97 [64], was
used in a plaque reduction assay (PRA). In vivo experiments were performed using the
luciferase-tagged MCMV Smith strain (MCMV-del157luc) [69].

3.2. Antiviral Compounds

Antiviral drugs were obtained from the following sources: abemaciclib (ABE) and
maribavir (MBV; MedChemExpress, Monmouth Junction, NJ, USA); TF27 (Vichem Chemie
Research Ltd., Budapest, Hungary) [30,61,62]; letermovir (LMV; Cayman Chemical Com-
pany, Ann Arbor, MI, USA); valganciclovir (VGCV; Ratiopharm, Ulm, Germany); LDC4297
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(Lead Discovery Center GmbH, Dortmund, Germany). Stock aliquots were prepared in
DMSO and stored at −20 ◦C.

3.3. Assessment of Antiviral Efficacy Against EBV

Akata-BX-1 EBV-GFP producer cells [66] were grown in RPMI 1640 medium and split
1:2 (vol/vol) one d before experimentation, then seeded in 24-well plates at 1 × 106 cells/well
and incubated with serial dilutions of antiviral compounds. After 3 d, EBV-GFP-positive
cells were monitored using fluorescence microscopy for cell viability, GFP expression and
virus-induced signs of a cytopathic effect (CPE). Cell lysis was performed under conditions
described below for the HCMV AD169-GFP-based replication assay (3.6., 3.7) and lysates
were subjected to automated quantitative GFP fluorometry in quadruplicate measurements
as reported previously [67].

3.4. Assessment of Antiviral Efficacy Against MDV

Chicken embryonic cells were prepared from 11-day old specific-pathogen-free (SPF)
chicken embryos (VALO BioMedia, Osterholz-Scharmbeck, Germany) as described pre-
viously [70] and cultivated in MEM (PAN Biotech, Aidenbach, Germany) supplemented
with 10% fetal bovine serum and antibiotics (100 U/mL penicillin and 100 µg/mL strep-
tomycin). A highly virulent MDV GFP-expressing reporter virus was used as described
previously [71]. Virus replication and EC50 values were assessed using PRA and qPCR
in the presence or absence of antiviral compounds. 106 cells were infected with 100
plaque-forming units (PFU) and analyzed at 5 d post-infection (p.i.) MDV-induced plaque
formation was counted under the microscope in triplicates, and MDV genome copies were
quantitated using qPCR with primers and a probe specific for the viral gene ICP4. Viral
copy numbers were normalized against chicken iNOS genome copies to obtain the viral
load per cell [72]. All experiments were performed as three independent replicates.

3.5. Bliss Checkerboard Assay Adapted to HCMV-GFP In Vitro Infection

Bliss additivity was assessed using an adapted protocol of the HCMV GFP-based
replication assay described previously [30,67]. HFFs were seeded at 1.2 × 104 cells/well in
96-well culture plates (3 plates per assay) and infected the next day with HCMV AD169-
GFP [67] at an MOI of 0.25 (i.e., 25% GFP-forming dose of a multi-round infection measured
at 7 d p.i.) or remained mock-infected. After virus adsorption of 90 min, the inoculum
was replaced by medium supplemented with a matrix of drug combinations in different
concentration ratios, solvent control or medium for mock-infected wells. Standard protocol
tested a matrix of 8 × 8 (see Figure 4A). All infections were performed in biological
triplicates. Cells were lysed by the addition of 100 µL lysis buffer/well 7 d p.i.; cell
suspensions were mixed and transferred to another 96-well plate. Centrifugation was
performed at 3000 rpm for 15 min and clear lysates were subjected to automated GFP
quantitation in a Victor X4 microplate reader (PerkinElmer, Waltham, MA, USA). Measured
values were entered into MacSynergy II software ([55] The University of Alabama at
Birmingham, Birmingham, AL, USA) and results presented as surface graphs illustrating
synergy volume with a 95% confidence interval over the three biological replicates.

3.6. Loewe Fixed-Dose Assay Adapted to HCMV-GFP/HCMV-EYFP In Vitro Infection

Loewe additivity was assessed using an adapted protocol of the HCMV GFP-based
replication assay described previously [30,67]. HFFs were seeded at 1.6 × 105 cells/well in
12-well culture plates (4 plates per assay) and infected the next day with HCMV AD169-
GFP [67] or HCMV TB40-EYFP [68] at an MOI of 0.25 (i.e., 25% GFP/EYFP-forming dose of
a multi-round infection measured at 7 d p.i.). After virus adsorption of 90 min, the inoculum
was replaced by medium supplemented with single compound, compound combination
or solvent control. Standard protocol tested a serial dilution of 6 concentrations/single
compound starting with app. 4–8 × EC50 and a serial dilution of 8 concentrations of the
combination, starting with the highest concentrations of both single dilution series. All



Int. J. Mol. Sci. 2021, 22, 575 15 of 20

infections were performed in biological duplicates. Cells were lysed by the addition of
200 µL lysis buffer/well 7 d p.i.; cell suspensions were mixed and transferred to a 96-well
plate. Centrifugation was performed at 3000 rpm for 15 min and clear lysates were subjected
to automated GFP/EYFP quantitation in a Victor X4 microplate reader (PerkinElmer,
Waltham, MA, USA). Antiviral efficacy (mean of duplicate measurement of biological
duplicates) was expressed as the percentage of solvent control and entered into CompuSyn
software (Version 1.0 [59]; ComboSyn, Inc., Paramus, NJ, USA). Only experiments with an r
value > 0.90 and EC50 values close to previously determined concentrations were accepted.
CI values extrapolated at 50, 75, 90 and 95% virus inhibition are plotted in Figure 6, if n > 1
as mean ± SD across experiments.

3.7. Loewe Fixed-Dose Assay Adapted to MCMV-GFP/MCMV-UL97 In Vitro Infection

Drug interactions in anti-MCMV efficacy were assessed in MEFs in a GFP-based ap-
proach similar to the HFF/HCMV setting using MCMV-GFP. Deviations were the number
of seeded cells (1.5 × 105 cells/well), as well as the time period in between infection and
harvest (5 days). For assessing drug efficacy against the recombinant MCMV-UL97, an
in vitro infection PRA was performed in MEFs. Four 12-well culture plates were seeded
with MEFs at 1.5× 105 cells/well and infected one day later with MCMV-UL97. After virus
adsorption of 90 min, the inoculum was replaced by medium supplemented with single
compound, compound combination or solvent control, as well as 0.3% agarose (Serva,
Heidelberg, Germany). A serial dilution of 6 concentrations/single compound starting
with app. 4 × EC50 and a serial dilution of 8 concentrations of the combination, starting
with the highest concentrations of both single dilution series, were used. All infections
were performed in biological duplicates. Agarose was removed 5 d p.i., the cell layer was
fixed and stained with 1% crystal violet (Serva, Heidelberg, Germany) in 20% ethanol
solution, and plaques were counted under the microscope. Antiviral efficacy (mean of
biological duplicates) was expressed as percentage of solvent control and entered into
CompuSyn software (Version 1.0 [59]; ComboSyn, Inc., Paramus, NJ, USA).

3.8. Animal Experimentation

Female Balb/cAnNCrl mice (6 weeks of age) were purchased from Charles River
Laboratories (Wilmington, MA, USA), maintained under specific pathogen-free conditions
and utilized between 7 and 11 weeks of age. Caging was performed in groups of 3 mice
and body weight was monitored on days 0, 2, 4 and 6 post-infection (p.i.). Animals were
infected with luciferase-tagged MCMV at 1.0 × 105 PFU intraperitoneal (i.p.) in a final
volume of 100 µL PBS or remained mock-infected. Antiviral compounds were administered
daily (d 0 to d 5) via oral gavage using feeding needles. A solution of 20% PHOSAL®

50 PG (Lipoid GmbH, Ludwigshafen, Germany) in PBS was used as solvent and vehicle
control. The control drug VGCV was administered in a dosage of 20 mg/kg/d as described
previously [24], abemaciclib in dosages of 50 mg/kg/d and 100 mg/kg/d, and LDC4297
in a dosage of 20 mg/kg/d, where effectiveness against MCMV had previously been
demonstrated in immunodeficient animals [31]. Mice were utilized for in vivo imaging at
4 d p.i., and sacrificed at 5 d p.i., after which spleen, liver and lung were dissected and
stored at −80 ◦C. Experimental protocols were reviewed and approved by the Regierung
von Unterfranken, Würzburg, Germany (permit 55.2-2532-2-416; 6 June 2017).

Panel A of Figure 2 shows previously unpublished data of a mouse experiment
detailed in Wild et al., 2020a [24]. The overall procedure was identical to the above, except
for group size (5 mice), age of utilization (7 to 9 weeks) and time schedule (4 treatments,
sacrifice at 4 d p.i.).

3.9. Organ Homogenization and In Vitro Luciferase Assay

For performing quantitative in vitro luciferase assays, frozen spleen, liver and lung
tissues were prepared and homogenized in 1 mL Glo Lysis Buffer (Promega, Madison, WI,
USA) using a Precellys 24 homogenizer (Bertin Technologies, Montigny le Bretonneux,
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France). Homogenates were centrifuged at 4 ◦C for 10 min at 14,000 rpm, and protein
concentrations were determined using a Pierce™ BCA Protein Assay Kit (Thermo Fisher
Scientific, Waltham, MA, USA). Determination of luciferase signals was performed in
triplicates using 1 mM D-luciferin and an Orion II microplate luminometer (Berthold
Technologies, Bad Wildbad, Germany). Mean of luciferase signal across 6 vehicle-treated
animals was set as 100% in each organ.

3.10. DNA Extraction and Quantitative PCR

Extraction of DNA from spleen and liver samples was performed with the DNeasy®

Blood & Tissue kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocol.
Quantitative PCR was performed using an ABI Prism 7700 sequence detector (Applied
Biosystems, Foster City, CA, USA) and the following oligonucleotides, 5′-MCMV (TGC-
CATACTGCCAGCTGAGA) and 3′-MCMV (GGCTTCATGATCCACCCTGTT) and the
probe 5′-Fam/3′-BHQ1 (CTGGCATCCAGGAAAGGCTTGGTG) for the viral gene immedi-
ate early 1 (IE1). Assay was performed in triplicate, and mean of concentration-adjusted
genome copy numbers across 6 vehicle-treated animals was set as 100% in each organ.
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Abbreviations

ABE abemaciclib
AIDS acquired immunodeficiency syndrome
CDK cyclin-dependent kinase
CDV cidofovir
CI combination index
CIwt weighted combination index
CPE cytopathic effect
d day(s)
DAA direct-acting antiviral(s)
DMEM Dulbecco’s modified Eagle’s medium
DMSO dimethyl sulfoxide
DNA deoxyribonucleic acid
EBV Epstein-Barr virus
EYFP enhanced yellow fluorescent protein
FBS fetal bovine serum
FOS foscarnet
GCV ganciclovir
GFP green fluorescent protein
HCMV human cytomegalovirus
HDA host-directed antiviral(s)
HFF human foreskin fibroblast
HIV human immunodeficiency virus
LMV letermovir
MBV maribavir
MCMV murine cytomegalovirus
MDV Marek’s disease virus
MEF murine embryonic fibroblast
MEM Eagle’s Minimal Essential medium
MOI multiplicity of infection
p.i. post-infection
PBS phosphate buffered saline
PFU plaque-forming unit(s)
PKI pharmaceutical kinase inhibitor
PRA plaque reduction assay
qPCR quantitative polymerase chain reaction
rpm rotations per minute
SD standard deviation
VGCV valganciclovir
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