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Abstract: (1) Background: Chiral nanoparticular systems have recently emerged as a compelling
platform for investigating stereospecific behavior at the nanoscopic level. We describe chiroselective
supramolecular interactions that occur between DNA oligonucleotides and chiral polyurea nanocap-
sules. (2) Methods: We employ interfacial polyaddition reactions between toluene 2,4-diisocyanate
and lysine enantiomers that occur in volatile oil-in-water nanoemulsions to synthesize hollow,
solvent-free capsules with average sizes of approximately 300 nm and neutral surface potential.
(3) Results: The resultant nanocapsules exhibit chiroptical activity and interact differentially with
single stranded DNA oligonucleotides despite the lack of surface charge and, thus, the absence
of significant electrostatic interactions. Preferential binding of DNA on D-polyurea nanocapsules
compared to their L-counterparts is demonstrated by a fourfold increase in capsule size, a 50%
higher rise in the absolute value of negative zeta potential (ζ-potential), and a three times lower free
DNA concentration after equilibration with the excess of DNA. (4) Conclusions: We infer that the
chirality of the novel polymeric nanocapsules affects their supramolecular interactions with DNA,
possibly through modification of the surface morphology. These interactions can be exploited when
developing carriers for gene therapy and theranostics. The resultant constructs are expected to be
highly biocompatible due to their neutral potential and biodegradability of polyurea shells.

Keywords: chiral nanoparticles; chiral polymeric nanocapsules; polyurea; stereospecific interactions;
DNA binding

1. Introduction

Chiral nanomaterials have attracted considerable attention in recent years because
they provide a powerful platform for exploring how chiral behavior is impacted by other
unique properties attributed to nanometric size, and vice versa [1]. For example, the
chiroptical activity can be modified and enhanced by controlling the size and the shape of
nanoparticles stabilized by chiral biomolecules [2,3].

In the field of medical applications, chiral nanoparticles are emerging as true game
changers owing to their apparent ability to uniquely interfere with various biological sys-
tems in vivo. Despite the prevalence of chirality in biology, exploiting chiral supramolecular
assembly structures to achieve specific in vivo interactions and to facilitate drug delivery
has only recently started being explored [4]. Thus, in early 2020, it was reported that
the chirality of supraparticles created through a self-limiting assembly of cobalt oxide
nanostructures capped with l-, or d-cysteine controls: (a) the binding of the nanoparticles
to cell membrane lipids, (b) the internalization of the nanoparticles by cells and (c) their
stability in human plasma [4]. Another recent study reported on a chirality-controlled
ability of β-glucan nanoparticles to activate macrophages and produce immune enhancing
cytokines which, in combination with their high antitumor drug loading, may enhance
antitumor activity [5]. During 2019, chiral mesoporous silica nano-cocoon structures were
demonstrated to enhance the aqueous solubility of their poorly-soluble drug cargo by con-
verting it into its amorphous form [6]. Stereospecific induction of cancer cell death through
apoptosis [4] or autophagy [7] also was reported for chiral nanoparticles in recent years.
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In this study we synthesized chiral polymeric nanocapsules of polyurea using volatile
nanoemulsion as the template for interfacial polymerization and studied their supramolec-
ular interactions with DNA. Polyurea nanocapsules are biocompatible and biodegradable,
their formation process is easily scalable, and they allow for the controlled delivery of a
wide variety of drugs [8–11]. They were previously shown to protect drugs from premature
degradation in vivo and enable targeted delivery [9]. However, the synthesis of chiral
polymeric nanocapsules and, especially, of polyurea nanocapsules is not common; the
first work was reported in 2018 by Zoabi et al., which described a successful synthesis of
chiral ethyl cinnamate-containing polyurea nanocapsules by an interfacial cross-linking
reaction using L-lysine and polymethylene polyphenylisocyanate. This system was demon-
strated to induce chirality within liquid crystals [12]. Herein, we describe the stereospecific
interactions of solvent-free chiral polyurea nanocapsules, synthesized by an interfacial
polyaddition reaction between toluene 2,4-diisocyanate and lysine enantiomers, and single
stranded DNA (ssDNA).

DNA is a key chemical structure that encodes biological information for regulation
of all cellular functions. Targeted delivery of DNA presents one of the most promising
directions in modern therapeutics. Thus, oligonucleotides (short single stranded DNA
sequences) are being increasingly employed as the agents for targeted gene correction or
for gene/mRNA silencing (antigen/antisense gene therapy) [13,14]. In vivo delivery of
oligonucleotides is carried out by two major types of drug delivery systems (DDS): (1) Viral
DDS based on nonpathogenic attenuated viruses and (2) Nonviral DDS based on cationic
nanoparticles that form complexes with negatively charged DNA [14]. DDS based on viral
vectors are known to cause a substantial immune response in some patients [15], while
cationic nanoconstructs exhibit a significantly higher cytotoxicity in vivo compared with
their anionic or neutral counterparts [16].

Here we report on the formation of chiral solvent-free and charge-free nanocapsules
that have stereospecific interactions with ssDNA, rather than binding based on electrostatic
interactions that occurs in cationic nanostructures. We infer that such stereospecific con-
structs may be employed as DDS for antigen/antisense gene therapy with a low potential
for toxicity.

2. Results
2.1. Chiral Nanocapsules Formation and Characterization

The chiral capsules in the submicron size range (further referred to as “nanocapsules”)
were prepared by interfacial polymerization in emulsion followed by volatile solvent
evaporation. The chirality was controlled by the addition of two enantiomers of lysine
amino acid to the capsule shell. L- or D-lysine was introduced to the oil-in-water emulsion
system containing toluene 2,4-diisocyanate (TDI) monomers dissolved in n-butyl acetate
as the organic phase, and distilled water with dissolved polyvinyl alcohol (PVA, nonionic
polymeric surfactant) as the aqueous phase. Ultrahigh sonication was first applied to
the system to disperse the organic phase as nanometric droplets. Either an L- or a D-
lysine enantiomer was then added to this system, and an interfacial polyaddition reaction
occurred upon the encounter between oil-soluble TDI monomers and water-soluble lysine
at the oil droplet interface. The system was kept under slight heating at 35 ◦C overnight to
evaporate the volatile solvent and to form the final chiral D- or L-polyurea nanocapsules.
The synthesis of D-polyurea nanocapsules is depicted in Scheme 1. The same synthesis
procedure using the L-lysine enantiomer led to the formation of L-polyurea nanocapsules.
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Scheme 1. Preparation of D-polyurea nanocapsules. Oil-in-water nanoemulsion, stabilized by 
polyvinyl alcohol (PVA) and containing a toluene 2,4-diisocyanate (TDI) monomer dissolved in 
n-butyl acetate as the oil phase, is formed first. D-lysine then is added to the aqueous phase of this 
nanoemulsion, and the polyaddition reaction is initiated upon the diffusion of both TDI and 
D-lysine to the droplet interface. Concomitant polymerization and core solvent evaporation con-
tinue until the formation of hollow, solvent-free nanocapsules is completed. 

Stable aqueous dispersions of capsules were obtained after both syntheses. Size 
distributions were evaluated by dynamic light scattering (DLS) for 20-fold diluted dis-
persions, and the average diameters of the capsules were found to be 331 ± 2.3 nm for 
D-polyurea and 349.6 ± 2.6 nm for L-polyurea capsules (Figure 1). The size measurements 
were highly reproducible (evaluated in three different batches of each system) with 
polydispersity indexes of 0.146 ± 0.012 and 0.135 ± 0.024 for D- and L-polyurea nanocap-
sules, respectively. After 2.5 months, a size stability test was done for D-capsules, and the 
average diameter was found to be 337± 1.9 nm with a polydispersity index of 0.148 ± 
0.010. 

 
Figure 1. Representative size distributions by intensity of: D-polyurea nanocapsules (blue, solid) 
and L-polyurea nanocapsules (orange, dashed). 

The morphology of the resultant polyurea nanocapsules was characterized using 
Scanning Electron Microscopy (SEM), and the recorded capsule size correlated well with 

Scheme 1. Preparation of D-polyurea nanocapsules. Oil-in-water nanoemulsion, stabilized by polyvinyl alcohol (PVA) and
containing a toluene 2,4-diisocyanate (TDI) monomer dissolved in n-butyl acetate as the oil phase, is formed first. D-lysine
then is added to the aqueous phase of this nanoemulsion, and the polyaddition reaction is initiated upon the diffusion of
both TDI and D-lysine to the droplet interface. Concomitant polymerization and core solvent evaporation continue until the
formation of hollow, solvent-free nanocapsules is completed.

Stable aqueous dispersions of capsules were obtained after both syntheses. Size distri-
butions were evaluated by dynamic light scattering (DLS) for 20-fold diluted dispersions,
and the average diameters of the capsules were found to be 331 ± 2.3 nm for D-polyurea
and 349.6 ± 2.6 nm for L-polyurea capsules (Figure 1). The size measurements were highly
reproducible (evaluated in three different batches of each system) with polydispersity
indexes of 0.146± 0.012 and 0.135± 0.024 for D- and L-polyurea nanocapsules, respectively.
After 2.5 months, a size stability test was done for D-capsules, and the average diameter
was found to be 337± 1.9 nm with a polydispersity index of 0.148 ± 0.010.
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The morphology of the resultant polyurea nanocapsules was characterized using
Scanning Electron Microscopy (SEM), and the recorded capsule size correlated well with
the size distribution measured by the DLS (Figure 2). Notably, one of the D-nanocapsules
captured in the SEM image shown in Figure 2 is clearly broken and its hollow core, which
is indicative of the core-shell structure, can be seen.
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Figure 2. Scanning Electron Microscopy (SEM) images of: (a) D-chiral polyurea nanocapsules, and (b) L-chiral polyurea
nanocapsules. Note that the capsule marked by the arrow is broken and has its hollow core exposed, which is indicative of
the core-shell structure.

It was expected that the incorporation of the chiral amino acid (D- or L-lysine) will control
the final polymeric shell configuration and, thereby, the overall chirality of the capsules. This
was confirmed by the chiral optical activity of the nanocapsules (Figure 3). Circular dichroism
(CD) spectroscopy revealed that the spectra of D- and L-lysine-containing nanocapsules
showed strong negative and positive signals, respectively, and correlated well with their
corresponding free amino acid enantiomer spectra (Figure 3).
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Figure 3. Circular dichroism spectra of free amino acid L-lysine, D-lysine, and chiral D- and L-polyurea nanocapsules. The
spectra of the two types of capsules show strong opposite signals that correspond well with the spectra of free lysine amino
acid enantiomers, which confirms the chirality of the capsules.
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2.2. DNA Adsorption onto Chiral Polyurea Nanocapsules

As described in the experimental section, we used an oligonucleotide that is part of a
gene that encodes to Actin 1 protein, with the sequence of 5′-ACA TCT TCTTCT CCC AT-3′.
Like all DNA molecules from a natural origin, this sequence has a D configuration. Its
chirality also was confirmed by circular dichroism analysis with a typical positive spectrum
(Figure 4).
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Figure 4. Circular dichroism spectrum of D-single stranded (ss)DNA 5′-ACA TCT TCTTCT CCC AT-3′.

A dilute single stranded DNA solution (0.25 nM final concentration) was added to
D- and L-polyurea nanocapsules at a molar ratio of 27:1 (DNA: nanocapsules). The molar
ratio was calculated based on the average molecular weight of the polyurea nanocapsules
(determined by the dynamic light scattering (DLS)). Prior to the addition, the nanocapsules
were thoroughly washed to remove polyvinyl alcohol from the surface and prevent its
interference with possible stereospecific interactions. The DNA then was allowed to
equilibrate with the nanocapusles, and the constructs were characterized. Scheme 2 shows
the components of these systems.

DLS measurements were performed and revealed the average size of 386.5 ± 1.8 nm
and 363.9 ± 2.1 nm for the D- and L-nanocapsules, respectively, showing an increase in
diameter of approximately 50 nm and 10 nm for the D- and L-nanocapsules, respectively
(Figure 5).

These results show a slight adsorption of the DNA on the L-nanocapsules and a greater
one on the D-nanocapsules. To ensure that the size increase occurred as a result of the DNA
adsorption, the ζ-potential of the nanocapsules was measured before and after the ssDNA
addition (Table 1).

Table 1. The ζ-potential values of the chiral nanocapsules before and after single stranded
(ss)DNA addition.

Type of the Nanocapsules ζ-Potential before DNA
Addition

ζ-Potential after DNA
Addition 1

L-nanocapsules −1.1 ± 1.3 mV −9 ± 2.6 mV
D-nanocapsules −1.2 ± 1.5 mV −21.3 ± 1.4 mV

1 27:1 ssDNA: nanocapsules molar ratio.
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Scheme 2. Illustrations of (a) 5′-ACA TCT TCTTCT CCC AT-3′ single stranded DNA structure, (b) Possible L-polyurea
nanocapsule morphology and (c) Possible D-polyurea nanocapsule morphology. Please see the Discussion section for further
explanation about this illustrative presentation.
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Figure 5. Representative size distributions of: (a) D-polyurea nanocapsules before (blue, solid) and after (red, dashed) the
addition of dilute (ss)DNA solution and (b) L-polyurea nanocapsules before (black, solid) and after (green, dashed) the
addition of dilute ssDNA solution. The molar ratio of DNA to nanocapsules is 27:1.

As shown in Table 1, the initial ζ-potentials of the D- and L-nanocapsules were very
similar in value (approximately −1 mV), which can be considered neutral potential. After
the addition of 0.25 nM of the ssDNA solution, both types of chiral nanocapsules became
negatively charged, however, the ζ-potential values were −9 mV and −21.3 mV for L- and
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D-nanocapsules, respectively, which indicates a preferential adsorption of the negatively
charged ssDNA [17] on the D-nanocapsule surface. To verify this effect, a concentrated
solution of ssDNA (25 nM final concentration) was added to the chiral systems. The
molar ratio between the ssDNA and the nanocapsules was increased 100 times. DLS
measurements were performed after the system equilibration and showed a significant
increase in size for the D-nanocapsules of almost 400 nm (new average size was 711 ±
2.2 nm), and a much more moderate increase in size—of approximately 100 nm—for the
L-nanocapsules (new average size was 454 ± 2.6 nm) (Figure 6).
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Figure 6. Representative size distributions of: (a) the D-polyurea nanocapsules before (blue, solid) and after (red, dashed)
the addition of concentrated single stranded (ss)DNA solution and (b) L-polyurea nanocapsules before (black, solid) and
after (green, dashed) the addition of concentrated ssDNA solution. The molar ratio of DNA to nanocapsules is 27 × 102:1.

The ζ-potential of the systems was checked again and compared with the previous
results (Table 2).

Table 2. Theζ-potential values of the chiral nanocapsules before and after single stranded
(ss)DNA addition.

Type of the
Nanocapsules

ζ-Potential before
DNA Addition

ζ-Potential after
DNA Addition 1

ζ-Potential after
Concentrated DNA

Addition 2

L-nanocapsules −1.1 ± 1.3 mV −9 ± 2.6 mV −18.8 ± 2.0 mV
D-nanocapsules −1.2 ± 1.5 mV −21.3 ± 1.4 mV −28.5 ± 0.1 mV

1 27:1, 2 27 × 102:1 ssDNA: nanocapsules molar ratio.

As shown in Table 2, after the addition of ssDNA at a higher concentration, the
nanocapsules bore a greater negative charge and the ζ-potential increased to −19 mV for
L-nanocapsules and to −28.5 mV for D-nanocapsules. Taken together with a fourfold larger
size increase of D-nanocapsules compared with L-nanocapsules after the ssDNA addition,
these results imply a preferential binding of ssDNA to D-nanocapsules.

To quantify the amount of ssDNA that gets adsorbed on the nanocapsules of the two
chiral configurations, the concentration of free DNA was assessed in the 27 × 102:1 ssDNA:
nanocapsules chiral systems upon the removal of the capsules by filtration. UV absorption
at 260 nm was measured, and the concentration of free ssDNA was determined based on
the specific extinction coefficient of our oligomer sequence. Table 3 summarizes the concen-
trations in the filtrate after the equilibration of the systems. The adsorbed amount can be
estimated from the difference between the initial and the final free DNA concentrations. It
can be seen that a three times larger reduction in the free DNA concentration was observed
for the D-chiral system, indicating a threefold higher adsorption on the D-nanocapsules,
which is in good accordance with the nanocapsule size increase shown above.
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Table 3. Single stranded (ss)DNA adsorption on nanocapsules.

System Free DNA
Concentration

Decrease in Free DNA
Concentration

DNA solution 10.42 × 10−4 µM -
L-nanocapsules 8.19 × 10−4 µM 2.23 × 10−4 µM
D-nanocapsules 4.16 × 10−4 µM 6.26 × 10−4 µM

This confirms the preferential binding of ssDNA on the D-nanocapsule surface that
has already been indicated by the greater increase in size and the more negative ζ-potential.
These results infer that the chirality of the shell and the resultant capsule morphology
impact DNA adsorption. An illustration of DNA interactions with chiral nanocapsules is
shown in Scheme 3.
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3. Discussion

We report on a formation of chiral hollow polyurea nanocapsules that can be used
for drug delivery and theranostics. These shell structures are reproducible in size, with
narrow polydispersity indexes, and have a roughly neutral surface potential. Yet, they are
stable in aqueous dispersions probably owing to the steric stabilization of polymeric shells.
The chirality of these nanocapsules was induced by the inclusion of D- or L-lysine amino
acids in polymeric shell structures and was verified by circular dichroism spectroscopy.
We then found that these nanocapsules form stereospecific supramolecular interactions
with DNA. A single stranded DNA oligonucleotide with a D configuration was added to
each chiral system, and its preferential adsorption on the D-polyurea nanocapsules was
observed. Both a larger increase in particle size and a higher absolute value of negative
ζ-potential were recorded for D-nanocapsules compared with their L-counterparts. After
the initial experiment with a dilute DNA solution, a more concentrated DNA solution
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was added to both systems. During this experiment, a more significant size increase
was achieved and an unambiguous difference in DNA adsorption between the chiral
systems was demonstrated. The particle size increased by about 400 nm for D-nanocapsules
and only by about 100 nm for L-nanocapsules upon the addition of DNA. Negative ζ-
potentials of approximately −29 mV and −19 mV were measured for D- and L-chiral
systems, respectively, upon the DNA addition (roughly 50% more negative for the D-
system). The concentration of free DNA was found to be about three times lower upon its
addition to the D-chiral system compared to the L-system. The particle size increase and
the reduction in free DNA concentration explicitly indicate the interaction of DNA strands
with the nanocapsules, while the negative ζ- potential confirms the presence of negatively
charged ssDNA oligomers on the capsule surface.

These results suggest that the ssDNA adsorbs to the surface of the capsules with both
chiral configurations; however, there are preferential supramolecular interactions with
D-polyurea nanocapsules. The adsorption in general could be explained by the formation
of multiple possible hydrogen bonds between the polyurea shell and the nucleobases of
DNA (Scheme 4). Moreover, hydrophobic interactions are formed between the methylene
groups and the carbons of the aliphatic chains and aromatic rings in polyurea and the
carbons in deoxyribose sugars or the DNA backbone. Illustrations of some of the suggested
interactions between ssDNA and the chiral polyurea nanocapsules are shown in Scheme 4.
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These aforementioned interactions are likely to occur between DNA and the capsules
of both chiral configurations. However, we found a specific preferential adsorption of
DNA to the D-nanocapsules. Because the chirality of the polyurea shell is determined by
the chirality of the lysine unit, it seems plausible that the final surface morphology of the
shell is dictated by the position of the chiral amine, and this controls the supramolecular
interactions of the capsules. There is evidence in the literature that microscopic chirality can
control macroscopic morphology [18,19]. If we position the 3-D models of polymerizing
polyurea chains of both chiralities so that the chiral center of the lysine is at the same point
on the spherical surface planes, we can assume that the direction of polymerization of
the D-polyurea chains is inwards toward the particle core, whereas the direction of the
polymerizing L-polyurea is outwards from the surface (Scheme 5a). Because the chiral
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polymerization is directionally opposite, this configuration will preserve itself throughout
the capsule. This might critically affect the nanoscopic surface morphology, creating a less
steric hinderance for ssDNA attachment on the D-capsules, as well as possibly exposing
functional groups that have a greater affinity for ssDNA (Scheme 5b). It is noteworthy that
the average hydrodynamic diameter of the L-nanocapsules is about 20 nm larger than that
of the D-nanocapsules, possibly supporting the assumption of a more protruding surface
morphology for the L-configuration.
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To conclude, we show that the chirality of novel polymeric nanocapsules affects
their supramolecular interactions with ssDNA. This unique feature may be exploited
when designing new drug delivery systems for antigen/antisense gene therapy. The
hollow core of these solvent-free nanocapsules can be further employed for carrying other
therapeutic or diagnostic agents. The neutral surface potential, the biocompatibility, and
the biodegradability of the polyurea shell ensure a low risk of in vivo toxicity [8–11].

4. Materials and Methods
4.1. Chemicals

Toluene 2,4-diisocyanate (TDI), polyvinyl alcohol (average m.w.~67,000), n-butyl
acetate, D-lysine monohydrochloride, L-lysine monohydrochloride, and single stranded
DNA (ssDNA) with the sequence of 5′-ACA TCT TCTTCT CCC AT-3′ were purchased
from Sigma-Aldrich.

4.2. Synthesis of the Chiral Polyurea Nanocapsules

An oil phase containing 4.75 g of n-butyl acetate and 0.25 g of toluene 2,4-diisocyanate
(TDI) was nanoemulsified with 40 g of water containing polyvinyl alcohol (PVA) 5% (w/v)
by sonication for 50 min using a VCX-750 ultrasonic liquid processor (Sonics and Materials,
Inc., Newtown, CT, USA) with an output of 750 W at 20 kHz. 0.65 g of L- or D-lysine
monohydrochloride dissolved in 14.95 g of water were added to the resultant nanoemulsion,
followed by heating to 35 ◦C for 24 h under stirring. The resulting chiral nanocapsules
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were washed four times with distilled water by ultracentrifugation at 25,314× g using an
SL 40 centrifuge (Thermo Fisher Scientific, Waltham, MA, USA) to remove PVA before
DNA adsorption.

4.3. Procedure of Adsorbing DNA from Dilute Solution onto the Chiral Nanocapsules

25 µL of 0.005 µM single stranded DNA, with the sequence of 5′-ACA TCT TCTTCT
CCC AT-3′, were added to 25 µL of 1.85 × 10−4 µM D- or L-chiral nanocapsule dispersion
(by the capsules’ molecular weights) in 450 µL of distilled water. The mixture was stirred
for 2 h under ambient conditions.

4.4. Procedure of Adsorbing DNA from Concentrated Solution onto the Chiral Nanocapsules

25 µL of 0.5 µM single stranded DNA, with the sequence of 5′-ACA TCT TCTTCT
CCC AT-3′, were added to 25 µL of 1.85 × 10−4 µM D- or L-chiral nanocapsule dispersion
(by the capsules’ molecular weights) in 450 µL of distilled water. The mixture was stirred
for 2 h under ambient conditions.

4.5. Characterization of Nanocapsules
4.5.1. Size and ζ-Potential

The size and ζ-potential were measured by dynamic light scattering using a Zetasizer
Nano model ZEN3600 (Malvern Panalytical, Malvern, UK). All measurements were per-
formed in triplicate. Three different batches of each system were evaluated. For the size
measurements, the samples were diluted 20-fold with distilled water and, for ζ-potential,
10 mM of sodium chloride solution was used at the same dilution. High resolution scan-
ning electron microscopy images were acquired using an Extra-High Resolution Scanning
Electron Microscope Magellan 400L (Thermo Fisher Scientific, Waltham, MA, USA, former
FEI), equipped with a tunable diode laser (TLD) detector. The 10 µL samples were diluted
20-fold with water, as above, and placed on copper grid support films, formvar/carbon,
400 mesh, Cu (Ted Pella, Inc., Redding, CA, USA). The images were scanned at 5 kV
acceleration voltages.

4.5.2. Chiroptical Activity Measurements

Circular dichroism (CD) measurements were performed with an MOS-500 spectrom-
eter (BioLogic, Seyssinet-Pariset, France). The measurements were performed over a
wavelength range of 200–250 nm, using a 1 cm path length cuvette. The spectral resolution
was 1 nm. The reported spectra are the results of 3–5 scans.

4.5.3. Free Single Stranded DNA (ssDNA) Concentration Determination

The concentration of free single stranded (ss)DNA was estimated after filtration with
Whatman FR 30/0.2 CA-S 0.2µm filters, based on the UV absorption of dispersions (diluted
20-fold with water) at 260 nm using an Ultrospec 2100 pro UV-vis spectrophotometer
(Biochrom, Cambridge, UK). The concentration was calculated according to the specific
extinction coefficient of the oligomer sequence (147,600 L/mol × cm).
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