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Abstract: Radiotherapy promotes tumor cell death and senescence through the induction of oxidative
damage. Recent work has highlighted the importance of lipid peroxidation for radiotherapy efficacy.
Excessive lipid peroxidation can promote ferroptosis, a regulated form of cell death. In this review,
we address the evidence supporting a role of ferroptosis in response to radiotherapy and discuss the
molecular regulators that underlie this interaction. Finally, we postulate on the clinical implications
for the intersection of ferroptosis and radiotherapy.
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1. Introduction

Radiotherapy is used in the curative and palliative management of more than half of all
cancer patients [1]. Unfortunately, resistance to radiotherapy limits its therapeutic efficacy.
Radiotherapy induces multiple forms of regulated and unregulated cell death [2]. Without
an improved understanding of the molecular mechanisms behind radiotherapy induced
cell death, the design of new therapeutic strategies which augment radiotherapy efficacy
is limited. Recently, it has been found that radiotherapy generated lipid oxidation and
ferroptosis [3–5]. In this review, we will discuss the connections between lipid oxidation,
ferroptosis, and radiotherapy, as well as elaborate on the clinical implications of ferroptosis
modulators as radiosensitizers.

2. Molecular Regulators of Ferroptosis

Lipids are a critical buffer to reactive oxygen species (ROS) and exist in an equilibrium
between oxidized and reduced states. This balance is known as lipid redox homeostasis, a
process which is essential for ensuring cell survival [6]. One of the lethal outcomes of redox
imbalance is ferroptosis, a unique form of cell death induced by iron-dependent lipid perox-
idation [7]. The term “ferroptosis” was only recently described, although the phenomenon
of lipid oxidative damage has been observed for decades [8]. By the 1980s, the role of
lipid oxidation in cell stress was well-described [9,10]. It was not until more recently that
it was discovered that excessive lipid oxidation leads to cell death. However, the precise
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mechanism through which lipid oxidation causes ferroptosis is still unknown [11,12]. Lipid
peroxidation is the key driver of ferroptosis [13,14]. Specifically, oxidation of polyunsatu-
rated fatty acids (PUFA), mediated by lipoxygenases and the intracellular iron pool, which
is in turn regulated by phosphorylase kinase catalytic subunit gamma 2 (PHKG2), drives
ferroptosis [15]. Synthesis of PUFAs containing ether phospholipids provides substrates
that are then peroxidated to drive ferroptosis [16]. Acyl-coenzyme A synthetase long-chain
family member 4 (ACSL4) esterifies CoA to free fatty acids, with a preference for long
PUFAs [17]. ACSL4 inhibits redox homeostasis by allowing for accumulation of oxidized
lipids within the plasma membrane [18]. In contrast, it has been shown that introduction
of monounsaturated fatty acids inhibits ferroptosis by decreasing membrane ROS content
via acyl-CoA synthetase long-chain family member 3 (ACSL3) activity [19]. Another aspect
to consider is mitochondrial electron transport chain activity, which contributes to the
generation of endogenous lipid radicals to induce ferroptosis [20]. Thus, lipid metabolism
and biosynthesis regulate ferroptosis.

Lipid oxidation and ferroptosis are limited by multiple pathways. One critical regula-
tor is glutathione peroxidase 4 (GPX4), a mammalian glutathione peroxidase which inhibits
lipid peroxidation and contributes to redox homeostasis by catalyzing the reduction of
lipid peroxides [21–23]. In the context of B cell lymphomas and renal cell carcinomas, GPX4
regulates induction of ferroptosis. RSL-3, a pharmacological ferroptosis inducer, drives
colorectal cancer cell death via direct binding and inactivation of GPX4, resulting in loss of
redox homeostasis [22]. Other defenses include ferroptosis suppressor protein 1 (FSP1),
which functions as a coenzyme Q10 oxidoreductase and restores the antioxidant pool to
suppress ferroptosis [24]. These data highlight that multiple enzymatic pathways act in
concert to limit lipid peroxidation induced cell death. Antioxidants are required for the en-
zymatic reduction of lipids and prevention of ferroptosis. Tetrahydrobiopterin, generated
by GTP cyclohydrolase I, is a hydroxylase cofactor and antioxidant which limits ferrop-
tosis [25,26]. Cysteine, the reduced form of cystine, is the rate-limiting precursor for the
antioxidant glutathione (GSH). In the 1950s, Eagle demonstrated the importance of cystine
presence for Hela cell survival [27]. Depletion of GSH has been linked to diminished GPX4
activity and ferroptosis in cancer cells [28,29]. Cystine import is regulated by system xc

−,
a cystine-glutamine anti-transporter [11] composed of a heavy chain (Solute Light Chain,
SLC3A2) and a light chain (SLC7A11) [30]. Interestingly, tumor protein 53 (p53) increases
expression of SLC7A11, driving cystine import to restrain oxidative stress and thus prevent
ferroptotic cell death in cancer cells [31]. In murine pancreatic cancer cells, deletion of
SLC7A11 was sufficient to decrease cystine import, downregulate GSH activity, and induce
tumor ferroptosis [28]. Additionally, interferon-γ from CD8+ T cells can promote tumor
cell ferroptosis by downregulating SLC3A2 and SLC7A11, impairing tumor cystine uptake
and disrupting tumor cell redox homeostasis [32]. Other regulators of system xc

− include
nuclear factor erythroid factor 2-related factor 2 and kelch-like ECH-associated protein 1
(NRF2-KEAP1) signaling [33]. This may be exploited to treat cancer by sensitizing it to
radiotherapy [5]. Further evidence of the importance of antioxidants to ferroptosis comes
from metabolic perturbations. Use of a glutamine antagonist increased T cell-mediated
antitumor immunity in several murine cancer models [34]. However, Gao et al. showed
that glutamine supplementation induced ferroptosis in mouse embryonic fibroblasts, and
Rossler et al. demonstrated that elevated glutamate contributes to cell death in HT22
cells [35,36]. More work is needed to better define the role of glutamine on ferroptosis in
cancer. Thus, metabolic import and antioxidant biosynthetic pathways regulate ferroptosis.

Labile iron radicals can directly generate oxygen radicals via Fenton chemistry [37]
and promote lipid peroxidation directly [38]. Iron can also indirectly promote ferroptosis as
a cofactor in the enzymes which promote lipid oxidation [7]. For example, cytochrome P450
oxidoreductase depends on the cycling of iron between ferric and ferrous states to enable
lipid peroxidation [39]. Lipoxygenase enzymes, which are iron dependent and promote
lipid oxidation, also promote ferroptosis [40]. It has been shown that pharmacologic
iron chelators as well as physiologic iron chelators can inhibit ferroptosis, although the
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precise mechanism by which this occurs is not yet known [7,41]. These data underscore
the necessity of iron to induce ferroptosis. Collectively, this work highlights the multiple
modules that regulate lipid redox homeostasis (Figure 1).
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Figure 1. The impact of ferroptotic inducers and inhibitors on lipid redox homeostasis. Glutathione
synthesis is regulated by cystine import by system xc

−, which is then used by GPX4 to oppose
lipid oxidation. This process can be modulated by different ferroptosis inducers and inhibitors,
as explained here. Drugs and small molecules are indicated in rectangles, whereas proteins are
indicated with circles. Solid arrows indicate direct interactions, whereas dotted arrows indicate
correlative interactions.

3. Evidence of Lipid Oxidation and Ferroptosis Following Radiotherapy

Recent work has demonstrated a clear connection between radiotherapy, lipid redox
homeostasis, and ferroptosis. Biochemical studies show that multilamellar liposomes
treated with therapeutically relevant doses of radiotherapy undergo peroxidation as well as
lipid fragmentation, leading to the rupture of a model membrane [42]. In vitro studies have
shown that absorption of radiotherapy by water leads to the formation of oxygen radicals,
which subsequently attack PUFAs to cause lipid peroxidation [37,43]. Radiotherapy has
been shown to increase lipid oxidation in a dose-dependent manner when quantified
by ROS sensitive fluorescent dyes which localize to lipid membranes [5]. These studies
demonstrate a clear link between radiotherapy and lipid peroxidation.

The consequence of excessive lipid oxidation is ferroptosis. Lang et al. found that
radiotherapy treatment of ID8 ovarian cancer cells increases lipid oxidative damage by
activating the ataxia-telangiectasia mutated gene (ATM) to suppress SLC7A11 expression.
This resulted in loss of lipid redox homeostasis and initiation of ferroptosis. Inhibition
of ATM rescued the cells from radiotherapy-induced ferroptosis [5]. Lei et al. showed
that radiotherapy treatment of different non-small cell lung cancer (NSCLC) lines induced
ROS production, lipid peroxidation, and increased ACSL4 expression. Deletion of ACSL4
inhibited ferroptosis by reducing lipid peroxidation [3]. Ye et al. provided functional
evidence that administration of ferroptosis inducers improved the cell-killing effects of
radiotherapy, both in fibrosarcoma cells in vitro and human patient murine xenografts of
adenocarcinoma and glioma [4]. Shrunken mitochondria are a hallmark of ferroptosis,
and Lei et al. demonstrated that cancer cells treated with ionizing radiotherapy were
characterized by shrunken mitochondria, further suggesting a link between radiotherapy
and ferroptosis induction [3]. Finally, increases in tumoral lipid oxidation following
radiotherapy based neoadjuvant treatment in patients with esophageal cancer is associated
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with improved locoregional control and OS [3]. Taken together, these data suggest that
radiotherapy promotes lipid oxidation and ferroptosis.

4. Therapeutic Opportunities to Enhance Radiotherapy Efficacy via
Ferroptosis Induction

Ferroptotic sensitivity is dictated by the proportion of PUFA in the lipid membrane [44].
Interestingly, genetic perturbation of lipid composition modulates radiotherapy sensitivity.
ACSL4 knockout, which results in diminished PUFA lipid synthesis, abolishes radiotherapy
efficacy in vitro and in vivo [5]. Conversely, ACSL3 knockout, which limits monounsatu-
rated fatty acid lipid synthesis in the cell membrane, augments radiotherapy efficacy [5].
Additionally, lipid metabolism regulates lipid membrane composition. Repeated radio-
therapy exposure to fractionated radiotherapy can generate cancer cell lines resistant to
radiation [45]. Work has shown that in cervical cancer cells, upregulation of MiR-7-5p
promotes radiotherapy resistance by silencing arachidonate 12-lipoxygenase (ALOX12)
and other components of ferroptosis signaling, thus limiting radiotherapy efficacy [45]. To-
gether, these data suggest that lipid metabolism can be therapeutically targeted to improve
radiotherapy efficacy.

Cystine import is critical for glutathione biosynthesis and maintenance of the antiox-
idant pool within the cell. Upregulation of SLC family members that regulate cystine
import has been tied to acquired radiotherapy resistance in vitro [46]. Recombinant en-
zymes that degrade cysteine and cystine promote radiotherapy sensitivity of melanoma
and ovarian tumors in vivo [5]. Further, pharmacologic inhibitors of SLC7A11, the critical
antiporter responsible for cystine uptake, increase radiotherapy sensitivity [4]. Erastin, an
SLC7A11 inhibitor, sensitizes radiotherapy resistant NSCLC cancer lines [47]. Another
SLC7A11 inhibitor, sulfasalazine, has been shown to promote radiotherapy efficacy in
cell line xenograft and patient derived xenograft murine models of lung cancer. Interest-
ingly, sulfasalazine alone did not impact the size of tumors in the absence of radiation
in this study [3]. Further, sorafenib, a tyrosine kinase inhibitor that inhibits SLC7A11,
sensitizes fibrosarcoma and lung adenocarcinoma xenografts to radiotherapy by increasing
lipid peroxidation without increasing the DNA damage profile compared to radiation
alone [4]. Radiation efficacy was shown to synergize with direct GPX4 inhibition via RSL-3
to diminish clonogenic survival in multiple models when compared to radiation or RSL-3
alone. This work provides functional evidence that administration of ferroptosis inducers
improves radiotherapy efficacy in different contexts, including fibrosarcoma cells in vitro,
murine xenografts of lung adenocarcinoma and fibrosarcoma in vivo, and glioma patient
derived slice cultures ex vivo [4].

Corroborating this preclinical data, high NRF2 and SLC7A11 expression has been
associated with diminished radiotherapy induced ferroptosis and decreased lipid oxi-
dation, as well as radiotherapy resistance in patients with esophageal cancer [48]. In
head and neck cancer, treatment with artesunate to inhibit NRF2 increased ferroptosis in
cancer cells [49]. KRAS, an oncogene mutated in approximately 25% of human cancers,
regulates NRF2 signaling [50]. In pancreatic cancer, KRAS signaling upregulating NRF2
led to chemoresistance via increases in glutaminolysis [51]. KRAS mutant lung cancer
cells showed resistance to erastin-induced ferroptosis [52]. This suggests that KRAS can
promote cancer resistance to ferroptosis by signaling through NRF2 to upregulate system
xc

−. Together, these data highlight that cystine transporters are a novel and targetable
mechanism to augment radiotherapy efficacy.

Iron metabolism and oxidation have been tied not only to ferroptosis but also radio-
therapy efficacy. Holo-Lactoferrin is a radiosensitizer which increases total iron content,
promotes ROS, and facilitates lipid oxidation to enhance radiotherapy efficacy through
ferroptosis [53]. Depletion of mitochondrial antioxidants including Coenzyme Q with
FIN56, a known ferroptosis inducer, diminishes cancer cell survival following radiotherapy.
The glycoprotein collectrin improves radiotherapy sensitivity through ferroptosis induction
in the setting of hepatocellular carcinoma [54].



Int. J. Mol. Sci. 2021, 22, 12603 5 of 9

5. Therapeutic Opportunities to Limit Radiotherapy Toxicity via
Ferroptosis Inhibition

Normal tissue toxicity following radiotherapy can cause significant morbidity in
cancer patients. Technological advances in radiotherapy planning and delivery have led
to striking decreases in patient adverse events. However, for patients in which large
treatment fields or ablative doses are required for tumor control, radiotherapy can produce
significant normal tissue toxicity in adjacent, healthy organs. Focal administration of
therapeutic doses of radiotherapy can induce a hyperinflammatory cytokine response via
the release of cardiolipin and phosphatidylserine lipid oxidation in the lung [55] as well as
malondialdehyde lipid oxidation in the liver [56]. In preclinical models receiving thoracic
irradiation, ferroptosis inhibitors limit cytokine release following radiotherapy, thereby
decreasing inflammation and reducing lung fibrosis [57,58]. Thus, radiotherapy-induced
ferroptosis may contribute to late effects following radiotherapy in slow-growing tissues.

Exposure to whole body radiation in the setting of extraterrestrial travel or inciden-
tal radiation exposure can be potentially lethal. Multiorgan dysfunction contributes to
morbidity and mortality in this setting, including gastrointestinal and hematopoietic in-
juries [59]. Additionally, multiple cancers required low dose total body irradiation (TBI) as
adjuvant or ablative treatment, and this also has associated toxicities [60]. It has long been
understood that organs with rapidly dividing cells, including the intestinal epithelium and
hematopoietic precursors, respond acutely to radiotherapy. It has been suggested that total
body irradiation increases DNA damage and antioxidant responses to induce normal tissue
toxicity [61]. Interestingly, TBI has been shown to increase bone marrow lipid oxidation and
decrease bone marrow Vitamin E, a lipophilic antioxidant, in a dose-dependent manner [62].
This suggests that ferroptosis may contribute to total body irradiation toxicity and may also
contribute to acute effects following radiotherapy treatment in rapidly dividing tissues.

Consistent with this, polycysteine derivatives, which increase the antioxidant pool and
promote GPX4 activity, limit lethal whole body radiotherapy toxicity in preclinical models.
Further, treatment with polycysteine derivatives limited gastrointestinal and hematopoi-
etic toxicity as well as radiotherapy induced lung disease in murine models. Mechanis-
tic studies showed that polycysteine diminished lipid oxidation and restored the GSH
pool following radiotherapy [63]. Yet another molecule, arachidonate-15-lipoxygenase-1
(ALOX15), promotes lipid oxidation and contributes to the induction of ferroptosis [64].
Baicalein, an ALOX15 inhibitor, has been shown to normalize inflammatory cytokines
induced by total body irradiation and improves the survival of mice treated with TBI
even when administered post radiation exposure [65]. Collectively, these data suggest that
ferroptosis contributes to normal tissue toxicity after radiation exposure and suggests that
manipulation of ferroptotic induction may provide radioprotection for healthy tissues. At
present, lipophilic antioxidant ferroptosis inhibitors include liproxstatin-1 and ferrostatin-1,
which are currently unsuitable for in vivo administration, although medicinal chemistry
approaches are improving the pharmacodynamics of these compounds [66].

6. Conclusions and Future Directions

There is now compelling literature that radiotherapy induces lipid oxidation and
ferroptosis in tumors. This adds to the growing body of evidence that radiotherapy can
provide tumor control by inducing programmed forms of cell death, including apopto-
sis [67,68], necroptosis [69], autophagy [70], and now ferroptosis. Additionally, radio-
therapy can induce unregulated forms of tumor cell death including mitotic catastrophe,
necrosis, and senescence [71,72]. Recent work has demonstrated that stress granules are
associated with cancer chemoresistance and may provide a link between ferroptosis and
radioresistance [73]. Additional work is required to understand whether radiotherapy dose,
fractionation, sequencing, and source as well as cancer type and tumor microenvironment
alter the relative contribution of each form of cell death following radiotherapy.

The radiosensitization agents currently most clinically utilized include platinum com-
pounds, alkylating agents, inhibitors of DNA synthesis, and topoisomerase inhibitors [74].



Int. J. Mol. Sci. 2021, 22, 12603 6 of 9

Emerging strategies for radiosensitization include targeting the DNA damage response [75].
However, these strategies converge on augmenting DNA damage. Ferroptosis inducers
have been shown to sensitize preclinical cancer models to radiotherapy, suggesting that
augmentation of lipid damage may offer a novel therapeutic target that may prove to be an
invaluable addition to the anticancer therapeutic armamentarium. Importantly, studies
suggest that ferroptosis following radiotherapy is independent of DNA damage [4]. As
the DNA damage response and lipid oxidation both induce a cellular stress response with
common molecular modulators including p53 and ATM [76], additional work is required
to understand the nature of cross talk between DNA and lipid oxidative damage following
radiotherapy. Additional studies are also required to establish the optimal ferroptotic
agent, administration schedule, and dose to advance to clinical trials in combination with
radiotherapy (Table 1).

Table 1. Current clinical trials of drugs targeting ferroptosis. Sorafenib and sulfasalazine, neither of
which were originally developed for the treatment of ferroptosis, may serve as ferroptosis inhibitors
due to their ability to decrease the activity of SLC7A11 [77,78].

Drug Name Relevant Dates Original Target
Current Number of
Ongoing Clinical

Trials

Ferroptotic
Target

Sorafenib 2000: Entered
clinical trials

MAPK Cascade
in Cancer 92 SLC7A11

Sulfasalazine 1950: Approved
for clinical use

Rheumatoid
arthritis 13 SLC7A11

Radiation damage to adjacent healthy organs and tissues can cause significant mor-
bidity in cancer patients. This radiotherapy toxicity in normal tissue may also rely on lipid
oxidation and ferroptosis. Additional studies are required to understand whether targeting
ferroptosis to augment radiotherapy efficacy widens or narrows the therapeutic index.
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