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Abstract: In utero, the fetus and its lungs develop in a hypoxic environment, where HIF-1α and
VEGFA signaling constitute major determinants of further development. Disruption of this home-
ostasis after preterm delivery and extrauterine exposure to high fractions of oxygen are among the
key events leading to bronchopulmonary dysplasia (BPD). Reactive oxygen species (ROS) production
constitutes the initial driver of pulmonary inflammation and cell death, altered gene expression, and
vasoconstriction, leading to the distortion of further lung development. From preclinical studies
mainly performed on rodents over the past two decades, the deleterious effects of oxygen toxicity and
the injurious insults and downstream cascades arising from ROS production are well recognized. This
article provides a concise overview of disease drivers and different therapeutic approaches that have
been successfully tested within experimental models. Despite current studies, clinical researchers are
still faced with an unmet clinical need, and many of these strategies have not proven to be equally
effective in clinical trials. In light of this challenge, adapting experimental models to the complexity
of the clinical situation and pursuing new directions constitute appropriate actions to overcome
this dilemma. Our review intends to stimulate research activities towards the understanding of an
important issue of immature lung injury.

Keywords: chronic lung disease; bronchopulmonary dysplasia; preterm; reactive oxygen species;
inflammation; lung injury; rodent; therapeutic approach

1. Introduction

The fetus and its lungs develop within a hypoxic environment. In utero, oxygen
tensions do not exceed 25–30 mmHg, which is a prerequisite for physiological function—
especially of the hypoxia-inducible factor (HIF) family of transcription factors that not
only control the metabolic situation, but also constitute key drivers of angiogenesis in the
developing lungs [1]. The HIF family regulates more than 2000 genes, mainly involved in
tissue growth and homeostasis. Within this family, HIF-1α is the best studied representative,
which primarily directs vascular development via vascular endothelial growth factor
(VEGF)-A, angiopoietins, and oxygen consumption [2,3]. Thereby, the induced gene
regulations by HIF-1α direct both tissue oxygen delivery and oxygen consumption. With
preterm, delivery the fetus is exposed to 4–5-fold higher tensions of oxygen measured
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in the arterial blood, and the local oxygen concentrations applied to the lungs to meet
oxygen saturation targets depend on the capacities for gas exchange [1]. From the available
experimental evidence, it becomes clear that brief changes in oxygen tension can have
tremendous effects on the balanced in utero situation that extend far beyond the neonatal
period [4]. While the HIF family is well suited to counteracting hypoxemic episodes, nature
is not prepared to counteract hyperoxic events until shortly before birth. Shortly before
birth, antioxidative defense mechanisms are established through the fetus’ own synthesis
and placental transfer.

Two pioneering studies in rodents displayed the wide range of genes being regulated
when animals were exposed to hyperoxia directly after birth, which included central
pathways of lung development such as transforming growth factor (TGF)-β and cell cycle
control. A recent study demonstrated that even short-term exposure of newborn mice to
oxygen for 30 min induced subtle but persistent typical changes in lung structures related
to secondary crest formation, which is the critical step of lung development at this stage [4].
In another study using an identical model, it was demonstrated that even lower fractions of
oxygen (40% and 65%) than the 80% usually applied in rodent models caused a persistent
increase in lung oxidative stress response and immune cell reactivity in the bronchoalveolar
lavage that was mainly constituted by macrophages. These data point towards a persistent
inflammation in the lungs after hyperoxic exposure in the neonatal period [5]. It should be
noted that hyperoxia with intermittent hypoxia affected the number and extent of gene
regulations in an unfavorable direction [6,7]. In one study in rats, only the combination
of hyperoxia with hypoxemic episodes decreased the antioxidative defense mechanisms,
as well as HIF-1α and its downstream activity [8]. These data are not surprising, since
hypoxemia leads to the accumulation of purine derivatives such as hypoxanthine during
hypoxia–reoxygenation injury. During reoxygenation, these derivatives are metabolized
to superoxide anions, which provoke oxidative stress response and lung tissue damage
that are boosted by further mechanisms of oxidative bursts, including NADPH oxidase
activation [9,10]. These alterations are not restricted to genes involved in antioxidant
defense, DNA repair, organ development, and growth, but also include the induction of
inflammatory genes. These pathomechanistic insights are consistent with previous studies,
mainly conducted in rodents, with prevailing results that hyperoxia and hypoxia both
impaired lung development. This was attributed to an overexpression of TGF-β signaling,
while HIF-1α and VEGFA signaling were dysregulated [11]. This critical function of
pulmonary vessel formation and growth for total lung development was further confirmed
by a fundamental study that proved a direct link between TGF-β action and distorted
VEGFA function and lung development by hyperoxia [12]. The deleterious effects of oxygen
are aggravated by secondary impacts such as pre- and perinatal infections that exert their
injurious actions via identical pathways. It remains to be determined whether oxidative
lung damage differs between gestational ages at birth and during the longitudinal course
of treatment in the NICU.

2. The Link between Oxygen Exposure, ROS Production and BPD

During the transition from the intrauterine to extrauterine environment, preterm
infants are challenged by an abrupt change in oxygen tensions and oxygen needs. These
are determined by the oxygen targets required to ensure their survival. Currently, narrow
oxygen saturation targets represent the gold standard of care. However, controversies
remain with regard to the strategy of optimal oxygen targeting. While higher concentrations
improve survival rates but increase the risk of neonatal morbidity, lower fractions reduce
the risk of severe morbidities but enhance mortality [2]. The targets might be revised within
the next several years based on new clinical outcome data. Nevertheless, the dramatic
change in oxygen tensions after birth will remain. Basic researchers and clinicians continue
to be faced with this challenge, and efficient strategies to prevent oxygen toxicity to the
preterm infant that go beyond antenatal steroid exposure and surfactant application are
urgently required, since both sustainably reduce the fraction of inspired oxygen after
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birth, but fail to reduce the required tissue oxygen tensions. Our review summarizes the
experimental evidence on this topic, promising therapeutic approaches, and the disparities
between preclinical rodent studies and the human situation that may account for the
difference in their effectiveness. Experimental studies have detailed the lung pathologies
induced by reactive oxygen species (ROS), but mechanistic links remain limited.

Oxygen is the source of life, and is physiologically reduced to water, which is mainly
executed within several steps in the mitochondria. Physiological ROS levels are a prerequi-
site for redox-sensitive signal transduction, and play important roles in development and
tissue homeostasis, but overwhelming ROS production puts the immature lungs at risk of
distortion of further developmental steps. Due to the immaturity of the system, reduction
of oxygen intermediates such as superoxides, hydrogen peroxide, and hydroxyls is limited,
and they can exert their toxic and deleterious effects on cell membranes, enzymes, pro-
teins, and DNA [2]. Mitochondria play a central role, but further relevant sources of ROS
arise from other intracellular compartments, including plasma membranes, peroxisomes,
and the endoplasmic reticulum. In addition, free circulating transition metals—including
iron and the ROS-producing enzymes such as peroxidases, NADPH, xanthine oxidases,
lipoxygenases, myeloperoxidase, nitric oxide synthase, and cyclooxygenases—contribute
to the excess of ROS during hyperoxia [13]. Mitochondria, again, are recipients of ROS
products, and their key function is ROS reduction, but they are prone to oxidative self-
injury. The capacity for ROS production is elevated in newborn infants, since their higher
levels of free iron compared to older infants and adults boost the Fenton reaction that
leads to the production of highly toxic hydroxyl radicals during ROS generation [14]. Both
immaturity and overload of the mitochondrial ROS reduction system and mitochondrial
damage per se have been identified as key features in the pathogenesis of BPD. Even
short periods of exposure to higher oxygen tensions and increase in ROS production boost
HIF-1α ubiquitination and its proteasomal degradation [2]. A study of glutaredoxin 1
(Grx1)-knockout mice confirmed the important roles of HIF-1α and nuclear factor (NF)-κB
during hyperoxia and lung injury. Grx1 is a thiol transferase, and its main function is to
decrease glutathione–protein adduct levels. In these knockout mice, HIF-1α levels were
increased, with concomitant upregulation of VEGFA and VEGF receptor 2, while excess
NF-κB and inflammation were prohibited, resulting in better preserved alveolar and vascu-
lar structures [15]. These data provide evidence that the preservation of HIF-1α function
has the potential to prevent the deleterious effects of inflammation on lung development.

Efficient ROS detoxification is essential in preventing situations of oxidative injury.
The family of SOD enzymes is quickly overwhelmed when high amounts of ROS are
released, while the reserve of SOD is too limited in the immature lung to counteract the
effects of ROS. SOD-1 in the cytoplasm, SOD-2 located in the mitochondria, and extracel-
lular SOD-3 constitute the key enzymes responsible for the dismutation of superoxides,
and are supported by the downstream action of oxidoreductases, catalases, reductases,
and peroxidases.

Further dimensions of complexity arise from the clinical situation. Most preterm
infants experience restrictions in nutritional supply, abnormalities in lung development,
or inflammatory injury prior to birth, which significantly impact on their lung status
and defense mechanisms. While in animal experiments hyperoxia to rodents is mostly
restricted to several days, with a continuum of oxygen supply within the late saccular
and early alveolar stages of lung development, preterm infants are exposed to varying
oxygen concentrations depending on the severity of gas exchange restrictions for weeks
to months, along with short-term fluctuations in oxygen supply depending on the res-
piratory status. The inflammatory response leading to lung injury is thereby not solely
determined by ROS production due to oxygen exposure, but by the extent of prenatal
inflammation provoked by infection and suppression of the inflammatory response by
prenatal corticosteroid administration.

A further dimension that deserves more detailed clarification is the microbial coloniza-
tion in utero and after birth. Clear associations have been demonstrated with the extent of
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lung injury, but the few preclinical studies so far do not deliver congruent results [16,17].
Therefore, this review is restricted to the available research data, mostly on isolated ROS
toxicity, but important studies combining hyperoxic and infectious injury are cited where
appropriate. Recently, several studies have revealed that the concentration of oxygen
provided significantly impacts lung function readouts and the histological picture of lung
injury. Due to the paucity of preclinical research data on lower concentrations of oxygen,
and our focus on ROS mediated lung injury, we mostly report data on high concentrations
of oxygen, between 60 and 90%.

3. The Pathomechanisms of ROS Injury to the Immature Lung

The deleterious actions of ROS on the immature lung can be separated into differ-
ent categories, and comprehensive understanding of their pathomechanistic roles is a
prerequisite to guiding novel therapeutic approaches (summarized in Figure 1).
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Figure 1. ROS production and downstream pathologies in the immature lung. After birth, the
preterm infant and its lungs are exposed to a relatively hyperoxic environment compared to the
intrauterine situation. ROS induce alterations in gene regulation and mitochondrial function, along
with disruption of further pulmonary vasculogenesis and an inflammatory response causing dam-
age to the immature lung. The excess ROS production is aggravated by restricted antioxidative
defense mechanisms, resulting in acute and long-term injuries and insults to the lung and further
lung development.

3.1. Gene Regulation and Epigenetic Alterations

Several studies have demonstrated the extensive effects of hyperoxia and ROS on
gene regulation. Similarly, the hyperoxia rodent models demonstrated prevailing results
of dramatic changes in gene methylation status and transcriptome regulation, affecting
more than 1000 genes. Within the dominant pathways identified, immune-system-related
genes and inflammatory responses were identified as main targets [18]. Studies in newborn
rats subjected to hyperoxia displayed DNA methylation in genes involved in hyperoxia,
which mediated the alteration of alveolarization and signaling receptors and their proteins
involved in lung growth and differentiation [19]. The most prominent candidates identified
include factors involved in TGF-β signaling with key genes—such as Tgfbr1, Crebbp, and
Creb1—that constitute a key developmental and injurious pathway to the lungs [20]. As
these effects continue after the end of hyperoxia treatment, mostly with hypermethylation
patterns, a persisting change in lung phenotype due to DNA methylation is suggested [20].

Within the antioxidative defense mechanisms, the transcription factor Nrf2 determines
the resting state and induced expression of antioxidant and cytoprotective genes upon
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oxygen sensing. Nrf2 is rapidly induced upon hyperoxic exposure. Among its multiple
functions, Nrf2 is involved in stem cell function, autophagy, metabolism, and protein
function. It becomes clear that Nrf2 plays a central role within the complex network of
antioxidative and cytoprotective regulations that are activated by oxygen sensing. Key
functions of Nrf2 include GSH synthesis, NADPH production and regeneration, ROS
detoxification, activation of antioxidant systems—including Txn production—and heme
and iron metabolism [21]. In contrast, its genetic deletion aggravates lung injury and causes
further distortion of lung development by hyperoxia [22].

3.2. Antioxidative Defense and Mitochondrial Dysfunction

Hyperoxia leads to mitochondrial stress and dysfunction, along with the accumula-
tion of ROS metabolites and damage to the immature lung—particularly in the alveolar
epithelium [23,24]. The mechanistic link was documented on a molecular level by overex-
pression of SOD2 that markedly reduced alveolar epithelial damage [25]. Moreover, the
lung-tissue-specific overexpression of SOD3 better preserved alveolar structure formation
during hyperoxia [26]. Similarly, the transient overexpression of SOD3 via inhalation
before hyperoxia exposure maintained nitric oxide (NO) bioavailability and subsequent
cGMP activity, while the pro-inflammatory activation of NF-κB was prohibited [27]. These
data provide further proof of the connection between ROS production and activation of
the inflammatory response. The increase in ROS in the lung tissue is the initial key step
that provokes the inflammatory response in the immature lung, with the release of pro-
inflammatory cytokines and the attraction of the pro-inflammatory leukocytes. Treatment
with the mitochondria-targeted antioxidant mitoTEMPO 2-(2,2,6,6-tetramethylpiperidin-
1-oxyl-4-ylamino)-2-oxoethyl) triphenyl-phosphonium chloride prevented distortion of
alveolarization and right ventricular hypertrophy, suggesting that all typical BPD features
were successfully prevented. Furthermore, the inhibition of mitochondrial ROS production
abrogated the secondary effects of ROS damage, including the activation of the NOX1
gene, while other isoforms such as NOX2 and NOX4 were not regulated, confirming the
specificity towards NOX1 [28].

The cytochrome P450 family contains the monooxygenases CYP1A1 and CYP1A2,
which were identified as playing important roles in reducing injury in adult models of hy-
peroxic lung injury. Unsurprisingly, the induction of CYP1A1 function by β-naphthoflavone
reduced the classical features of hyperoxic lung injury in mice, as did the transgenic over-
expression of the CYP1A1 promoter in newborn mice subjected to hyperoxia. The studies
on the CYP1A1 promoter overexpression found that the hyperoxic exposure per se induces
the activation of the promoter and the CYP1A1 activity that is responsible for the atten-
uation of hyperoxic lung injury [29,30]. Further studies extending these initial findings
have provided evidence that β-naphthoflavone action is not restricted to CYP1A1, as post-
natal administration in CYP1A1-knockout mice induced the expression of CYP1A2 and
NAD(P)H quinone oxidoreductase, which led to comparable reduction in lung injury to that
in wild-type mice [31]. In contrast to the expectations, the severity of lung injury was not
augmented in CYP1A2-knockout mice, suggesting a selective protective role for CYP1A1,
but not CYP1A2. Again, the application of β-naphthoflavone in CYP1A2-knockout mice
revealed that its action is mainly mediated by the NAD(P)H quinone oxidoreductase [32].
These data constitute further documentation of important differences in biological path-
ways between newborns and adults, which account for the disparities in hyperoxic lung
injury. The ROS detoxification systems display further redundancies of gene regulation, as
described for the glutathione peroxidase system in the rodent model of neonatal hyperoxic
lung injury [33]. Gender-specific evaluation of CYP1A1 and CYP1A2 activation after hy-
peroxia exposure revealed augmented activation in female mice, which might contribute to
the gender-specific disparities in the extent of lung injury, to the disadvantage of the male
gender [34].

In addition to direct targeting of the CYP1A family, plenty of further strategies have
been pursued aiming to reduce ROS production. Within the chain of oxygen radical produc-
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tion, the Fenton reaction plays a central role, converting hydrogen peroxide into hydroxyl
radicals that are catalyzed by bivalent iron. Aerosolized delivery or intraperitoneal injec-
tion of deferoxamine during and after the hyperoxic injury reduced the severity of lung
injury. It should be noted that both alveologenesis and pulmonary vessel formation with
improved HIF-1α and VEGFA signaling were better preserved in deferoxamine-treated
animals [35,36].

Nrf2 is the key activator of the antioxidant stress response that includes NAD(P)H
quinone oxidoreductase. Therefore, its dominant antioxidative role—which was demon-
strated in NAD(P)H-quinone-oxidoreductase-knockout mice, and by the sustainable up-
regulation of β-naphthoflavone that prevented the features of hyperoxic lung injury—is
not surprising [32,37].

3.3. Disruption of Angiogenesis

As detailed previously, the hyperoxia-induced dysregulation of HIF family member
function constitutes a hallmark that causes disturbance of further angiogenesis. Although
NO is mostly applied in clinics due to its acute pulmonary arterial antihypertensive and
vasodilative action, its lung-vessel-growth-promoting activities are of major importance, as
documented in several animal models. NO is the downstream executioner in the cascade
of HIF and VEGFA, and is suppressed during ROS injury. ROS impairs NO signaling
and stimulates smooth muscle cell growth and alterations, as well as pulmonary vascular
remodeling. Studies using inhaled NO or, alternatively, systemic administration of NO
donors such as L-citrulline, have proven efficient to preserve lung development under
hyperoxic conditions [38]. The beneficial effects of NO were ascribed to its downstream
mediator function of VEGFA but, simultaneously, an increase in VEGFA was detected,
suggesting a positive feedback amplification of action [39]. Even the retarded appli-
cation of inhaled NO after hyperoxic exposure proved efficient to promote distal lung
growth, resulting in lung catch-up growth [40]. Studies in lambs allowed sophisticated
analyses of pulmonary function, demonstrating that mitochondrial dysfunction and ox-
idative stress lead to vascular maldevelopment and pulmonary hypertension. Disease
pathology was ascribed to distorted NO function and signal transduction, along with
reduced soluble guanylate cyclase and cGMP levels, prompting constriction of pulmonary
vessels [41,42]. Further studies using leukotriene inhibition as another approach in this
context provided comparable results [43]. The anti-inflammatory role of NO in the pre-
vention of inflammation and lung injury by hyperoxia was documented in a newborn NO
inhalation model, where inflammatory genes such CCXL1 or IL6 were downregulated,
the influx of inflammatory leukocytes was attenuated, and alveolar fibrin deposition and
septum thickness were reduced [27]. In summary, NO displays potent pro-angiogenetic
and anti-inflammatory properties.

3.4. Inflammatory Response

ROS stimulate a pro-inflammatory response in the immature lung, with an overshoot
of classical cytokines such as IL-1β and TNF-α, excess NF-κB activation, and an influx
of inflammatory macrophages and neutrophils [44]. Of particular importance, these sec-
ondary changes induce direct toxic injury to the alveolar structures and surfactant function,
and highly impede further development of alveolar and vascular development and lung
mesenchymal stem cell function [44–47]. Polymorphonuclear leukocytes (PMNs) likely
constitute a major source of ROS, perpetuating and amplifying the initial pathomechanistic
changes provoked by oxygen toxicity. Their particular tissue-damaging function has been
ascribed to the simultaneous release of a variety of proteases that aggravate tissue injury
and maintain and boost the release of pro-inflammatory cytokines and the activation of
pro-inflammatory pathways, with the NF-κB pathway constituting the key pathway [44].
Activation of several further pathways has been described in this context, with TGF-β and
the WNT/b-catenin system constituting two further pathways of lung injury. Their function
during lung injury was documented by the treatment with rosiglitazone in particular [48].
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TGF-β constitutes an important pathway of lung injury aggravation because of its
stimulation of the inflammatory response in the lungs, as well as cell death. However, the
attenuation of NF-κB signaling leads to further excess in TGF-β activation and disruption
of angiogenesis, which was attributed to VEGF receptor 2 regulation [49,50]. It should be
noted that hyperoxia and hypoxia both lead to the upregulation of TGF-β and WNT/b-
catenin signaling, along with inflammation and increased lung injury. The key events
leading to ROS-induced inflammatory injury are summarized in Figure 2.
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Figure 2. ROS-mediated pulmonary inflammatory response in the immature lung. Reactive oxygen
species induce a pulmonary inflammatory response via overexpression of pro-inflammatory cytokines
and attraction of inflammatory macrophages and neutrophils. Surfactant inactivation, cell death
induction of lung cells, lung-resident mesenchymal stem cell phenotype distortion, and rarefication
of septation constitute the hallmarks of BPD’s pathology.

One of the most recently studied events in the pulmonary pro-inflammatory response
in BPD is the formation of the inflammasome. This complex is a key upstream executor that
initiates the hyperoxia-induced injury; it is assembled from multiple proteins located in the
cytoplasm, and is composed of sensor and adaptor proteins and inflammatory caspases,
with caspase-1 performing the decisive function. It is activated in response to endogenous
and exogenous stimuli, including ROS or LPS. The main action of inflammasome activation
is the maturation and release of pro-inflammatory cytokines, with IL-1β constituting the
most decisive in the context of BPD, along with the activation of caspases such as caspase-8,
with cell death induction as the key effector function [51]. Treatment of mice exposed
to hyperoxia with the irreversible caspase-1 inhibitor Ac-YVAD-CMK markedly reduced
lung injury, with improved alveolar and vascular development, along with reduced IL-1β
production [52].

Despite the initiating and decisive role of ROS in causing lung damage, thus far, no
convincing therapeutic approaches have been identified for clinical evaluation. Therefore,
therapeutic approaches focus more on the downstream actions of inflammation and the
distortion of further lung development. A recent review on this topic has compiled the
tremendous improvements in the understanding of normal and pathological alveolariza-
tion, which cannot be covered within the present review in such detail [53].

4. Preclinical Strategies to Prevent ROS-Induced Lung Injury

Therapeutic approaches focused on the aforementioned areas of ROS action are still
mainly restricted to preclinical research in rodent models of hyperoxic lung injury. There-
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fore, we will now summarize the most recent experimental insights that have the potential
to guide further clinical strategies (Figure 3). The therapeutics with already proven efficacy
are detailed in the second chapter of our review, and are detailed within several tables for
their mode of action [54].
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Figure 3. Therapeutic approaches to counteract the overexpression of ROS activity and its down-
stream actions in the immature lung. Preclinical studies in rodents identified several highly promising
strategies to counteract ROS production and the activation of downstream injurious actions in the
immature lung. Strategies are categorized by their main documented or postulated mode of action.
* Therapeutic approaches with proven efficacy in the preterm infant to prevent or treat BPD.

4.1. Gene Regulation and Epigenetic Alterations

Several approaches have tested the potential of augmenting Nrf2 activity, including
preconditioning of the lung by targeting Keap1 and treatment with rapamycin, which
resulted in increased baseline Nrf2 levels and antioxidant capacity. While the inflammatory
response to hyperoxia was not altered in Nrf2-augmented mice, hypoalveolarization was
markedly reduced [4,55]. In recent years, it has become clear that miRNA regulations
constitute key events in the pathogenesis of BPD in hyperoxic injury models, and com-
parable changes have been documented in infants with BPD [56]. One recent study on
miRNA 29b using the combined model of intrauterine inflammation induced by LPS and
postnatal hyperoxia provided a link between miRNA regulation and histone methylation
patterns. While exposure to hyperoxia downregulated both miRNA 29b levels and histone
3 and 4 methylation patterns, nanoparticle delivery of miR-29b on day 3 reverted these
changes and partially reversed lung histopathology, with reduced septal wall thickness but
unchanged alveolar air space [57]. One further dimension arises from the observed specific
epigenetic regulation of genes implicated in cell cycle control, pulmonary vessel formation,
vascular remodeling, and mesenchymal stem cell function in female mice, while in male
mice, endothelium developmental pathways were specifically altered [58].

4.2. Antioxidative Defense

Tetrandrine is a potent suppressor of oxidative stress and inflammation; its application
increased levels of antioxidant enzymes that were accompanied by a reduction in NF-κB
activation, cellular lung inflammation, apoptosis, and fibrosis in rats exposed to hyper-
oxia [59]. The oxidoreductase thioredoxin reductase-1 reduces oxidized thioredoxin-1;
its inhibition by aurothioglucose in newborn mice exposed to hyperoxia promoted Nrf2-
related gene expression and lung development that was related to increased antioxidative
activity [60]. Lipoxin A4 reduced both the oxidative stress response and the inflamma-
tory response in the lung, which was followed by improved lung histopathology and
function [61].

Hydrogen gas and hydrogen-rich water are highly potent eliminators of highly active
ROS. Although not studied in the hyperoxic lung injury model, in the LPS rat model
of BPD, the comparable mechanisms suggest that it is sufficiently potent to reduce the
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oxidative stress and protein oxidation in the immature lung [62]. Postnatal treatment of
newborn mice exposed to hyperoxia with quercetin—a potent antioxidant and radical
scavenger—potently reduced lung injury together with the features of lung inflammation,
including the influx of inflammatory cells and lung tissue NF-κB activation. The key action
of quercetin was ascribed to the upregulation of CYP1A1, CYP1B1, and NQO1 mRNA and
protein levels, all of which have potent antioxidative properties [63].

The deficiency of vitamin D has been repeatedly associated with deregulation of
redox cell signaling pathways. Several independent studies in newborn rodents exposed
to hyperoxia provide convincing evidence that vitamin D preserves lung histology in
hyperoxia-exposed animals. All such studies have in common the fact that they demon-
strated reduced cell death induction in the lungs, but the mechanism of vitamin D has
not been fully elucidated so far. Attenuation of downstream inflammatory activation of
ROS—including toll-like receptor 4 and NF-κB signaling—together with decreased pro-
inflammatory cytokine levels of IL-1β and TNF-α, among others, under vitamin D therapy,
point towards a potential role of vitamin D in ROS detoxification, of which experimental
evidence is urgently needed [64,65]. Vitamin A is another candidate with antioxidative
properties. While it was originally recognized for its lung-growth-promoting function in
the developmental stages of prematurity, its antioxidative capacities were largely neglected.
Thereby, the combination of vitamin A plus retinoic acid (its active metabolite) seems more
promising to refill lung tissue retinoid stores in rodents, and this approach proved efficient
to reduce protein oxidation and DNA damage in the lungs of newborn mice exposed to
hyperoxia, and to attenuate Nrf2 activation and the structural and functional changes of
hyperoxic lung injury [66]. In contrast, the approach of antioxidative therapy with ascorbic
acid plus α-tocopherol was not successful in the premature baboon model of prolonged
hyperoxic injury. While antioxidant vitamin levels were successfully increased in animals
treated with high-dose supplementation, no benefit was observed in terms of markers
of lipid peroxidation, respiratory parameters, and lung histopathology [67]. Currently,
the scientific data do not clarify whether the highly successful antioxidative approaches
in rodents can be transferred to humans. Some concerns need to be kept in mind when
referring to the field of MSC research, where highly successful strategies have so far not
been recapitulated in rodents and humans [68]. These disappointing results, among, others
have stimulated the search for downstream targets of ROS and peroxidation that might
prove superior. Caffeine is currently highlighted in the clinical scenario for its efficacy in
the respiratory drive, and its antioxidant capacity and lung-protective effects have been
studied in preclinical newborn rodent models of hyperoxia-induced lung injury. Its action is
related to reductions in glutathione, HO-1, and H2O2 levels, along with lipid peroxidation,
and to a prevention of Nrf2 upregulation, while Keap1 levels and superoxide dismutases
were preserved [69,70]. Within more detailed investigations, a reduction in oxidative stress
was documented for the decrease in adenosine 2A receptor expression, reducing cell death
induction in the lung—especially alveolar epithelial type II cells—NLRP3 inflammasome
protein expression, and NF-κB pathway activation [70]. The multiple actions of caffeine
were further unraveled when caffeine treatment during hyperoxia in newborn rats attenu-
ated cyclooxygenase-2 activation and endoplasmic reticulum stress—a further downstream
target of ROS beyond inflammation [71]. Selective inhibition of cyclooxygenase-2 (COX2)
in a newborn rat model of hyperoxia exposure provided comparable results, with the
exception that the changes in alveolar diameter were not abrogated, despite the preserva-
tion of the number of lung mesenchymal stem cells [72]. Studies in COX2-knockout mice
and the application of COX2-specific inhibitors in newborn mice further indicated that
COX2 is crucial for pro-inflammatory cytokine production and the influx of inflammatory
cells in the lungs, but its inhibition was not effective in preventing hyperoxia-induced
histopathological changes in mice exposed to 85% oxygen for 14 days, constituting a severe
lung injury [73].

In addition to the prevention of hyperoxia-mediated ROS production and lung injury,
the consequences of intermittent hypoxemic episodes have become the focus of more and
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more research, as stated in the introduction. Treatment with a peroxynitrite decomposition
catalyst that catalyzes the isomerization of peroxynitrite (ONOO−)—a highly reactive
oxidant formed by the combination of nitric oxide and superoxide anions during the phases
of intermittent hypoxemia after hyperoxic exposure—reduced pulmonary inflammation
and the secondary injuries to lung structures provoked by the double hit, particularly
affecting lung and pulmonary vascular function [74]. These data confirm that secondary
injurious insults during the recovery phase of the lungs after hyperoxia are of major
importance, and that the repetitive desaturations that are frequently observed in preterm
infants during the phase of stabilization are of high importance to further lung development,
although these mechanistic data are so far restricted to rodent models.

4.3. Anti-Inflammatory Drugs

Prenatal and postnatal corticosteroids constitute one of the cornerstones of prevent-
ing or treating BPD. Recently, postnatal topical corticosteroid application in the lungs in
conjunction with a surfactant came into the focus of research, based on one clinical trial
demonstrating its superiority. This combination of surfactant plus budesonide was recently
studied in a model of mechanically ventilated preterm lambs. It is of particular importance
that this strategy not only reduced the pulmonary inflammatory response and lung injury,
but also attenuated the systemic inflammatory response in the brain and liver [75]. Due to
the serious side effects on psychomotor and endocrine function, more selective therapeutic
approaches are being extensively studied. It should be mentioned that natural surfac-
tant preparations contain SOD and CAT activity, exerting antioxidative properties [54,76].
Molecular in vitro studies indicate that dipalmitoylphosphatidylcholine from surfactant
preparations has anti-inflammatory properties, inhibiting the ATP-induced inflammasome
activation and maturation of IL-1β via a mechanism involving nicotinic acetylcholine
receptors [77]. The most encouraging approaches in preclinical studies target the IL-1β
activation, including the interleukin-1 receptor antagonists (IL-1Rα), or modulators of
the NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome upstream of IL-
1β [78]. These data were further confirmed in independent studies where genetic knockout
of NLRP3 prevented caspase-1 activation, IL-1β, and lung inflammation [79]. Similarly,
treatment with a Rac1-specific inhibitor that controls the NLRP3 inflammasome-mediated
processing of pro-IL-1β into its active mature form markedly decreased the inflammasome
activation and macrophage recruitment into the lungs [80]. One further strategy aimed
to preserve heat shock protein 70 (Hsp70) expression via geranylgeranylacetone, which
exerts a cytoprotective function via several anti-apoptotic and anti-inflammatory mech-
anisms, including the attenuation of ROS-mediated lipid peroxidation. In these animals,
geranylgeranylacetone prevented the hyperoxia-mediated downregulation of Hsp70, and
suppressed lung cell apoptosis induction and lung structural changes [81].

5. Outlook and Perspectives

Preterm birth is associated with fundamental changes in oxygenation. Therefore,
the term “oxidative diseases” of the preterm infant perfectly characterizes the postnatal
situation [10]. This can be particularly applied to the immature lung and the evolution of
BPD. The past decade has been characterized by tremendous gains in knowledge of the
pathomechanisms of BPD in the context of ROS, although their fundamental impact on
further lung development has been acknowledged for decades. Targeting the critical path-
ways of ROS action proved effective in rodents exposed to hyperoxia. Despite advanced
knowledge in preclinical studies, thus far, none of these therapeutic approaches has been
successfully translated into clinical routine. Of course, one must acknowledge the proven
efficacy of caffeine [68]. It will, however, be difficult to separate its benefits in terms of
stabilizing the respiratory drive of the preterm infant and its antioxidant properties in the
clinical setting, since distinguishing these effects is not within the focus of neonatologists.
Rather, optimization of the dosing of caffeine in the context of prevention of mechanical
ventilation, limitations in lung function, and psychomotor outcomes will guide future
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trials, as is currently the aim for vitamin A [82,83]. For vitamin A and vitamin D, the data
do not allow a final conclusion thus far. It will not be easy to specify antioxidative effects of
specific therapies within the complexity of BPD’s evolution [53,68]. The preclinical models
have their limitations, which can be traced back to differences in the evolutionary status of
the lungs compared to the preterm infant, along with the fact that the studies were exclu-
sively performed for isolated injurious insults, while the pathogenesis of BPD in preterm
infants is highly complex [84,85]. In order to specify examples showing that the preclinical
progress is suited to shape future research, directions are based on the fact that ROS cause
comparable downstream events in rodents and preterm infants, and lead to comparable
persistent epigenetic changes. Further incorporating the insights and knowledge from
these models into the clinical context will pave the way towards targeted therapies. This
might be particularly applicable to therapies to prevent ROS injury, as multiple factors
contributing to BPD aggravate ROS production, which has been most studied for oxygen
therapy and bacterial infections. The same might account for microbial colonization of the
lungs, the action of microbial axes, and the impact of nutrition. Taking into account that
the downstream effects of ROS—including modification of the gene methylation status or
apoptosis processes—cannot be classified as safe, the clinical approaches are still limited to
dampening the inflammatory response, which is highly reliant on the high potency and
broad anti-inflammatory activity of corticosteroids [54,68]. One might speculate that BPD,
as a complex disease with multiple origins, cannot be tackled with one specific therapy.
Novel approaches—including the application of allogeneic MSCs, with their broad anti-
inflammatory and growth-promoting effects—are highly promising. Whether they will
meet with equal success as in the rodent models requires scientific confirmation [68].

Today, it is much too early for a final assessment of whether ROS targeting is ineffective
in preventing BPD, taking into account the high impact of ROS on lung development and
the tremendous impact of small variations in oxygen targeting in the preterm infant. Rather,
it remains a highly attractive area of research, and we will shed light on the clinical aspects
and needs in the second chapter of our review [54].
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