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Abstract: Ageratina adenophora is one of the major invasive weeds that causes instability of the
ecosystem. Research has reported that A. adenophora produces allelochemicals that inhibit the
growth and development of food crops, and also contain some toxic compounds that cause toxicity
to animals that consume it. Over the past decades, studies on the identification of major toxic
compounds of A. adenophora and their toxic molecular mechanisms have been reported. In addition,
weed control interventions, such as herbicides application, was employed to reduce the spread of
A. adenophora. However, the development of therapeutic and prophylactic measures to treat the
various A. adenophora—induced toxicities, such as hepatotoxicity, splenotoxicity and other related
disorders, have not been established to date. The main toxic pathogenesis of A. adenophora is oxidative
stress and inflammation. However, numerous studies have verified that some extracts and secondary
metabolites isolated from A. adenophora possess anti-oxidation and anti-inflammation activities,
which implies that these extracts can relieve toxicity and aid in the development of drug or feed
supplements to treat poisoning-related disorders caused by A. adenophora. Furthermore, beneficial
bacteria isolated from rumen microbes and A. adenophora can degrade major toxic compounds in
A. adenophora so as to be developed into microbial feed additives to help ameliorate toxicity mediated
by A. adenophora. This review presents an overview of the toxic mechanisms of A. adenophora,
provides possible therapeutic strategies that are available to mitigate the toxicity of A. adenophora and
introduces relevant information on identifying novel prophylactic and therapeutic measures against
A. adenophora—induced toxicity.

Keywords: Ageratina adenophora; toxicity; mechanisms; possible interventions; antioxidant; anti-
inflammation; probiotics

1. Introduction

Ageratina adenophora is one of the widely known invasive weeds that negatively affects
the livestock production industry [1,2]. A. adenophora is highly toxic to various animals and
affect multiple organs; hence, it has raised serious health concerns in many countries [3,4].
For example, a study reported that the ingestion of A. adenophora caused respiratory disease
in horses, characterized by acute edema of the lungs, which led to death [5]. Verma et al. [6]
also found that A. adenophora reduced digestive function and photosensitive reaction in
cattle. Freeze-dried leaf powder and methanol extract of A. adenophora caused multiple
focal parenchymal necrosis and degeneration in the liver of mice [7]. Rats fed with a
basal diet containing 25% (w/w) freeze-dried A. adenophora leaf powder showed signs of
jaundice, characterized by an elevation of plasma bilirubin, ALP, ALT and AST levels [8].

Int. J. Mol. Sci. 2021, 22, 11581. https://doi.org/10.3390/ijms222111581 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-4820-8620
https://orcid.org/0000-0003-0741-572X
https://orcid.org/0000-0002-4950-8441
https://doi.org/10.3390/ijms222111581
https://doi.org/10.3390/ijms222111581
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms222111581
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms222111581?type=check_update&version=1


Int. J. Mol. Sci. 2021, 22, 11581 2 of 13

Furthermore, the toxic effects of A. adenophora ingestion on the liver, spleen and kidney of
goat and mice have also been reported, with dose-dependent apoptosis and autophagy and
disorders, such as cholestasis, bile duct hyperplasia, liver necrosis, swelling and bleeding
in the spleen and kidneys [9–11]. In addition, ≥20% dose of A. adenophora increased liver
weight, induced severe inflammation, increased reactive oxygen species (ROS) production,
and activated pyroptosis [3]. Mice fed with 175 mg/kg A. adenophora extract had decreased
antioxidant function by reducing the activities of SOD, CAT, and GSH, while increasing
the levels of lipid peroxide (LPO) in the liver [12]. A. adenophora caused a disorder in the
arrangement and inhibited the activities of the splenocytes and immune cells in mice [13].
This shows that A. adenophora induces oxidative stress in the liver, thereby damaging it [14].

2. Invasive Nature of A. adenophora

A. adenophora was first introduced into the Yunan province from the China–Burma
border in 1940 [15], and eventually spread to Sichuan, Guangxi, Guizhou, Hubei and Tibet
provinces, the Chonqing municipality and even to Taiwan [16]. A. adenophora is one of
the most important invasive plant species in China [17]. It tops the list of China’s first
foreign invasive species released by the State Environmental Protection Administration and
the Chinese Academy of Sciences, and currently affects over 30 million hectares of arable
land [18]. It is predicted to spread further northward and eastward at an average speed
of 20 km/year [16]. A. adenophora is native to Mexico and Costa Rica and has successfully
invaded habitats across the world [19,20]. A. adenophora is normally found in roadsides,
pastures, fence lines, waste areas and riparian zones as well as urban open spaces, open
woodlands and forest margins in subtropical and warmer temperate regions [21]. Its rapid
spread is due to its allelopathic competition with other plant species [22]. It was first
reported in Australia in 1904 and has spread along the shorelines of New South Wales and
southern Queensland [23]. The plant is documented as a weed in 10 states of the United
States of America. In addition, A. adenophora was ranked as a Class 4 Noxious Weed under
the NSW Noxious Weeds Act of 1993 [24]. It was tagged as an invasive weed species, due to
its wide distribution in many continents, such as Asia, Africa, America and Europe [21,25].

3. Major Toxins in A. adenophora and Their Toxic Nature

The structure and function of the liver and spleen make them highly susceptible to
pathogen and toxin destruction [26].

Numerous sesquiterpenes were identified in A. adenophora of which most have the
same molecular skeleton as cadinene. Among these sesquiterpenes, 9-oxo-10, 11-dehydro-
agerophorone (euptox A), 2-deoxo-2-(acetyloxy)-9-oxo-ageraphorone (DAOA) and 9-oxo-
agerophorone (OA) are the major toxic compounds found in A. adenophora (Figure 1).
The main differences between the molecular structure of DAOA and OA is the presence
of a 2-acetoxy group in the DAOA and 2-carbonyl group in OA, whereas the distin-
guishing feature between euptox A and OA is the presence or absence of an unsaturated
6–11 bond in conjugation with a 7-oxo function [27]. These toxins are mainly found in the
leaves with a mass percentage of 0.63–1.99 % in dry leaves [28]. 9-Oxo-10, 11-dehydro-
agerophorone (euptox A) exhibited hepatotoxicity in rodents [7,29–31] with a median lethal
dose (LD50) of 1470 mg/kg body weight of mice, whereas 2-deoxo-2-(acetyloxy)-9-oxo-
ageraphorone(DAOA) and 9-oxo-agerophorone (OA) also showed hepatotoxicity in mice
with respective LD50 of 926 mg/kg BW and 1470 mg/kg BW [27]. DAOA and euptox A
are also immunotoxic to mice, showing characteristics such as reduction in numbers and
irregular arrangement of splenocytes and thymocytes [13]. Euptox A can cause the arrest
of splenocyte proliferation in the G0/G1 phage and induce autophagy in a dose-dependent
manner when administered to mice via the gastric route [31]. A. adenophora is dangerous to
animals because of its toxic nature; hence, there is the need to develop control strategies
and also establish therapeutic measures to attenuate its toxicity once ingested into the body.



Int. J. Mol. Sci. 2021, 22, 11581 3 of 13

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 3 of 14 
 

 

animals because of its toxic nature; hence, there is the need to develop control strategies 
and also establish therapeutic measures to attenuate its toxicity once ingested into the 
body. 

 
Figure 1. Structure of major toxins compounds in A. adenophora. 

4. Molecular Mechanism of A. adenophora Toxicity 
The exposure of animals to A. adenophora causes an elevation in reactive oxygen spe-

cies (ROS) parameters, such as nitric oxide, superoxide and hydroxyl radicals, leading to 
the damage of DNA and proteins in addition to altering the cellular architecture, perme-
ability and cell survival [32,33]. A. adenophora is reported to trigger a series of downstream 
signaling cascades and further interrupt signaling pathways associated with cell growth, 
proliferation and apoptosis [3]. The mechanism of ROS formation by A. adenophora is yet 
to be thoroughly decoded. However, several studies have indicated the involvement of 
mitochondrial complex I in A. adenophora–mediated oxidative stress in different types of 
cells. The presence of A. adenophora in cells results in DNA damage, due to its ROS-form-
ing ability through interactions with oxygen [3]. A. adenophora also causes toxicity by re-
ducing the mitochondria membrane potential and through the release of cytosol from the 
mitochondria membrane [29]. Furthermore, A. adenophora causes an imbalance of apopto-
sis-related enzymes, Bax and BCl2, which causes the activation of caspases, thereby result-
ing in DNA fragmentation and apoptosis.  

A. adenophora causes mitochondria dysfunction through the reduction of the cellular 
antioxidant systems, such as glutathione (GSH), and nicotinamide adenine dinucleotide 
phosphate (NADPH) levels, which may also disrupt the maintenance of the reduced states 
of thiol-containing proteins in the mitochondria. This causes the oxidation of the thiol-
containing proteins, which in turn, changes the conformation of the mitochondrial mem-
brane permeability transition pore, causing its opening, thereby promoting apoptosis and 
necrosis [34]. Therefore, at the cellular level, it can be concluded that A. adenophora triggers 
necrotic cell death, leading to multiple organ failure.  

A. adenophora can induce an extensive inflammatory response [35]. Increased levels 
of ROS are associated with various diseases, such as chronic inflammation [36], and this 
promotes the release of various pro-inflammatory factors [37]. A. adenophora was reported 
to cause pyroptosis in the spleen of mice at the dose of 10% and above [14]. Pyroptosis 
involves the inflammatory response of pro-inflammatory cytokines, such as caspase-1 ac-
tivation and interleukin-1β (IL-1β) production [38–40]. Caspase-1 protease, a major con-
stituent of the multiprotein inflammasome complexes, is involved in the activation and 
secretion of IL-1β, a pro-inflammatory cytokine [41]. Numerous studies have reported 
that pyroptosis is an immune effector mechanism that occurs in various types of cells 
[42,43] and is activated by diverse pathological stimuli [44,45], leading to the secretion of 
pro-inflammatory cytokines [46]; however, the underlying mechanism for this occurrence 
requires further studies. 

Another current research reported that A. adenophora causes toxicity in the spleen by 
destroying the fibroblastic reticular cell (FRC) network and causing an imbalance in the 

Figure 1. Structure of major toxins compounds in A. adenophora.

4. Molecular Mechanism of A. adenophora Toxicity

The exposure of animals to A. adenophora causes an elevation in reactive oxygen species
(ROS) parameters, such as nitric oxide, superoxide and hydroxyl radicals, leading to the
damage of DNA and proteins in addition to altering the cellular architecture, permeability
and cell survival [32,33]. A. adenophora is reported to trigger a series of downstream
signaling cascades and further interrupt signaling pathways associated with cell growth,
proliferation and apoptosis [3]. The mechanism of ROS formation by A. adenophora is
yet to be thoroughly decoded. However, several studies have indicated the involvement
of mitochondrial complex I in A. adenophora–mediated oxidative stress in different types
of cells. The presence of A. adenophora in cells results in DNA damage, due to its ROS-
forming ability through interactions with oxygen [3]. A. adenophora also causes toxicity
by reducing the mitochondria membrane potential and through the release of cytosol
from the mitochondria membrane [29]. Furthermore, A. adenophora causes an imbalance of
apoptosis-related enzymes, Bax and BCl2, which causes the activation of caspases, thereby
resulting in DNA fragmentation and apoptosis.

A. adenophora causes mitochondria dysfunction through the reduction of the cellular
antioxidant systems, such as glutathione (GSH), and nicotinamide adenine dinucleotide
phosphate (NADPH) levels, which may also disrupt the maintenance of the reduced
states of thiol-containing proteins in the mitochondria. This causes the oxidation of the
thiol-containing proteins, which in turn, changes the conformation of the mitochondrial
membrane permeability transition pore, causing its opening, thereby promoting apoptosis
and necrosis [34]. Therefore, at the cellular level, it can be concluded that A. adenophora
triggers necrotic cell death, leading to multiple organ failure.

A. adenophora can induce an extensive inflammatory response [35]. Increased levels
of ROS are associated with various diseases, such as chronic inflammation [36], and this
promotes the release of various pro-inflammatory factors [37]. A. adenophora was reported
to cause pyroptosis in the spleen of mice at the dose of 10% and above [14]. Pyroptosis
involves the inflammatory response of pro-inflammatory cytokines, such as caspase-1
activation and interleukin-1β (IL-1β) production [38–40]. Caspase-1 protease, a major
constituent of the multiprotein inflammasome complexes, is involved in the activation and
secretion of IL-1β, a pro-inflammatory cytokine [41]. Numerous studies have reported that
pyroptosis is an immune effector mechanism that occurs in various types of cells [42,43]
and is activated by diverse pathological stimuli [44,45], leading to the secretion of pro-
inflammatory cytokines [46]; however, the underlying mechanism for this occurrence
requires further studies.

Another current research reported that A. adenophora causes toxicity in the spleen by
destroying the fibroblastic reticular cell (FRC) network and causing an imbalance in the Th1–
Th2 cell ratio [33]. The study speculated that A. adenophora ingestion induces a persistent
inflammatory response in the spleen, which in turn could lead to the activation and
promotion of T cell immunity, resulting in splenic dysfunction. However, the mechanism
behind these observations is not yet clear. Therefore, it requires further studies. Another
study by Cui et al. [47] also reported that A. adenophora causes destruction of the intestinal
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structure and immune barrier integrity. In summary, A. adenophora induces inflammation
in cells, which leads to cell death mediated by pyroptosis. Figure 2 depicts the molecular
mechanisms of A. adenophora—induced toxicity in various organs.
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mechanisms A. adenophora causes liver toxicity via the ROS apoptotic pathway, pro-inflammation mediated pathway, ROS-
NLRP3-mediated pyroptosis pathway, and caspase-1-dependent pyroptosis pathway, A. adenophora causes spleen toxicity via
ROS apoptotic pathway, ROS-NLRP3-mediated pyroptosis pathway, caspase-1-dependent pyroptosis pathway, destroying
the Fibroblast reticulocyte (FCR) network and elevating Th1/Th2 ratio, Finally A. adenophora causes toxicity of the kidney via
ROS apoptosis pathway, caspase 3/9 mediated pathway and mitochondria dysfunction pathway. IL-1β—Interleukin 1-beta,
ROS—reactive oxygen species, GSDMD—gasdermin D, NLRP3—NOD-, LRR- and pyrin domain-containing protein 3, NF-
κB—Nuclear factor-κB, ∆Ψm—Mitochondria potential membrane, gp38—glycoprotein 38, Th1/2—T-helper cells 1 and 2,
CCL21—C-C Motif Chemokine Ligand 21, CCL19—C-C Motif Chemokine Ligand 19, T-bet—T-box transcription factor 21,
IFN-γ—Interferon-gamma, IL-4—Interleukin 4, IL-10—Interleukin 10, Bax—BCl2 Associated X, BCl-2—B-cell lymphoma-2.

5. Pharmacological Applications of A. adenophora and Potential Therapeutic
Interventions against Its Toxicity

A. adenophora is used in the traditional system of medicine across the world. In India,
leaves of the plant are pharmacologically regarded as astringent, thermogenic, stimu-
lants and are used as medicine because of the antimicrobial, antiseptic, blood coagulating,
analgesic, and antipyretic properties [48]. Furthermore, a decoction of the plant is recom-
mended for treating jaundice and ulcers [49]. In Nigerian traditional medicine, it is used
to treat fever, diabetes, and inflammation [50]. These pharmacological properties may be
the result of bioactive secondary metabolites present in the plant. A study by Fu et al. [51]
recently reported that two metabolites, phomoxanthone A and penialidin A produced by
a fungal endophyte Coniochaeta sp. F-8, isolated from A. adenophora, showed antioxidant
activities, and hence, had great importance in biotechnology as a source of novel bioactive
compounds for antioxidant drug development. Moreover, another study reported antiviral
activity of euptox A in NDV-infected chicken embryo fibroblasts (CEFs), using the MTT
method [52]. The results showed that euptox A at 10 µg/mL could directly suppress, neu-
tralize, and block NDV in vitro as well as prevent the binding of NDA to its receptor. Nong
et al. [53] also reported the acaricidal activity of ethanol extract from leaves of A. adenophora.
A study by Rajeswary et al. [54] reported that crude extracts derived from A. adenophora
had ovicidal effects against mosquito eggs at concentrations of 300 mg/L; hence, the plant
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could be used for controlling mosquitos. Numerous studies have showed antimicrobial
activity of A. adenophora and its extracts [48]. A study reported that A. adenophora inhibited
Phytophthora capsici at 50–250 mg/mL concentrations [55]. Another study also reported that
oils extracted from A. adenophora showed significant toxicity against Erwinia herbicola and
Pseudomonas putida, two phyto-pathogenic bacteria at concentrations of 0.25–5 µL mL−1 [56].
Both organic and aqueous crude extracts from leaves of A. adenophora showed inhibitory
effects on the growth of Bacillus subtilis, Bacillus cereus and Pseudomonas aeruginosa [57].
Furthermore, methanolic leaf extract from A. adenophora showed an obvious inhibitory
effect on Pseudomonas aeruginosa [58]. Euptox A also showed potent effects against the
widespread plant pathogen Ralstonia solanacearum (R1-4), with the minimum inhibitory
dose ranging from 0.25 to 1 mg/mL [59]. The thymol derivatives of A. adenophora have
shown inhibitory effects against both Gram-negative and Gram-positive bacteria [60].

A number of secondary metabolites isolated from the inflorescence and roots of
A. adenophora, mainly sesquiterpenes, showed potent antifungal activity [48]. Several
studies have reported the inhibitory effects of the crude extracts of A. adenophora against
pathogenic fungi [61,62]. For example, 100.00 mg/mL A. adenophora ethanol, acetone, and
ether extract showed 100% inhibitory rate against Fusarium gramincarum and
Colletotrichum glycines Hori [63]. In addition, Liu et al. [64] reported that the leaf ex-
tracts of A. adenophora (mainly 10H β-9-oxo-agerophorone, 10H α-9-oxo-agerophorone
and euptox A) inhibited the formation of Pythium myriotylum mycelial biomass at the
minimum inhibitory concentration of 100 µg/mL. Euptox A also inhibited germination of
Fusarium oxysporum, Bipolaris sorokiniana, Fusarium proliferatum and Alternaria tenuissima as
well as spore production in Fusarium oxysporum and Bipolaris sorokiniana [65]. In the latest
study of Hu et al. [66], it was found that both euptox A and cadinan-3-ene-2,7-dione (CED)
isolated from the methanol extract of A. adenophora showed antifungal activities charac-
terized by the destruction of the integrity of cell membranes and inhibition of ergosterol
synthesis, which eventually led to fungal cell death. The oil extract from A. adenophora
inhibited the mycelial growth of Phytophthora capsici at the concentration of 500 µg/mL
after 7 days of incubation [67]. Furthermore, in recent years, the use of A. adenophora as an
anti-nematode agent and an insecticide was recognized. A recent study by Lin et al. [68]
reported a stronger resistance of A. adenophora to Aphis gossypii feeding. The methanol
extract of A. adenophora showed good toxicity to radish aphids, and also had a certain
inhibitory effect on the growth and development of Mythimna separata. The acetone extract
of A. adenophora had a toxic effect against cabbage aphids and Brevicoryne brassicae [69].
Similar results were observed by Wang [70] on Aphis gossypii.

Furthermore, anti-cancer/tumor properties of A. adenophora were reported in recent
studies. For example, a study by André et al. [71] reported that euptox A isolated from
A. adenophora showed a strong potential against cancer by acting on cancer targeted cellular
characteristics. Similarly, Liao et al. [72] also studied the antitumor activity of euptox A
isolated from A. adenophora in vitro against three cell lines, using the 4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results showed that euptox A had
significant antitumor activity against the three tumor cell lines in vitro in a dose-dependent
manner. Euptox A percentage inhibition on the human lung cancer A549 cells, Hela
cells, and Hep-2 cells were 76.42%, 68.30% and 79.05%, respectively, at a concentration
500 µg/mL, whereas the 50% inhibitory concentration (IC50) of euptox A for the three
tumor cell lines were 369 µg/mL, 401 µg/mL and 427 µg/mL (A549, Hela and Hep-2 cells,
respectively). Another study by Chen et al. [73] reported that essential oil from A. adenophora
promoted HCC (hepatocellular carcinoma) apoptosis by activating the mitochondria and
endoplasmic reticulum apoptotic signaling pathways as well as inhibiting the action of
STAT3 (signal transducer and activator of transcription 3) and AKT (protein kinase B).

Other important pharmacological activities of A. adenophora, such as its anti-pyretic,
analgesic and wound healing abilities, were reported recently. Ringmichon and Gopalkr-
ishnan [74] reported that the aqueous extracts at doses of 300 and 400 mg/kg body weight
showed a significant decrease in pyretic temperature a few hours after treatment, which
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was similar to the standard drug (paracetamol; 150 mg/kg body weight). The methano-
lic extract of A. adenophora leaves showed significant analgesic activity as compared to
standard drugs, diclofenac sodium and pentazocine, in an acetic acid–induced writhing
test, tail immersion test, and tail-flick test models [75]. Finally, Kumar et al. [76] investi-
gated the wound healing properties of ethanolic extract of A. adenophora formulated as
a gel, using the excision and incision wound models. The results showed that the gel
could strongly heal the wound in excision with 90.98% wound contraction and 36.16%
reduction in epithelialization time, whereas in the incision model, the gel significantly
increase (37.86%) the tensile strength on the 13th day of treatment when compared to
pure gel control. In a nutshell, A. adenophora produces bioactive compounds that exhibit
pharmacological activities and therefore, could be adopted to develop potential drugs
or feed supplements to prevent or treat health complications caused by A. adenophora
toxicity. Therefore, some potential therapeutic drug candidates (plant extracts, secondary
metabolites, and bacteria) from A. adenophora and other sources that could be used to treat
or prevent the two major pathogeneses (oxidative stress and inflammation) of A. adenophora
toxicity includes the following.

5.1. Anti-Oxidant Therapeutic Candidates for A. adenophora Toxicity

Although many studies have reported on the toxic effects of A. adenophora, other
studies have also reported on the plant’s beneficial biological activities, such as its an-
tioxidant, anti-inflammation, anti-microbial, anti-obesity, anticancer and anti-tumor quali-
ties [71,75,77]. These beneficial activities induced by A. adenophora could be attributed to
the presence of bioactive compounds in this plant [22]. Oxidative stress is one of the major
pathogeneses for A. adenophora toxicity; therefore, the use of antioxidants, especially from
natural products, could help eliminate the toxic effects induced by this plant. Numerous
bioactive extracts and secondary metabolites in A. adenophora were reported to possess
antioxidant properties. For example, ethanolic extract from the leaves of A. adenophora
was reported to reduce the generation of hydroxyl radicals [22]. Furthermore, the quinic
acid derivative, including 5-O-trans-o-coumaroylquinic acid methyl ester, chlorogenic
acid methyl ester, macranthoin F and macranthoin G isolated from the leaves of the plant,
showed antioxidant activity against DPPH (1, 1-diphenyl-2-picrylhydrazyl) radical [78].
Another study that used 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging proto-
col and the ferric reducing ability assay (FRAP) reported that essential oils and cadences
extracted from the leaves of A. adenophora showed antioxidant activity similar to the test
standards [12]. In addition, oil extracts from A. adenophora showed antioxidant activity, with
IC50 values of 8.3 and 4.2 µL, after being tested using the DPPH and β-carotene bleaching
methods, respectively [22]. Lastly, methanolic extracts from A. adenophora showed signif-
icant DPPH activity as compared to the standard butylated hydroxyl toluene (IC50 for
A. adenophora was 92.791, whereas that for butylated hydroxyl toluene was 68.043) [79].
Therefore, harnessing these extracts and secondary metabolites into antioxidant drugs
or feed supplements to reduce the ROS damages induced by A. adenophora and other
toxins could play an important role in reducing the toxicity of this plant as well utilizing
the plant’s resources for the benefit of mankind. However, even though various studies
have reported the antioxidant properties of some extracts and secondary metabolites from
A. adenophora, there is still the need for effective clinical studies and monitoring to ascertain
the safest dose concentration and periods for administration before drug development.
Other potential antioxidant agents that could be adopted to reduce the oxidative stress
mediated toxicity induced by A. adenophora are shown in Table 1.
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Table 1. Potential antioxidant and anti-inflammatory agents for treatment of A. adenophora–induced toxicity.

Antioxidant Agents Animal Model Dosage Activities Reference

1 Quercetin and vitamin E
combination Chicken

0.4 g/kg and 0.2 g/kg
respectively for

10 weeks

Reduce ROS
Increase total antioxidant

capacity (T-AOC)
Reduce pro-inflammation

cytokines

[80]

2 Resveratrol Mice 40 mg/kg for
6 months

Reduce ROS
Reduce pro-inflammation

cytokines
[81]

3 Lycopene Rat 10 and 20 mg/kg for
30 days

Reduce ROS
Reduce pro-inflammation

cytokines (IL-6, IL-1β, TNF-α)
[82]

4 Glycine Nano-selenium Rats 0.05 and 0.1 mg/kg for
30 days Decrease the MDA levels [83]

5 Alfalfa saponins IEC-6 cells 75, 100, 150, 200 and
300 µmol/L for 24 h

Elevate the amount of T-AOC in
cells [84]

6 Malus doumeri leaf
flavonoids

human
embryonic

kidney 293 T
cells

160 µg/mL for 48 h

Increase the levels of catalase
(CAT), superoxide dismutase

(SOD), glutathione (GSH), and
glutathione peroxidase

(GSH-Px) and reduce the level
of malondialdehyde (MDA)

[85]

7 Oregano essential oil RAW264.7
Cells 2.5–10 µg/mL for 24 h

Inhibited the mRNA expression
of IL-1β, IL-6, and TNF-α in the

RAW264.7 cells
[86]

8 Ergosterol
16 HBE cells
and Balb/c

mice

5, 10 and 20 µM for 24
h and 40 mg/kg for

21 days

Decrease the expression of
interleukin-6 (IL-6), tumor
necrosis factor α (TNF-α),

[87]

9 Ginger
Pulmonary TB

patients
(human)

3 g of ginger extract
daily for 1 month

Reduced the levels of tumor
necrosis factor (TNF) alpha [88]

10 Selenium Chicken 1 mg/kg for 12 weeks

Reduced the levels of
inflammation-related factors

(Nuclear factor-kappa B, tumor
necrosis factor-α,

cyclooxygenase-2, NLRP3,
apoptosis-associated speck-like

protein containing a caspase
recruitment domain, caspase-1,
interleukin (IL)-1β, IL-6, IL-18

and interferon-γ)

[89]

11

Probiotics
(Lactobacillus acidophilus,

Lactobacillus casei,
Lactococcus lactis,

Lactobacillus reuteri, and
Saccharomyces boulardii)

Human colon
epithelial

HT-29 cells
108 CFU/mL for 18 h

Reduce IL-1β, IL-6, TNF-α, and
increase IL-10 production

Increased % of DPPH
scavenging activity

[90]

5.2. Anti-Inflammatory Therapeutic Candidates for A. adenophora Toxicity

As already established, inflammation remains one of the main pathogeneses of
A. adenophora toxicity in cells. Therefore, the adoption and use of anti-inflammatory prod-
ucts to treat the toxicity of A. adenophora and its derivatives is a promising strategy for re-
ducing the health complications or death in animals who have ingested this plant. The anti-
inflammatory activity of extracts and secondary metabolites of A. adenophora were reported
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in various studies. For example, the ethanolic leaf extract of A. adenophora showed anti-
inflammatory activity via the inhibition of IL1β and cyclooxygenase 2 (COX-2) genes [22].
In addition, a study reported that the intravenous administration of the leaf extract of
A. adenophora increased the number of CD4+ T cells in the spleen, induced TGFβ encoding
(a cytokine involved in tissue repair mechanism), and inhibited the expression of IL1β and
COX-2 genes responsible for the metabolism of inflammatory mediators [91,92]. Further-
more, ethanolic extracts from the leaves of A. adenophora showed an anti-inflammatory
role via the inhibition of hydroxyl radical generation [22,91]. In addition, the ethanolic
leaf extract of A. adenophora was reported to suppress efficiently the inflammatory reac-
tion set in foot paw induced by injecting dinitrofluorobenzene (DNFB) [92]. Therefore,
the effective development of anti-inflammation drugs from these extracts and secondary
metabolites could be a novel clinical strategy to mitigate the toxic effects of A. adenophora
exposure. However, safe doses and administration periods require thorough research. In
addition to extracts and secondary metabolites extracted from A. adenophora that have anti-
inflammatory properties, other natural products that have demonstrated anti-inflammatory
activities are shown in Table 1.

5.3. Degrading Microbes and Probiotics Therapeutic Candidates for A. adenophora Toxicity

Micro-organisms are indispensable to the nutrition and wellbeing of the host, in-
cluding humans and animals [93]. Some of these microorganisms have been reported to
degrade various toxic compounds in food, soil and the environment. For example, some
strains of Pseudomonas, Acinetobacter, Mycobacterium, Haemophilus, Rhodococcus, Paenibacil-
lus, and Ralstonia were reported to encompass the metabolic pathways required for the
degradation of many hydrocarbons and mycotoxins [94–96]. Similarly, some bacteria were
also identified to be able to degrade some major toxins of A. adenophora. Stenotrophmonas
spp isolated from A. adenophora could degrade euptox A, thus making A. adenophora safe
to feed livestock [72]. Furthermore, a more recent study reported that tannase-producing
rumen bacteria, Klebsiella variicola strain PLP G-17 LC, Klebsiella variicola strain PLP S-18
and Klebsiella pneumonia strain PLP G-17 SC could also degrade euptox A. These findings
suggest that using the above microbial strains as microbial feed supplements could enhance
the utilization of A. adenophora to alleviate the toxicity caused by euptox A (A. adenophora).
Therefore, there is a need for further studies to isolate more such beneficial bacteria to
help degrade the other main toxins (such as 2-deoxo-2-(acetyloxy)-9-oxo-ageraphorone
and 9-oxo-agerophorone) in the plant. These bacteria and fungi could be developed into
probiotics or other feed supplements that would be administered to animals that are highly
exposed to A. adenophora and other noxious plants to prevent or reduce their toxicity.
However, to achieve this, there is the need to investigate the efficacy and safety of these
microbial strains through standardized experimental animal feeding trials.

Another promising therapeutic intervention for the treatment of toxicity caused by
A. adenophora that has not been tested yet is the administration of probiotics. Probiotics
have been reported to improve the antioxidant status and reduce inflammation in most
animal species [97,98]. Additionally, numerous studies have reported the protective ef-
fect of probiotics in oxidative stress and inflammation induced by various toxins. For
example, Lactobacillus spp was reported to reduce oxidative stress induced by deoxyni-
valenol (DON) via reducing the production of ROS in broiler chicken [99]. In addition,
Lactobacillus salivarius BP121 was reported to decrease the inflammation and oxidative
stress in cisplatin-induced acute kidney injury in rats [100]. Therefore, there is the need
for advanced studies on the effects of various types of probiotic strains on the toxicity
induced by A. adenophora to effectively understand the molecular bases for the treatment of
A. adenophora–induced toxicity by probiotics.

6. Discussion and Future Prospects

Over the past years, conscious efforts have been put in place to reduce the growth and
spread of A. adenophora. Various weed control strategies have been established to control
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the spread of this plant to reduce its toxic effects on the environment; however, due to the
plant’s growth patterns and invasive nature, all these efforts have not yielded good results
so far [4]. In addition, lacking in strategies for the plants’ elimination, scientists have only
focused on the development of strategies to reduce the spread and distribution of this plant
and the plants toxicity, without giving much attention to the therapeutics after ingestion of
this plant.

Plants and plant products are used to treat numerous diseases, as they continue to
serve as a potent source of new medicinal candidates, and for the treatment of emerging
diseases. For example, a study by Fernández et al. [101] reported that flavonoids could pro-
vide a dual effect for the combination treatment, potentiating the antitumor effect of 5-FU,
and concurrently, avert important side effects of 5-FU chemotherapy. In addition, another
study reported that administration of phytocannabinoids isolated from Cannabis sativa
improves the health and function of the gastrointestinal tract [102]. Freitas et al. [103] also
reported that Spirulina platensis is a safe natural analgesic that displays great therapeutic
activity in inflammatory pain disorders. Therefore, this review revealed extensive research
on some extracts and secondary metabolites extracted from A. adenophora and other sources
that could be used for the treatment of toxicity induced by A. adenophora through intensive
investigations and clinical trials. Furthermore, a major section of this review highlighted
the antioxidant and anti-inflammatory properties of the extracts, secondary metabolites
and other agents that could counter the oxidative stress and inflammation-mediated toxic
effects induced by A. adenophora exposure. In addition, this paper revealed some ben-
eficial bacteria that were reported to degrade some major toxic molecules released by
A. adenophora, and suggested the adoption of probiotics in treating A. adenophora toxicity as
a promising therapeutic strategy since numerous probiotic strains have been reported to
have antioxidant and anti-inflammatory properties [97]. In summary, this review seeks to
bring awareness to the scientific community on the potential utilization of A. adenophora
plant resources (extracts, secondary metabolites and endophytes) and other promising
agents as useful products (such as dietary supplements or drug candidates) to prevent or
treat the toxic effects associated with A. adenophora and other toxic plant intoxication. This
field remains wide open for exploration of natural product formulations and genetic manip-
ulations that can not only offer protection against A. adenophora–mediated toxicity, but also
can serve as a therapeutic measure to reverse the toxic effects induced by A. adenophora.
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