Supplemental Information

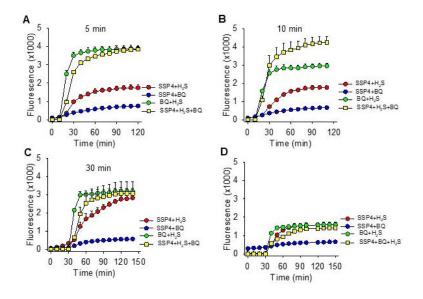
Oxidation of Hydrogen Sulfide by Quinones: How Polyphenols Initiate Their Cytoprotective Effects

Kenneth R. Olson^{a,b}, Yan Gao^a and Karl D. Straub^{c,d}

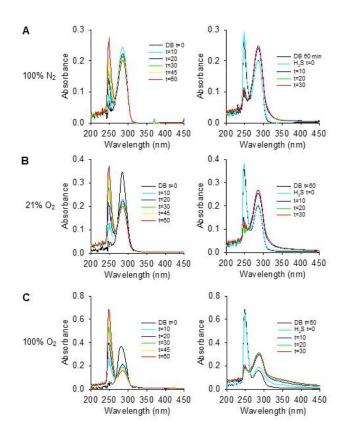
a. Indiana University School of Medicine - South Bend Center, South Bend, Indiana 46617 USA

b. Department of Biological Sciences, University of Notre Dame, Notre Dame IN 46556

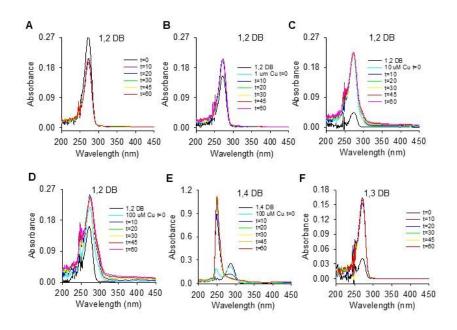
c Central Arkansas Veteran's Healthcare System, Little Rock, AR 72205, USA

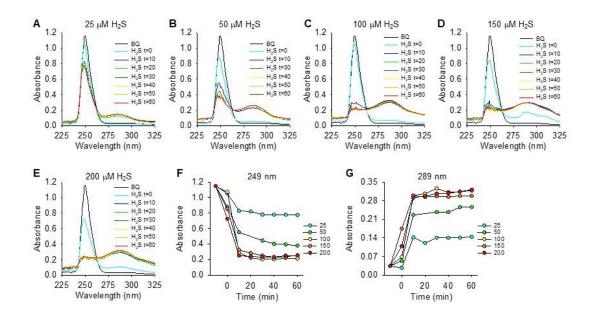

d Departments of Medicine and Biochemistry, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA

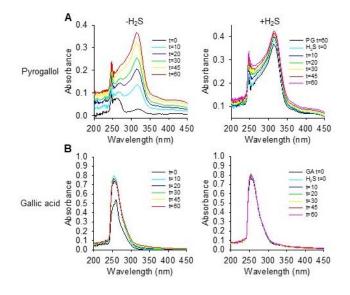
Running Head: Sulfur Metabolism by Quinones

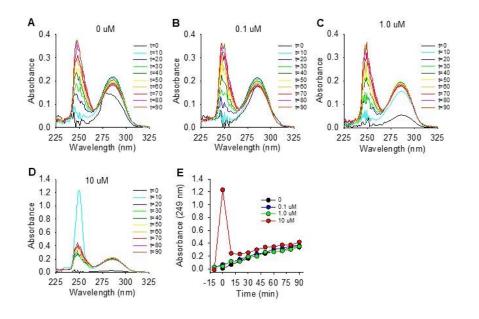

Address correspondence to:

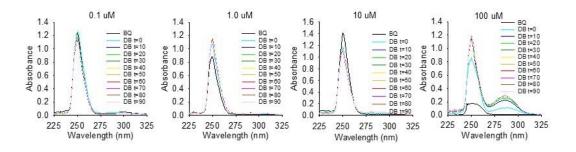
Kenneth R. Olson, Ph.D. Indiana University School of Medicine -South Bend Raclin Carmichael Hall 1234 Notre Dame Avenue South Bend, IN 46617 **Phone:** (574) 631-7560 **Fax:** (574) 631-7821 **e-mail:** kolson@nd.edu

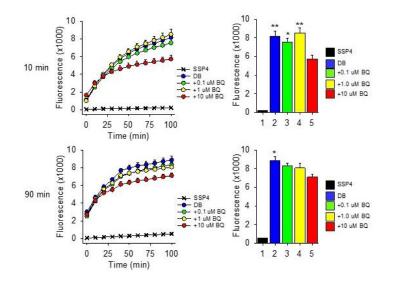

Supplemental Figures

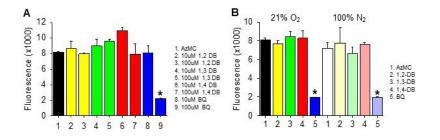

Supplemental Figure S1. Polysulfide formation (SSP4 fluorescence) after 5 (**A**), 10 (**B**) or 30 (**C**) min delayed addition of one of the three substrates in the reaction of 5 μ M SSP4, 100 μ M *p*-benzoquinone (BQ) and 300 μ M H₂S compared to rapid sequential addition of SSP4, H₂S and BQ (SSP4+H₂S+BQ). Initial two substrates are shown in figure. The rate of polysulfide formation was greatest when BQ and H₂S were added prior to SSP4. (**D**) Adding BQ to SSP4 prior to H₂S nearly completely prevented the increase in SSP4 fluorescence. Sequential addition of SSP4, H₂S and BQ was sufficient to overcome the inhibitory effect of BQ. Mean +SE, *n* = 4 wells per treatment.


Supplemental Figure S2. Effects of O_2 alone (left panels) and in combination with 100 μ M H_2S (right panels) on absorption spectra of 100 μ M 1,4-dihydroxybenzamine (DB). Buffer was bubbled with 100% N_2 (**A**), 21% O_2 (**B**) or 100% O_2 (**C**) for 20 min prior to addition of compounds. In 100% N_2 there is only a slight decrease in absorption at 289 nm indicatong very little oxidation of DB; a slight amount of BQ (249 peak) is also observed. Addition of 100 μ M H_2S reduces nearly all of this BQ to DB. As the percent O_2 increases there is a progressive increase in DB oxidation shown by the decrease in the 289 nm peak and increase in the 249 peak (note increase in absorbance axis with increasing O_2). BQ was reduced to DB after addition of H_2S .

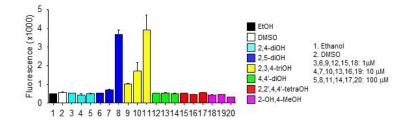

Supplemental Figure S3. Spectral analysis of autoxidation of dihydroxybenzenes. 1,2dihydroxybenzene (1,2DB) is not autoxidized in 21% O_2 (**A**) nor in 21% O_2 in the presence of 1, 10 or 100 μ M CuCl₂ (**B-D**), whereas 1,4-DB is readily oxidized by 100 μ M CuCl₂ (**E**). (**F**) 1,3-DB is not autoxidized in 21% O_2 .


Supplemental Figure S4. Effects of increasing H₂S concentration (25-200 μ M, A-E, respectively) on the absorption spectra of 100 μ M 1,4-benzoquinone (BQ). The BQ absorbance peak at 249 nm is concentration-dependently eliminated and replaced by a peak at 289 nm consistent with formation of 1,4-dihydrobenzene when H₂S >100 μ M. (F-G) show time course of absorption spectra at 249 and 289 nm, respectively at different H₂S concentrations; BQ spectrum prior to H₂S is shown at -15 min. The reaction is essentially complete by 10 min when H₂S >50 μ M.


Supplemental Figure S5. Absorption spectra of 100 μ M pyrogallol (PG; **A**) and 100 μ M gallic acid (GA; **B**) in 21% O₂ for 60 min before (left panels) and 60 min after addition of 300 μ M H₂S (right panels). An initial PG peak at ~560 nm decreases in 21% O₂ and is replaced by a strong absorbance peak at 320 nM that is not affected by subsequent addition of H₂S. The absorbance peak of GA at 260 nm appears to be unaffected by exposure to either O₂ or H₂S.


Supplemental Figure S6. (A-D) Absorption spectra of 100 μ M 1,4-dihydroxybenzamine (DB) and variable concentrations of 1,4-benzoquinone (BQ). (E) Time-dependent absorption at 249 nm as a function of BQ concentration.

Supplemental Figure S7. Absorption spectra of 100 μ M 1,4-benzoquinone (BQ) and variable concentrations of 1,4-dihydroxybenzamine (DB).



Supplemental Figure S8. Effects of variable 1,4-benzoquinone (BQ) concentration on polysulfide production (SSP4 fluorescence) by 100 μ M 1,4 dihydroxybenzene (DB) and 300 μ M H₂S. DB and BQ were added and allowed to react for 10 min (**A**) or 90 min (**B**) prior to addition of H₂S; SSP4 was added 10 min after H₂S. Neither 0.1 nor 1.0 μ M BQ affected polysulfide production compared to 0 μ M BQ, whereas 10 μ M BQ inhibited it irrespective of DB-BQ incubation period. Mean +SE n=4 wells per treatment; *, *p*<0.05; **, *p*<0.01, significantly different from 10 μ M BQ.

Supplemental Figure S9. Neither dihydroxybenzenes (DB) nor *p*-benzoquinone (BQ) produce H_2S (AzMC fluorescence) from 300 μ M mixed polysulfide (K₂S_n) in 21% O₂ or 100% N₂. (A)

Effects of 10 and 100 μ M DB and BQ at 21% O₂. (**B**) comparison of 100 μ M DB and BQ at 21% O₂ and 100 % N₂. BQ at 100 μ M significantly (*p*<0.001) inhibited AzMC fluorescence in all instances suggesting BQ inhibits the reaction between H₂S (present in K₂S_n) and the fluorophore. Bar graphs show fluorescence at 130 min. Mean +SE, <u>n</u> = 4 wells per treatment; *, *p*<0.001 compared to AzMC with K₂S_n (AzMC).

Supplemental Figure S10. Polysulfide production (SSP4 fluorescence) after 120 min incubation from 300 μ M H₂S by di-, tri, and tetra-hydroxyphenones and 2-hydroxy,4methoxyphenone. Only 2,5-dihydroxyphenone and 2,3,4-trihydroxyphenone oxidized H₂S to polysulfides. Phenone concentration (1, 10, 100 μ M) increases from left to right; mean +SE; n = 4.