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Abstract: Depression is characterized by impairments in adult neurogenesis. Reduced hippocampal
function, which is suggestive of neurogenesis impairments, is associated with depression-related
phenotypes. As adult neurogenesis operates in an activity-dependent manner, disruption of hip-
pocampal neurogenesis in depression may be a consequence of neural circuitry impairments. In
particular, the entorhinal cortex is known to have a regulatory effect on the neural circuitry related
to hippocampal function and adult neurogenesis. However, a comprehensive understanding of
how disruption of the neural circuitry can lead to neurogenesis impairments in depression remains
unclear with respect to the regulatory role of the entorhinal cortex. This review highlights recent
findings suggesting neural circuitry-regulated neurogenesis, with a focus on the potential role of
the entorhinal cortex in hippocampal neurogenesis in depression-related cognitive and emotional
phenotypes. Taken together, these findings may provide a better understanding of the entorhinal
cortex-regulated hippocampal neurogenesis model of depression.

Keywords: depression; entorhinal cortex; hippocampus; cognition; emotion; neural circuitry;
neurogenesis

1. Introduction

Globally, depression is one of the leading causes of disability [1]. The worldwide
prevalence of depression is estimated to be up to 4.5%, and the total number of patients
with depression has been reported to have increased by approximately 20% between 2005
and 2015 [2]. The prevalence of depression has remained stationary for several years,
with high relapse and low remission rates [3–6]. Challenges in the psychiatric field have
generated an emphasis on more personalized therapeutics based on endophenotype and
biological markers and not just categorized diagnosis systems [7–10]. Inevitably, the
current consequences of depression therapeutics demand a more comprehensive model
of depression pathogenesis to allow for theoretical concepts that target partially remitted
or refractory depression. For years, there have been requirements to refine the concepts
of neural circuitry and neurogenesis, which are regarded as clinically targetable [11–14].
Indeed, brain networks and neural stem cell niches are known to have a major impact on
depression-related phenotypes. The concepts of neural circuitry and neurogenesis may
be more developed through an understanding of depression pathogenesis in terms of a
comprehensive model concurrently implicating brain networks and stem cell niches. Thus,
neural circuitry-regulated hippocampal neurogenesis may be a novel idea to improve our
understanding of the pathogenesis of depression.

Defective hippocampal neurogenesis is a hallmark of depression. Ample evidence
emphasizes a varying spectrum of neuropathology, from defects in hippocampal activity
and volumes to alterations in activity-dependent gene expression, all of which suggest
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defective neurogenesis in the hippocampal dentate gyrus [15–17]. Given that hippocampal
neurogenesis operates based on neural circuitry-mediated regulation [13,14,18–20], there
have been tentative efforts to stimulate the upstream neural circuitry to enhance hippocam-
pal neurogenesis in depression models. Interestingly, deep brain stimulation in animal
depression models showed that entorhinal cortex stimulation improves cognitive perfor-
mance via hippocampal neurogenesis, resulting in improvement in pattern separation and
memory [21–23]. These findings may broaden the concept of entorhinal cortex-dependent
hippocampal neurogenesis, which is also supported by a similar report on memory en-
hancement in human subjects [24]. Furthermore, recent ground-breaking studies using
advanced approaches, which include chemogenetics, optogenetics, and molecular tech-
niques, have also supported the role of the entorhinal–hippocampal circuitry and adult
neurogenesis in the regulation of hippocampus-related cognition and emotion. For exam-
ple, accurate stimulation of the glutamatergic afferent nerves from the entorhinal cortex was
reported to result in the improvement in depression-related phenotypes in animal models
of stress, which may be due to an enhanced hippocampal neurogenesis [25]. Accordingly,
the entorhinal cortex-involved neural circuitry implicates hippocampal neurogenesis in
cognition and emotion, both of which are frequently disrupted in depression. Therefore, the
entorhinal cortex and hippocampal neurogenesis can be collectively exploited as a model
to study neural circuitry and neurogenesis in depression. This review focuses on recent re-
ports that support the biological association between the entorhinal–hippocampal circuitry
and adult neurogenesis in the regulation of depression-related cognition and mood. Lastly,
we suggest future directions for the entorhinal circuitry–hippocampal neurogenesis model
of depression.

2. Entorhinal Cortex Involved in Regulation of Adult Neurogenesis

Our hypothetical concept of the entorhinal cortex-regulated hippocampal neurogene-
sis model of depression is based on both the neurobiological knowledge of adult neurogen-
esis and results of recent studies that not only demonstrate adult neurogenesis but also
recapitulate the influence of neural circuitry and neurogenesis on depression-related phe-
notypes. We explored the neurobiological phenomenon of the co-operative engagement of
the entorhinal cortex and hippocampus in adult neurogenesis [26–29], emphasizing a long-
distance brain network in the modulation of neural stem cell niches in the hippocampus.
Adult neurogenesis can modify the strength and number of synaptic innervations, which
are regulated by dynamic mechanisms that provide synaptic stimulation in an activity-
dependent manner to the neural stem cell niches in the hippocampus [19,20,30]. The
entorhinal cortex is one of the major sources of excitatory input to the dentate gyrus of the
hippocampus, which functions as a niche for the generation, maturation, and incorporation
of granule cells that become part of the hippocampal circuitry. Stimulation of glutamatergic
innervations in the hippocampus takes step-wise sequences in the regulation of adult hip-
pocampal neurogenesis [31]. Early studies using patch-clamp electrical recordings showed
that synaptic connectivity between entorhinal glutamatergic projections and granule cells
develops at a neuronal age of 2 to 3 weeks after glutamatergic stimulation of the granule
cells by the entorhinal cortex [32]. This is also consistent with another study that used a
trans-synaptic tracing method [33]. Interestingly, the entorhinal cortex starts to develop
glutamatergic innervations to adult-born neurons when the adult-born neurons reach 21–28
days of maturation [33]. This critical period indicates that the entorhinal cortex is involved
in the regulation of adult hippocampal neurogenesis during the maturation phase. This is
in line with a study that demonstrated this critical period, during which the stimulation
of glutamatergic paths connecting the entorhinal cortex to the dentate gyrus facilitates an
increase in the long-term potentiation of adult-born neurons [34,35]. From 28 to 42 days
after birth, neurons are characterized by both a higher long-term potentiation amplitude
and a lower threshold in response to physiological levels of stimulation. Although there
are indirect modulations by which a non-cell-autonomous mechanism regulates the neural
circuitry, these are beyond the scope of this review. Taken together, the entorhinal cortex
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regulates adult hippocampal neurogenesis in an activity-dependent manner (Figure 1).
Therefore, the concept of entorhinal–hippocampal neural circuitry and adult neurogenesis
is plausible. Considering this concept, we explored the question of whether the entorhi-
nal hippocampal circuitry-neurogenesis model explains the pathogenesis of depression
as previous studies have demonstrated that defective hippocampal neurogenesis is the
hallmark of depression [36–38]. To corroborate this concept, we review up-to-date findings
with an emphasis on entorhinal cortex-regulated hippocampal adult neurogenesis and
depression-related phenotypes, including cognition and emotion.

Figure 1. Hypothetical concept of the role of entorhinal cortex-regulated hippocampal neurogenesis in
the manifestation of depression-related symptoms. The glutamatergic stimulation from the entorhinal
cortex to the dentate gyrus of the hippocampus is illustrated. The glutamatergic stimulation regulates
the maturation process of the dentate granule cells during hippocampal neurogenesis, which in turn
affects cognition and emotion.

3. Entorhinal Cortex-Regulated Hippocampal Neurogenesis for Cognitive Performance

Episodic memory deterioration is a key cognitive phenotype in depression [39–46].
Episodic memory damage is associated with volumetric reductions not only in the hip-
pocampus [47–50], but also in the entorhinal cortex [51], suggesting that cognitive deteri-
oration in depression may originate from neural pathogenesis involving the entorhinal
cortex and hippocampus. In particular, mounting evidence indicates that defective hip-
pocampal neurogenesis results in deteriorated episodic memory in depression [52–55]. One
hypothesis is that loss of adult neurogenesis due to chronic stress may impair cognitive
flexibility and pattern separation mediated by dentate gyrus contributing to symptoms
of depression [14]. Nevertheless, the neurobiological mechanism by which the upstream
neural circuitry affects episodic memory via hippocampal neurogenesis should be fur-
ther explored.

The entorhinal cortex-hippocampal neural circuitry is regarded as the memory center
of the mammalian brain and is mainly involved in the regulation of episodic memory,
including object, spatial, and temporal information [56–61]. In humans, a recent study
demonstrated that stimulation of entorhinal cortex facilitates improvements in memory-
and learning-related processes. Deep brain stimulation of the entorhinal cortex leads to
enhancements in spatial memory [24]. In a navigation task, human subjects receiving
entorhinal stimulation reached a destination more quickly than controls without entorhinal
stimulation. Entorhinal stimulation is accompanied by hippocampal theta rhythm resetting,
which enables optimal induction of long-term potentiation, leading to fine coding of spatial
information in the hippocampus [62]. In contrast, direct deep brain stimulation of the
hippocampus does not change hippocampus-dependent memory performance [24,63],
thereby underscoring the importance of targeting the upstream neural circuitry, and not
just the hippocampus.

In addition, studies in mice have shown that deep brain stimulation of the entorhi-
nal cortex enhances spatial memory and learning, which are accompanied by improved
neurogenesis in the dentate gyrus (Figure 2a). In particular, Stone et al. demonstrated that
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high-frequency deep brain stimulation of the entorhinal cortex galvanizes neural stem cell
niches to initiate consecutive neurogenesis processes, including dentate gyrus proliferation,
immature progeny cell differentiation into adult-born neurons, survival of adult-born
neurons for several (>5) weeks, and neuronal maturation into dentate granule cells [21]. Of
note, the dentate granule cells are ultimately, but in a delayed fashion, incorporated into the
existing hippocampal circuitry only after stimulation of the entorhinal cortex. Congruently,
in the Morris navigation task, the spatial memory dependent upon the hippocampal cir-
cuitry is molded 6 weeks rather than 1 week after stimulation of the entorhinal cortex. This
delayed effect of entorhinal stimulation is congruent with the maturation-dependent inte-
gration of adult-born dentate granule cells into the existing hippocampal circuitry, thereby
leading to the modulation of spatial memory [64,65]. Researchers have also emphasized a
causal relationship between entorhinal cortex-dependent hippocampal neurogenesis and
spatial memory modulations by hindering neurogenesis and evaluating whether the spatial
memory is improved. Other studies have also adopted a similar approach to understand
the influence of entorhinal cortex stimulation on hippocampal neurogenesis and spatial
memory [22,24].

Figure 2. Cont.
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Figure 2. Supportive findings for entorhinal cortex-regulated hippocampal neurogenesis for cognition and emotion.
(a), Entorhinal cortex-regulated hippocampal neurogenesis for memory function. Deep brain stimulation of the entorhinal
cortex leads to increased neurogenesis, which presents as reduced time to escape in the water navigation maze task. (b),
Entorhinal cortex-regulated hippocampal neurogenesis for pattern separation. Chemogenetic stimulation of the entorhinal
cortex leads to enhanced neurogenesis in Trip8b-knockdown mice, which presents as improved discrimination between
similar contexts in a fear conditioning task. (c), Entorhinal cortex-regulated hippocampal neurogenesis for emotion
regulation. Chemogenetic stimulation of entorhinal cortex leads to improved neurogenesis in Trip8b-knockdown mice,
which presents as an immediate response to a given food in the novelty-suppressed feeding task.

In addition to deep brain stimulation, a preclinical study employed optogenetics
to access the detailed mechanisms of memory regulated by the entorhinal–hippocampal
circuitry. Robinson et al. addressed the question of whether the entorhinal–hippocampal
circuitry modulates temporal memory, which is coded in the principal cells of the hippocam-
pal CA1, also known as time cells [66]. They explored whether optogenetic inactivation of
the medial entorhinal cortex leads to disturbances in hippocampal CA1 temporal coding,
and thus time memory. The medial entorhinal cortex renders a major innervation to the
hippocampus for regulating time as well as space information, while the lateral entorhinal
cortex is involved in object information [67–71]. They applied bilateral optic fibers for
light-induced inactivation of the medial entorhinal cortex while simultaneously recording
from the hippocampal CA1 regions in rats injected with an adeno-associated viral vector
in the medial entorhinal cortex. In a sequential object-treadmill-maze behavioral task,
they assessed the influence of medial entorhinal inactivation on the hippocampal CA1
encoding activity for object, time, and space information in series. The rats were exposed
to an object for an instant and then sent to a treadmill to run after a delay, followed by a
second exposure to the object. Hence, temporal memory was assessed during the treadmill
phase in a space-fixed setting. Notably, the inactivation of the medial entorhinal cortex
triggered disturbance only in the CA1 time-encoding activity, but not in the object- and
space-encoding activities. This result points to a distinctive mechanism of the entorhinal
cortex-regulated hippocampal circuitry by which temporal experiences are integrated into
episodic memory. Collectively, recent preclinical studies suggest that innervation from the
entorhinal cortex is essential for hippocampus-dependent episodic memory. Nevertheless,
the neural circuitry mechanism giving rise to memory dysregulation in depression is still in
its infancy; thus, more studies using animal models of stress and biomolecular approaches
are necessary to examine memory deficits in depression models based on the entorhinal
cortex-regulated hippocampal neurogenesis.

Pattern separation defects are another hallmark of cognitive dysfunction in depres-
sion. The ability to distinguish between similar contexts is reliant on hippocampal neu-
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rogenesis [72–76]. Pattern separation defects are also regarded as biological markers of
hippocampal neurogenesis disruption in depression [77,78]. Recent chemogenetic studies
and neurogenesis ablation approaches collectively indicate the impact of neurogenesis
defects on pattern separation deficits. Studies using functional brain imaging in com-
bination with behavioral tasks further suggest that the entorhinal cortex is involved in
pattern separation, which is also evidenced by neurobiological knowledge that the entorhi-
nal cortex mediates communication between the hippocampus and neocortex to convey
multiple cortical sensory and spatial information before sending it to the dentate gyrus,
where existing and incoming contextual information of similar subjects are discerned using
flexible encoding of varying activity patterns for different contexts [75,79]. Nevertheless,
few studies have directly explored the relationship between entorhinal cortex-regulated
hippocampal neurogenesis and pattern separation. Here, we review recent studies that
investigated the imaging correlates of the entorhinal cortex for pattern separation, the effect
of neurogenesis defects on pattern separation, and a recent chemogenetic method to clarify
the causative relationship between entorhinal cortex-regulated hippocampal neurogenesis
and pattern separation.

Functional brain imaging supports the idea that the entorhinal cortex is involved in
the upstream neural circuitry of neurogenesis to drive pattern separation. Earlier studies
using older human subjects examined the relationship between entorhinal circuitry de-
fects and cognitive deficits, given that volumetric reductions in the medial temporal lobe,
including the entorhinal cortex, have been reported to provoke cognitive deficits in both
depression [80] and aging [81,82]. A recent study using high-resolution functional magnetic
resonance imaging (fMRI) examined whether defects in the entorhinal cortex-regulated hip-
pocampal neurogenesis result in defective pattern separation by gauging the functionalities
of the entorhinal cortex, as well as the dentate gyrus and CA3 in the hippocampus [83]. In
a context discrimination task, subjects with functional dissociation between the entorhinal
cortex and hippocampus scarcely discriminated between similar objects, while their spatial
discrimination remained undamaged. Specifically, the subjects demonstrated functional
hypoactivity in the entorhinal cortex and, contrastingly, hyperactivity in the dentate gyrus
and CA3, indicating that between-region functional activity imbalances may be associated
with deficits in object discrimination. This is also in line with the neurophysiology that
the lateral and medial entorhinal cortex are engaged in object and spatial discrimination,
respectively [84]. This is further corroborated by a recent study that utilized rodents to
show that the activities of lateral entorhinal neurons are directly associated with hippocam-
pal CA3 activities, even though the human fMRI study provides indirect estimates of the
neuronal activities from blood-oxygen level-dependent (BOLD) measurement [85]. An-
other fMRI study demonstrated that the entorhinal cortex may regulate pattern separation
in older adults with or without a diagnosis of depression. They examined the activities
of the amygdala, hippocampus, and lateral entorhinal cortex [86]. The patients with de-
pression showed hypoactivity in the amygdala and hyperactivity in the entorhinal cortex
and hippocampus during the object recognition task, wherein they exhibited deficits in
discriminating between similar objects. The authors suggested that the entorhinal cortex
may be engaged in the emotional modulation of pattern separation and that there may
be an upstream circuitry, which includes the amygdala and entorhinal cortex, to control
the hippocampus. Collectively, despite the fMRI experiments using older individuals just
indicating the functional equivalents of pattern separation, the findings potentially provide
evidence that the entorhinal cortex may be engaged in the hippocampal circuitry regulating
pattern separation. Hence, further studies with different approaches are required to directly
clarify the relationship between the entorhinal cortex-regulated hippocampal neurogenesis
and pattern separation, and to carefully address whether hippocampal neurogenesis is a
key mediator between neural circuitry and cognitive function.

Among the earliest studies exploring the impact of neurogenesis defects on pattern
separation, X-ray irradiation of the hippocampus or synaptic plasticity disruption in
dentate granule cells was mainly utilized to recapitulate neural stem cell niche defects
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to inspect impairment in the discrimination of a similar, safe context from a foot-shock
context [78,87–90]. Specifically, Clelland et al. applied X-ray irradiation to the hippocam-
pus to create a neurogenesis-ablated mouse model and scrutinized pattern separation
defects by using both spatial discrimination and maze tasks [76]. The neurogenesis-ablated
mice showed a diminished ability to detect subtle differences between similar contexts
in both tasks. This is consistent with other studies in which neurogenesis-ablated mice
exhibited impaired pattern separation in contextual fear conditioning tasks [78,90]. The
neurogenesis-ablated mice presented similar freezing between a similar no-shock con-
text and a shock-associated context, compared to controls that discriminate between the
two contexts. These findings suggest that enhancing neurogenesis can improve pattern
separation. Accordingly, Sahay et al. developed transgenic mice to selectively enhance
adult neurogenesis [78]. In a fear conditioning task, transgenic mice with integrated adult-
born neurons in the hippocampal dentate gyrus demonstrated significantly improved
performance in the discrimination between similar contexts. Taken together, hippocampal
neurogenesis ablation and genetic modification of neurogenesis approaches suggest that
pattern separation is dependent upon hippocampal neurogenesis. Nonetheless, how the
upper hippocampal circuitry regulates pattern separation remains poorly understood.

Recently, Yun et al. used a chemogenetic approach to generate transgenic mice with en-
torhinal cortex-targeted knockdown of a stress-provoked protein using an adeno-associated
virus-mediated transfer gene (Figure 2b) [25]. Among the diverse stress-provoked proteins,
they specifically studied Trip8b, whose knockdown excites hippocampal neurons, thereby
enabling neurogenesis in the dentate gyrus. In the knockdown mice, entorhinal glutamater-
gic stimulation resulted in hippocampal neurogenesis, such as dendritic maturation of
adult-born neurons by augmenting the inherent excitability of stellate cells in the entorhinal
cortex. A contextual fear conditioning task was then implemented to inspect the pattern
separation ability of the knockdown mice to distinguish a foot shock-related context from a
similar context. The knockdown mice (Trip8b-shRNA) showed 50% more freezing behavior
in the foot shock-related context than the control mice (SCR-shRNA), thereby demonstrat-
ing the improvement in pattern separation following entorhinal glutamatergic stimulation.
In addition, X-ray irradiation of the dentate gyrus, leading to ablated neurogenesis, sig-
nificantly diminished the effect elicited by entorhinal-targeted Trip8b knockdown. Taken
together, the innovative work using a chemogenetic approach suggests that entorhinal
cortex-regulated hippocampal neurogenesis regulates pattern separation. Nevertheless, the
entorhinal–hippocampal circuitry-regulated neurogenesis mechanism underlying pattern
separation still remains unclear; therefore, further preclinical research using brain stimula-
tion and optogenetic or chemogenetic approaches to explain the entorhinal–hippocampal
circuitry mechanism regulating pattern separation is required.

4. Entorhinal Cortex-Regulated Hippocampal Neurogenesis for Emotional Regulation

Hippocampal neurogenesis is associated with the inherent depression pathophys-
iology as well as the response to antidepressants [91,92]. Hippocampal neurogenesis
defects are related to depression-related symptoms, such as hopelessness and helpless-
ness [13,14,93,94]. Research indicates that defective neurogenesis alters a spectrum of phys-
iological processes, including inflammation [95,96], the hypothalamic–pituitary–adrenal
axis [97], and neurotrophic factors [98,99], which are all crucial to depression or stress
responses. In addition, impaired neurogenesis lowers the effects of antidepressants, thus
hindering recovery from depression [100]. Accordingly, increasing hippocampal neuro-
genesis is challenging, for which stimulation approaches have been applied to provoke
behavioral effects in animal models of stress. In such approaches, the hippocampus is
exposed to deep brain stimulation to enhance neurogenesis, which, however, does not alter
hippocampus-dependent cognitive functions such as memory [24,63]. Rather, components
of the upstream hippocampal circuitry, such as the entorhinal cortex, is a more suitable tar-
get for brain stimulation in improving depression-related symptoms, as research suggests
that deep brain stimulation of the entorhinal cortex improves hippocampus-dependent
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memory [24,63]. Thus, the upstream hippocampal circuitry, including the entorhinal cortex,
regulates neurogenesis and ameliorates depressive symptoms. Recently, a pioneering
work revealed some clues regarding the relationship between entorhinal cortex-regulated
hippocampal neurogenesis and depression-related phenotypes in animal models [25].

Currently, there are no available studies that have used superficial or deep brain stimu-
lation aimed at the entorhinal cortex to link hippocampal neurogenesis and anti-depressive
effects. Most studies have focused on other brain regions, including the prefrontal cor-
tex [101–114], cingulate cortex [115–122], nucleus accumbens [123–128], thalamus [129–133],
and striatum [134–138], to delineate defective neural circuitries that majorly contribute
to the current depression circuitopathy [139]. Furthering the perspective of hippocampal
neurogenesis can complement the depression circuitopathy by elucidating the influence of
neural circuitry on neurogenesis and the relationship between neural circuitry-regulated
neurogenesis and anti-depressive behaviors.

Molecular approaches, such as chemogenetic and optogenetic stimulation in combi-
nation with behavioral tasks may be an ideal option to unravel the relationship between
entorhinal cortex-regulated hippocampal neurogenesis and anti-depressive behaviors. Yun
et al. showed that chemogenetic stimulation of the entorhinal cortex ameliorates depression-
related phenotypes in animal models of stress (Figure 2c) [25]. The authors designed an
experiment to modulate hippocampal neuronal activity to increase neurogenesis by induc-
ing maturation of dendritic morphology, and these hippocampal changes may result in
anti-depressive behaviors. They used Trip8b, a specific stress-provoked protein that alters
hippocampal neuron activity. Indeed, Trip8b-knockout mice demonstrated higher hip-
pocampal neuronal firing frequency and increased neurogenesis with neuronal maturation
than those in controls, mainly in the temporal dentate gyrus, which is known as a hip-
pocampal region responsible for emotional processing and stress valance [140,141]. These
results suggest that entorhinal cortex-targeted Trip8b knockdown facilitates hippocampal
neurogenesis in an activity-dependent process that is regulated by the entorhinal cortex
innervations to the dentate gyrus. To assess the behavioral effects of Trip8b knockdown
mice, novelty-suppressed feeding and forced swimming tests were conducted in varying
stress induction states, including basal state, acute stress state, and chronic stress state with
varying exposures to corticosterone [142,143]. Under the different stress induction states,
entorhinal cortex-targeted Trip8b knockdown facilitated anti-depressive behaviors that are
shown both by an immediate response to feeding in the feeding test and increased mobility
in the forced swimming test. The entorhinal cortex-regulated hippocampal neurogenesis
was further investigated using a chemogenetic approach to examine whether glutamatergic
or non-glutamatergic neuronal afferents are responsible for the anti-depressive effects. Yun
et al. manufactured Gq-coupled human M3 muscarinic receptor-implanted mice that exhib-
ited glutamatergic neurotransmission and mCherry-implanted mice that served as controls.
They then showed the exclusive expression of CamKIIα-iCre-driven mCherry [144] in the
entorhinal cortex and hippocampal dentate gyrus, demonstrating the accurate targeting of
the entorhinal cortex-hippocampal dentate gyrus circuitry in both mouse models. They
also showed more abundant c-Fos+ cells in the entorhinal cortex and hippocampal dentate
gyrus in the M3 muscarinic receptor-implanted mouse than in the mCherry-implanted
control mouse, indicating the enhanced glutamatergic neuronal activity elicited by designer
ligand infusion of clozapine-N-oxide. Interestingly, chronic chemogenetic stimulation of
entorhinal glutamatergic innervations to the dentate gyrus leads to anti-depressive behav-
ior under basal and stress states. In the novelty-suppressed feeding test, the M3 muscarinic
receptor-implanted mouse exhibited a 50% faster response to feeding than the mCherry-
implanted mouse after an extended period (5 weeks), rather than a short period (3 weeks),
of clozapine-N-oxide administration. In addition, the M3 muscarinic receptor-implanted
mice spent more time interacting with a social target than the mCherry-implanted mice
after exposure to chronic social defeat [145]. These results indicate that entorhinal gluta-
matergic afferents to the hippocampus modulate dentate gyrus neurogenesis, resulting in
anti-depressive behaviors in animal models of depression. Taken together, preclinical work
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using a chemogenetic stimulation approach would further develop the field of depression
circuitopathy, particularly that encompassing the entorhinal cortex and hippocampal den-
tate gyrus, which collectively contribute to the neural circuitry-regulated neurogenesis
responsible for anti-depressive behaviors.

5. Suggestions for the Neural Circuitry-Neurogenesis Model of Depression

Pioneering preclinical studies examining entorhinal cortex-regulated hippocampal
neurogenesis and cognitive and emotional symptoms of depression have led to initial
advances in the neural circuitry–neurogenesis model of depression. Gomes-Leal et al. [13]
suggested activation of reward centers for psychic well-being, for which good feelings
are mediated in reward centers, such as nucleus accumbens and tegmental ventral area.
Nevertheless, the mechanism of the depression model should be further elucidated in
two parallel directions. First, future studies are required to explain the entorhinal cortex-
regulated hippocampal neurogenesis in detail, with regard to the complex neurophysiology
between entorhinal cortex and hippocampal dentate gyrus. During neurogenesis, the en-
torhinal cortex renders the main glutamatergic innervations to the dentate gyrus, by which
progeny cells mature into granule cells that become incorporated into existing hippocampal
circuitry [27,33,146–148]. Recent evidence suggests that the entorhinal cortex also renders
GABAergic innervations to the hippocampus, which contribute to the entorhinal cortex-
regulated hippocampal inhibitory circuitry that controls post-synaptic neuronal rhythmic
theta activity in the dentate gyrus [149,150]. How excitatory and inhibitory entorhinal
innervations regulate hippocampal neurogenesis and anti-depressive behaviors remain
uncertain; therefore, further studies are required to elucidate this. Electrophysiological
changes, such as gamma rhythm oscillations, elicited by theta rhythm alterations in the
hippocampus, modify long-term potentiation in hippocampus-dependent cognition, in-
cluding memory and learning [151]. The mechanism by which electrical rhythm is altered
across the entorhinal cortex and hippocampus regulate neurogenesis and hippocampus-
dependent emotions remains elusive. Anatomically, the entorhinal cortex has medial and
lateral subdivisions that are well known to be engaged in the recognition of spatial and
object representations, respectively [84]. This is consistent with recent research showing
differential synaptic responses of the dentate gyrus to entorhinal subdivision innerva-
tions [152]. Responding to the medial entorhinal afferents, the adult-born granule cells
excite the mature granule cells via N-methyl-D-aspartate receptors to build spatial repre-
sentations. Responding to the lateral entorhinal afferents, adult-born granule cells inhibit
mature granule cells via group II metabotropic glutamate receptors to build contextual
representations. Accordingly, the question remains as to how the differential entorhinal
subdivisions are associated with hippocampus-dependent cognitive performance as well as
emotional regulation. In addition, hippocampal subdivisions related to emotional valances
remain uncertain. For instance, the temporal hippocampal subregion regulating emo-
tional processing [141] can be further examined with regard to the relationship between
entorhinal cortex stimulation and hippocampal dentate gyrus neurogenesis that lead to
anti-depressive behaviors. Therefore, the mechanism by which the entorhinal cortex is
involved in the regulation of hippocampal neurogenesis and hippocampus-dependent
cognitive and emotional functions can be further examined considering the multifarious
perspectives of anatomical, neurobiological, and electrophysiological relationships between
the entorhinal cortex and hippocampus.

Second, future studies are also required to scrutinize complex upstream hippocampal
circuitries that include diverse brain subregions related to the pathogenesis of depres-
sion, while also considering hippocampal neurogenesis. Recent evidence suggests that
various brain subregions, in addition to the entorhinal cortex, are also associated with
dentate gyrus neurogenesis, indicating that complex neural circuitries may be implicated in
hippocampus-dependent tasks as well [153,154]. For instance, high-frequency deep brain
stimulation of the ventromedial prefrontal cortex results in upregulation of neurogenesis-
associated genes and enhancement of neuronal proliferation in the hippocampus. The
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prefrontal-hippocampal circuitry is related to improved hippocampus-dependent object
discrimination [155]. Furthermore, emotional memory circuitry has also been suggested
in that basolateral amygdala activity regulates hippocampal neurogenesis, including fear
context-related recruitment and proliferation of newborn neurons [156]. Stimulation of the
anteromedial thalamus induces a 76% increase in the proliferation of progenitor cells in the
hippocampal dentate gyrus [157]. Nevertheless, inconsistent findings have shown that the
prefrontal cortex and nucleus accumbens scarcely support hippocampal neurogenesis [158].
The complex hippocampal circuitry is also regulated by multiple signaling neurotransmit-
ters, including dopamine from the ventral tegmental area, acetylcholine from the diagonal
band of Broca and septal nucleus, and serotonin from the median and dorsal raphe nu-
clei [19]. Investigations into the relationships between various neurotransmission signaling
systems and depressive-related phenotypes also remain rudimentary. Thus, thorough
research is required to delineate how the different brain subregions collectively contribute
to the neural circuitry-regulated neurogenesis that regulates hippocampus-dependent
cognitive and emotional functions.

6. Conclusions

Preclinical and clinical studies suggest that the upstream hippocampal circuitry may
link the entorhinal cortex with adult neurogenesis, which in turn suggests that the neu-
ral circuitry neurogenesis mechanism can be a tenable concept to use when considering
approaches to address defects in memory, pattern separation, and emotion, all of which
are hampered in depression. In the treatment of depression, the neural stem cell niche in
the hippocampus is considered an essential target of antidepressants, in addition to brain
stimulation approaches to facilitate maturation of dentate gyrus neurons. Considering
the link between hippocampal neurogenesis and antidepressant effects, the entorhinal–
hippocampal circuitry is not only a valid neurophysiological concept, but also a novel area
to explore in the pathogenesis of depression, with a particular emphasis on the potential
role of the entorhinal cortex in regulating hippocampal neurogenesis, inducing improve-
ments in memory, pattern separation, and anti-depressive behaviors. Therefore, entorhinal
cortex-regulated hippocampal neurogenesis is a tenable example of the neural circuitry
neurogenesis model that further expands our knowledge of depression pathogenesis re-
lated to cognitive and emotional symptoms in patients with depression, and ultimately
aids in the development of novel therapeutic approaches.
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