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Abstract: Developing new, more effective antibiotics against resistant Mycobacterium tuberculosis
that inhibit its essential proteins is an appealing strategy for combating the global tuberculosis (TB)
epidemic. Finding a compound that can target a particular cavity in a protein and interrupt its
enzymatic activity is the crucial objective of drug design and discovery. Such a compound is then
subjected to different tests, including clinical trials, to study its effectiveness against the pathogen
in the host. In recent times, new techniques, which involve computational and analytical methods,
enhanced the chances of drug development, as opposed to traditional drug design methods, which
are laborious and time-consuming. The computational techniques in drug design have been improved
with a new generation of software used to develop and optimize active compounds that can be
used in future chemotherapeutic development to combat global tuberculosis resistance. This review
provides an overview of the evolution of tuberculosis resistance, existing drug management, and
the design of new anti-tuberculosis drugs developed based on the contributions of computational
techniques. Also, we show an appraisal of available software and databases on computational
drug design with an insight into the application of this software and databases in the development
of anti-tubercular drugs. The review features a perspective involving machine learning, artificial
intelligence, quantum computing, and CRISPR combination with available computational techniques
as a prospective pathway to design new anti-tubercular drugs to combat resistant tuberculosis.

Keywords: Mycobacterium tuberculosis; computational drug design; molecular docking; anti-tuberculosis;
structure-based drug design

1. Introduction

Robert Koch identified the etiological agent of tuberculosis (TB) as Mycobacterium
tuberculosis (Mtb) [1]. TB generates a lot of concerns as a contagious disease that poses a
high risk to public health globally. Despite the available anti-tubercular drugs introduced
over the years, TB remains one of the leading causes of death globally [2]. According
to the World Health Organization (WHO), it is the most common infection caused by a
single bacterium. About 10 million people were diagnosed with TB in 2017, and 558,000 of
them showed resistance to the most effective first-line medication, rifampicin. According
to another WHO survey, an estimated 1.5 million deaths occurred in 2018 [3]. It infects
about a third of the world’s population and kills approximately 1.7–1.8 million people per
year, demonstrating the failure to find new antibiotics to conquer this deadly disease [4].
Therefore, antimicrobial compounds that are effective against Mtb are desperately required
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to tackle this global epidemic, worsened by resistance to medication, long-time treatment
schedule, and co-infection, especially with Human Immunodeficiency Virus (HIV). In more
than 40 years, no new antibiotic to treat TB has been created [4,5].

Recently, phenotypic screening efforts using commercial vendor libraries evolved
toward identifying compounds that inhibit Mtb development [6–8]. This intervention gives
a ray of hope in the search for new therapeutics against Mtb. The urgency to end the Mtb
epidemic requires improvement in diagnostic tools and the efficacy of therapeutics used
in treating TB in diagnosed patients. This intervention reduces the treatment regimens
usually required with strict compliance to ensure effective treatment. Rapid and cheap
diagnostic test kits that can be readily accessible to the public aids early diagnosis, while
drugs with multiple targets go a long way to improve the outcome of treatment [9]. There
is urgent attention to deliver new potential active antimicrobial agents to scale down the
resistant TB strains. Many strategies and efforts have been adopted, which involved the
structure-based design of inhibitors for a single target pathogen through computational
methods [10–13].

Target drug discovery begins with identifying and studying enzymes or proteins
necessary for the growth and development of the pathogen. Researchers then screen these
proteins against some chemicals or compounds in libraries for potency and inhibitory
effect leading to drug candidate identification using computer software after learning the
accurate details of the target and lead molecule. This procedure could help pharmaceutical
firms, agencies, and research labs avoid following the “false” clues. In contrast to the
traditional drug discovery approach, which is time-consuming, expensive, and laborious,
a new understanding of the quantitative relationship between structure and biological
activity leads to the emergence of computer-aided drug design (CADD) applications in
search of new therapeutics against TB. Table 1 shows the advantages of the computer-aided
method of designing drugs over the traditional method.

Table 1. Comparison of the traditional method of drug development with CADD (computer-aided drug design).

The Traditional Method of Drug Development CADD

It involves more trial-and-error processes It is more logical
It involves blind screening It is specific and mostly target-based

It is a more expensive approach to drug development It minimizes the cost of drug development
It is a relatively more laborious and

time-consuming approach It reduces the duration required in the development of new drugs

It involves sequential steps It entails steps that are not only sequential but are also parallel
and straightforward.

It involves separate interdisciplinary drug
development with more difficult processes It coordinates interdisciplinary drug development with easier processes.

The rapid advances in high-throughput screening (HTS) technologies and compu-
tational chemistry created an atmosphere that allows vast libraries of compounds to be
screened and synthesized in a short period, speeding up the drug development process [14].
CADD involves storage, management, analysis, and modeling of potential therapeutic
compounds. It refers to computational methods and techniques for storing, handling, ana-
lyzing, and modeling chemical compounds. It includes computer programs for designing
compounds, tools for systematically evaluating possible lead candidates, and the develop-
ment of digital libraries for researching chemical interactions between molecules, among
other topics [15]. Advances in drug discovery involve using computational analysis to
identify and validate vulnerable targets, which leads to the emergence of new therapeutics;
they are also used in preclinical trials, drastically altering the drug development pipeline.
Computational techniques can cut drug production costs by up to 50% [16–18]. On average,
it takes 10–15 years and $500–800 million to bring a drug to market, with lead analogue
synthesis and testing accounting for a significant portion of that cost. As a result, using
computational methods during optimization drastically reduces the expenses on drug
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development, as there are computational models that can screen thousands of compounds
before synthesis and in vitro testing.

New therapeutics against TB emerged from HTS techniques and other related software
development. There has also been an increase in biological and chemical data available
on Mtb to facilitate new target identification. Furthermore, improvements in data storage
capacity, supercomputing ability, and parallel processing encouraged the adoption of
CADD as an integral component of TB pharmaceutical research. CADD made drug
discovery all-encompassing, including different fields. Computational tools of CADD
made it possible to ascribe more than 5000 macromolecular structures in the Protein Data
Bank (PDB) to Mtb [19,20]. This repository provides a fertile ground for discovering new
compounds as potent drug molecules to combat TB [1,19].

CADD can be structure-based drug design (SBDD) or ligand-based drug design
(LBDD). These are the two most popular approaches to drug discovery (Figure 1). Currently,
no single method can meet all the necessities of drug discovery and production. As a result,
several computational methods are used widely and effectively in combinatorial and
systemic approaches [1]. This review examines the evolution of TB tolerance, current drug
management, and the development and adoption of new compounds as anti-tubercular
therapeutics. Although there were other recent studies, where developments of TB drugs
based on CADD were extensively appraised with respect to specific targets using in silico
approaches [21,22], this review provides insight into the most recent developments on the
various available resources used in TB drug design and the inclusion and contributions of
these resources to the development of new effective therapeutics against Mtb. Similarly,
the introduction of machine learning and artificial intelligence to CADD is considered as
a new perspective in TB drug management. Our study aids in a better understanding of
the current state and the allure of the potentials embedded in using computational drug
development for TB.

Figure 1. An illustration of CADD.
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2. TB Pathology, Management, and Control

TB is a contagious disease that is transmitted predominantly through the air. An
individual becomes infected after inhalation of tubercle bacteria-rich droplets from con-
taminated air that enters the lungs. The newly infected person may show symptoms due
to a compromised immune system from other infectious diseases, such as HIV. However,
Mtb remains in a dormant stage if the immune system is not compromised. The alveolar
macrophages perceive the bacteria as foreign bodies and internalize them. The bacteria
multiply and eventually infect the macrophage, then spread from this point to the entire
body system via bloodstream. However, it is crucial to note that infections, such as HIV,
and lifestyle diseases, associated with alcoholism and smoking, pose a very high risk
in the pathogenesis of TB [23,24]. Generally, TB is considered latent or active (Figure 2).
The latent TB infection (LTBI) is not transmissible, and patients in this category show no
symptoms. However, patients with active TB can transmit the bacteria, and the common
symptoms exhibited by these patients include: fever, weight loss, productive cough, and
hemoptysis [25,26]. An estimated 1.7 billion people in the world may contract LTBI and
risk developing active TB. A World Health Organization (WHO) report showed that active
TB disease affects 5.7 million men, 3.2 million women, and 1.1 million children with 9% of
this population also infected with HIV in 2018 [27].

Figure 2. An illustration of tuberculosis (TB) infection phases.

2.1. TB Drug Management and Classification

The complete invention and design of the first-line therapy for the treatment of TB
in the 1960s was also the first effective treatment and cure of an infectious disease. The
classification of anti-tubercular drugs may be according to source, which is either natural or
synthetic; mode of action; and situation of the patient (phase or treatment regimen), which
are classified as first-line and second-line regimens [28]. Approximately 20 medications are
currently available on the market for the management of TB. The use of these therapies
can be singly or combined [29]. If left untreated, TB can be fatal. Between 2000 and
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2018, physicians rescued approximately 58 million infected people using a traditional
regimen. In 2017, there was a report of an 85 percent global success rate in the treatment of
newly diagnosed TB cases. However, a 56 percent treatment success rate was reported for
drug-resistant TB cases globally in 2017 [27].

2.2. First-Line Drugs

The first-line treatment regimen of TB includes isoniazid, rifampicin, pyrazinamide,
streptomycin, and ethambutol (Figure 3) [29]. For latent TB infection (LTBI), the WHO
recommends isoniazid alone or combined rifampicin for 3–9 months [30]. Over the years,
drug-sensitive TB treatment has entailed the conventional regimen of first-line medications
for 2 months, then followed by a combined therapy of isoniazid and rifampicin for another
4 months [2]. Nonetheless, this treatment plan has a high success rate. However, the
extended treatment period results in various side effects, such as skin rashes, dizziness,
and gastrointestinal disturbance, among others, resulting in patient noncompliance [31].

Figure 3. Chemical structures of first-line drugs used in management of TB.

2.3. Second-Line Drugs

When first-line drugs fail or there is reduced effectiveness, medical practitioners
usually introduce second-line drugs. They often prescribe these medications whenever a
patient shows signs of drug resistance to one or more medications [32]. The drastic reduc-
tion in treatment efficacy that involves incomplete TB treatment regimens often results in
disease relapse and resistance. Managing TB resistance entails the fast-tracked develop-
ment of several drugs to help with global TB control efforts. The second-line treatment
regimen includes para-aminosalicylic acid (PAS), ethionamides, cycloserine, viomycin, and
ciprofloxacin (Figure 4). These therapies are long-acting, with questionable effectiveness
and high toxicity, which also leads to lower compliance and unfavorable outcomes.
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Figure 4. Chemical structures of second-line drugs used in management of TB.

2.4. Emergence and Treatment of Multi-Drug Resistant TB (MDR-TB) and Extensively
Drug-Resistant TB (XDR-TB)

Researchers attributed the emergence of resistance to several factors, including poor
compliance to a course of prescribed medications, inconsistent monitoring, medication
abuse, and mutations in strains. Resistance can also develop due to change in membrane
pumps, changes in the interaction of the drug or target, and chromosome mutations [33].
Another reason may include the low permeability of the mycobacterial cell wall due to its
lipid-rich nature, which prevents the accessibility of compounds to targets.

MDR-TB was first noticed in the 1990s as the bacteria failed to respond to first-line
therapy (isoniazid and rifampicin) [34]. Between 2013–2014, there were reportedly approxi-
mately 500,000 new cases of MDR-TB worldwide, resulting in about 200,000 deaths [35].
XDR-TB occurs when both first-line and second-line medications are unsuccessful. Out of
the total number of MDR-TB cases registered per year (500,000), 5–7% become XDR-TB [36].
At the end of 2012, the US Food and Drug Administration (FDA) approved bedaquiline
(Figure 5 as a medication for resistant TB in response to this emergence [1]. The European
Medicines Agency (EMA) granted conditional approval for delamanid (Figure 5) to manage
MDR-TB in adults in 2014. The FDA recently approved pretomanid (Figure 5) therapy
combined with bedaquiline and linezolid to treat resistant TB [1]. However, this drug
has high toxicity and usage associated with an increase in the risk of death. This adverse
effect raised concerns about its approval. There was approximately a four-fold increment
in mortality among patients managed with bedaquiline during clinical trials compared
with those who received the alternative placebo therapy [37]. The threat of drug resistance,
on the other hand, is a sobering thought, so there is a need for the development of new
therapeutic agents with no cross-resistance to existing treatments.
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Figure 5. Chemical structures of new Mtb drugs at different clinical trial phases.

2.5. Current TB Drugs’ Mechanism and Resistance Development

One of the first-line compounds synthesized for TB treatment is isonicotinic acid
hydrazide. Otherwise called isoniazid, the compound has a molecular formula C6H7N3O
and weight 137.139 g/mol [38]. Although the specific action mode of isoniazid is still a
query, researchers proposed several mechanisms. The hydroxyl radical oxidizes INH at the
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primary nitrogen of the hydrazyl moiety, and the hydrated electron reduction occurs at the
pyridine ring, according to a recent analysis by Khan et al., in 2016 [39]. Another related
study suggested cell wall penetration of the bacteria via passive diffusion. Subsequent
oxidative activation by catalase peroxidase enzyme (KatG) forms a reactive intermediate
isonicotinyl acyl radical. This step, preceded by the formation of the INH-NAD, adducts
and inhibits InhA (2-trans-enyolacyl carrier protein reductase) of Mtb. Overall, the process
limits the formation of mycolic acid, an essential component of the cell wall [38,40,41].

Similarly, other studies proposed the formation of highly reactive oxygen species
(ROS) by the KatG-mediated INH activation. The suggested ROS may include superoxide,
nitric oxide, peroxide, and hydroxyl radicals and isonicotinic acyl anion. ROS attack dif-
ferent targets in Mtb cells [42,43], causing more oxidative stress and decreasing INH Mtb
resistance [44]. INH resistance emerges from a mutation in the KatGat S315T, a catalase
peroxidase enzyme [45]. This possibility, confirmed by another study, involved a computa-
tional model to understand the mode of action of isoniazid as an anti-tubercular drug. The
investigation showed the involvement of the KatG mutation at position 315 (S315T/S315N)
in forming hydrogen bonds between INH and mutant Thr(T)/Asn(N) residues, leading to
the formation of an INH free radical [46]. Mutations in eight other genes (furA, inhA, kasA,
rv0340, iniB, iniA, iniC, and efpA), as well as two regulatory DNA regions (oxyR-ahpC
and the promoter of mabA-inhA), were also related to the resistance of INH [45].

Ethambutol (EMB) is a crucial component in anti-TB treatment. It is used in treating
Mtb infection in combination with other first-line agents and has a molecular formula of
C10H24N2O2 and a molecular weight of 204.31 g/mol. The actual mechanism of EMB, like
those of some other anti-TB medications, is unclear. Studies showed that EMB inhibits
Mtb cell wall synthesis by disrupting arabinogalactan synthesis and inhibiting arabinosyl
transferase [47]. EMB resistance is in about 65% of INH-resistant strains [33]. Most cases of
EMB resistance are inherent from mutations that occur in the embB gene (mutations in the
embC-embA intergenic region (IGR)). Researchers linked resistance to EMB to mutations
in the Mtb embB306 gene codon 306, embB406, embA(-16), and embB497 in the majority of
cases. There are likelihoods of EMB resistance linked to overexpression and mutations in
ubiA [48–50].

Rifampicin (RIF) is a natural product with molecular formula C43H58N4O12 and a
mass of 822.94 g/mol. It is an antibiotic from a Gram-positive bacterium Amycolatopsis
rifamycinica of the rifamycin group. In addition to Mtb, it has a broad-spectrum antibiotic
effective against fungi and viruses. Other derivatives of rifampicin identified over time
include rifamycin, rifamixin, rifabutin, and rifapentine. Its activity entails the inhibition of
DNA-dependent RNA synthesis. Increasing rifampicin/rifampin use resulted in a mutation
in the RNA polymerase b-subunit, causing resistance development. The critical mutant
is in the rpoB gene’s codons between 507 and 533, known as the rifampicin resistance-
determining region. Codons 516, 526, and 531 are mutated in most rifampicin-resistant
cases [51].

Pyrazinamide (PZA) is a compound with the molecular formula C5H5N3O and weighs
123.113 g/mol. PZA is another active medication used in first-line therapy for nearly four
decades. It is considered a prodrug with the capacity to penetrate the bacterial cell wall
through passive diffusion. It is converted to pyrazinoic acid, its active metabolite, by the
action of pyrazinamidase. Pyrazinoic acid inhibits Mtb activity through multiple pathways,
including inhibition of the fatty acid synthase (FAS) I enzyme, bonding to the ribosomal
protein S1 (RpsA), and membrane inhibition [52,53]. In 1996, the PZA-resistant strain
of Mtb reportedly originated in the pncA gene [54]. Similarly, investigators noticed that
pncA mutations were responsible for PZA resistance [55]. However, there is evidence on
PZA-resistant strains without pncA mutations, suggesting the mediation of PZA resistance
by other genes and mechanisms [56]. According to studies, mutated recombinant pncA
reduced enzymatic activity, depending on the mutation’s position and form. Any structural
defect might potentially impact PZase function significantly [57,58].
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Streptomycin (STR), an aminoglycoside antibiotic, has a molecular formula of C21H39N7O12
and weighs 581.574 g/mol. It is a natural product effective in the treatment of TB. It comes
from Streptomyces griseus, a soil actinomycete. STR inhibits protein synthesis by binding
irreversibly to the 30S ribosomal subunit and 16S rRNA that codes genes rpsL and rrs [59].
Mutations in gidB, a gene encoding a conserved 7-methylguanosine methyltransferase
specific for the 16S rRNA, were identified as the cause of resistance to STR in recent
years [60]. The main mechanisms of STR resistance are mutations in rpsL and rrs, which
account for around 70% of the resistance observed. A switch in codon 43 from lysine to
arginine, which results in high-level streptomycin resistance, is the most widely recorded
mutation in rpsL. The most specific mutations in rrs are in between nucleotides 530 and
915 [61]. There are still many streptomycin-resistant strains that do not show mutations
rpsL and rrs, which suggests the existence of other possible mechanisms of resistance.

Ethionamide is an isonicotinic acid derivative that resembles isoniazid in structure. It
is also a prodrug that requires activation by ethA-encoded monooxygenase. The mode of
action involves generating an adduct with NAD and inhibiting the enoyl-ACP reductase
enzyme, which results in mycolic acid synthesis inhibition [62]. Mutations in the etaA/ethA,
ethR, and inhA genes lead to ethionamide resistance [63]. Furthermore, experiments with
spontaneous isoniazid- and ethionamide-resistant mutants of Mtb indicated that they map
to mshA, which encodes a mycothiol biosynthesis enzyme [64].

The first discovery of para-aminosalicylic acid (PAS) was in 1948. It acts by inhibiting
thymidylate synthase in iron uptake interference and synthesis of folate. A recent study
showed that numerous missense mutations in the folC gene, which encodes dihydrofolate
synthase, resulted in resistance to PAS in Mtb isolates [65]. Mutations in the thyA gene
associated with PAS resistance were available in clinical isolates resistant to PAS in one
research using transposon mutagenesis [66]. Nonetheless, mutations in thyA were found
in less than 40% of PAS-resistant strains, suggesting that other drug-resistance pathways
may be present [66,67].

Physicians often prescribe fluoroquinolones (levofloxacin (Figure 6) and melofloxacin
(Figure 5)) as second-line drugs for MDR-TB treatment. Fluoroquinolones function by
blocking topoisomerase II (DNA gyrase) and topoisomerase IV. These proteins are essential
for bacterial multiplication and survival encoded by genes gyrA, gyrB, parC, and parE [68].
Chromosome mutations in the quinolone resistance-determining area of gyrA or gyrB are
the most common cause of fluoroquinolone resistance in Mtb. GyrA mutations at positions
90 and 94 are the most common, but mutations at other positions were also identified [69].
Other compounds prescribed (Table 2) for the treatment of TB as second-line drugs and in
combination therapy include capreomycin, kanamycin, viomycin, amikacin, cycloserine,
macrolides (clarithromycin), clofazimine, and linezolid, among others (Figures 4–6).

Table 2. New Mtb drugs and their mode of action in different clinical trial phases.

Drug Class of
Compound Target Approach Clinical Trial

Phase

Linezolid Oxazolidinone 50S ribosomal subunit Revisiting established
targets (repurposing) Phase 2

Sutezolid Oxazolidinone 50S ribosomal subunit Revisiting established
targets (repurposing) Phase 1

Bedaquiline (TMC207) Diarylquinoline ATP synthase Phenotypic-HTS Approved
TBAJ-587 Diaryquinoline ATPsynthase Revisiting novel target Preclinical

Delamanid Nitroimidazoles Cell wall biosynthesis HTS; modification of
drug scaffold Approved

Pretomanid Nitroimidazoles Cell wall biosynthesis HTS; modification of
drug scaffold Approved

Telacebec (Q203) Imidazopyridine
amides Cytochrome bc1 complex HTS Phase 2

Gatifloxacin Quinolones DNA gyrase; gyrA, gyrB Revisiting established
targets (repurposing) Phase 3/4
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Table 2. Cont.

Drug Class of
Compound Target Approach Clinical Trial

Phase

Moxifloxacin Quinolones DNA gyrase; gyrA, gyrB Revisiting established
targets (repurposing) Phase 3/4

Benzothiazinone
(BTZ-043) Benzothiazole

Decaprenylphosphoryl-
β-D-ribose-2′-oxidase

(DprE1)
HTS Phase 2

Macozinone (PBTZ) Benzothiazole DprE1 HTS Phase 2
OPC-167832 Carbostyril DprE1 HTS Phase 2

TBA7371 Azaindoles DprE1 HTS; modification of
drug scaffold Phase 2A

Clofazimine Riminophenazine
Electrogenic pathway,

reduced by NADH
dehydrogenase II

Revisiting established
targets (repurposing) Approved

SPR720 Benzimidazole class GyrB ATPase Revisiting established
target (repurposing) Phase 2

SQ109 Ethylenediamine
Inhibition of MmpL3,

MenA, and MenG
and ATP

HTS; modification of
drug scaffold Phase 2

GSK 070 Oxaborole Leucine tRNA synthase Revisiting established
target (repurposing) Phase 2

Delpazolid Oxazolidinones Ribosomal subunit Revisiting established
targets (repurposing) Phase 2

OTB-658 Oxazolidinones Ribosomal subunit Revisiting established
targets (repurposing) Preclinical

TBI-223 Oxazolidinones Ribosomal subunit Revisiting established
targets (repurposing) Phase 1

Contezolid Oxazolidinones Ribosomal subunit Modification of drug scaffold Phase 3
Contezolid acefosamil

(prodrug) Oxazolidinones Ribosomal subunit Modification of drug scaffold Phase 3

Sanfetrinem Carbapenem Cell wall biosynthesis Revisiting established target Phase 2
Sanfetrinem cilexetil

(prodrug) Carbapenem Cell wall biosynthesis Revisiting established target Phase 2

Source: [70–78].

2.6. New TB Drugs Discovered through HTS and Other Approaches

Researchers discovered several TB drugs through the available information when
introducing a new compound into the drug regimen. Drug repurposing, drug scaffold mod-
ification, revisiting existing targets, target-based screening, and phenotypic screening are
among the methods used to discover new anti-tubercular drugs. High-throughput screen-
ing applies to Mtb drug discovery, whereby investigators examine compound databases for
anti-mycobacterial activity against mycobacterial cells in culture. In most studies, it is ratio-
nal to establish the potency of the identified hit compounds based on in vitro and in vivo
procedures. The development of most recently approved TB drugs and potential agents in
clinical trials (Figure 5) entails drug-to-target pathways involving whole-cell screening.

Johnson & Johnson discovered bedaquiline (TMC207 or R207910) by screening around
70,000 compounds against Mycobacterium smegmatis. They unveiled the compound in 2004
at the Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), later
approved by the FDA around 2012. Bedaquiline inhibits adenosine 5′ triphosphate (ATP)
synthase activity and subsequent energy supply, providing unique targeting. Mtb ATP
synthase has become a commonly validated target since the discovery of bedaquiline [79].
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Figure 6. Chemical structures of drugs used in management of resistant TB.

Pethe et al. [72] uncovered two series of imidazopyridine amides (IPA) from a phe-
notypic HTS of a library of 121,156 chemical compounds at the Pasteur Institute in Korea
for their ability to inhibit Mtb growth in mouse macrophages [80]. The synthesis and
evaluation of 477 derivatives of the hit compound resulted in the optimized IPA called
telacebec (Q203). The primary target of Q203 is the cytochrome unit bc1 complex, a critical
component of the electron transport system necessary for ATP synthesis [81]. Qurient
Co. Ltd. is currently conducting a phase 2 clinical trial to assess the bactericidal efficacy,
safety, tolerability, and pharmacokinetic properties of Q203 in repeated oral doses. Other
compounds discovered through HTS include benzothiazinone and maconizone, azaindoles,
and OPC-167832.

Further chemical research on some existing antimicrobial molecules through modifica-
tion of drug scaffolds led to the development of many analogues, including pretomanid and
delamanid. These compounds were recently recorded as anti-TB drugs and are constituents
of the new multi-drug resistant (MDR) regimen. Delamanid (OPC-67683) and pretomanid
(PA-824), both nitroimidazoles, were discovered in Streptomyces eurocidicus [82]. In 2014,
the European Medicines Agency (EMA) granted conditional approval of delamanid, a
nitro-dihydro-imidazooxazole derivative. Otsuka Pharmaceutical developed delamanid
for managing MDR-TB in adults. Delamanid and pretomanid have a similar multi-target
mode of action, influencing biosynthesis of the cell wall via disruption of methoxy- and
ketomycolic acid synthesis, as well as respiratory toxicity through nitric oxide release
during bacterial drug metabolism [83].
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Pretomanid is another analogue that shows activity against Mtb [83]. PathoGenesis
Corporation, under the aegis of the Global Alliance for TB Drug Development, discovered
pretomanid. In animal models, this relatively small molecule demonstrates excellent
in vitro and in vivo activity and seems healthy and well-tolerated. The mode of action is
through nitroreductase activation, which hinders the synthesis of proteins and cell wall
lipids [84]. More clinical trials are currently being conducted on the drug. The FDA
approved a review of a new drug application for pretomanid recommended to treat XDR-
and MDR-TB in conjunction with bedaquiline and linezolid.

The search for a new medication as a second-generation drug from ethambutol led to
creating a library containing 63,238 compounds based on 1, 2-ethylenediamine pharma-
cophore. These compounds, screened against Mtb, resulted in the potent SQ109 discovery
through a joint effort by scientists from Sequella, Inc. (Rockville, MD, USA) and the US
National Institutes of Health [85]. The mode of action of SQ109 involves inhibition of
MmpL3, which is a membrane carrier for trehalose monomycolate involved in cell wall
synthesis. It also inhibits MenA and MenG, which are essential enzymes in the biosynthesis
of menaquinone. SQ109 acts as an uncoupler by reducing ATP synthesis [86].

Contezolid and contezolid acefosamil (Figure 5) are designed by modification of the
linezolid scaffold to overcome the limitations associated with its clinical use, which include
myelosuppression and serotonergic monoamine oxidase inhibition. Contezolid is currently
in phase 3 clinical study and its intravenous administration is facilitated by the introduction
of its water-soluble prodrug called contezolid acefosamil [70,87], which has no appreciable
antimicrobial activity. The in vitro activity of contezolid against resistance Mtb is related to
that of linezolid [71,88].

Sanfetrinem and its oral prodrug sanfetrinem (Figure 5), cilexetil, are novel car-
banepem introduced by GSK in clinical study. The discovery of the drug was through
screening nearly 2000 β-lactams against Mtb H37Rv. It was also investigated against MDR
and XDR clinical isolates promising activity. Other new TB drugs in different clinical trial
phases are available at www.newtbdrugs.org (accessed on 7 November 2021) [72]. Table 2
shows some new Mtb drugs at different clinical trial phases.

2.7. Protein Target in Mtb Drug Design

In recent times, the development of new Mtb therapeutics entails identifying com-
pounds that effectively inhibit specific targets essential for the bacterium survival and
proliferation in the host. Mtb is known to secret essential proteins that: aid the acquisition
of its nutrients, alter the host immune system, and help to develop resistance against
therapeutics [89,90]. These constitute the crucial aspect of host–pathogen interactions.
So, inhibiting any of these essential proteins disrupts pathogen activities in the host and
limits their devastating effects on the host. Inhibition has been the dimension adopted
in drug design. Computational methodologies enabled the screening of several libraries
of compounds against some essential proteins known for Mtb survival. Despite more
than 500 discovered essential proteins of Mtb, there are only 73 established targets and
10 potential targets in the discovery of new anti-tubercular drugs (Figure 7). Therefore,
there is a need to explore the inhibition of several other essential proteins for identifying
new effective medications against Mtb [91]. Some scientists opine that a suitable drug
should have the capacity to inhibit multiple protein targets that restrict the possibility
of the pathogen building resistance over a long period. Such an approach reduces the
complicated regime associated with the treatment of Mtb infections.

www.newtbdrugs.org
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Figure 7. A representation of the genome of Mtb genes, essential proteins, and the number of proteins
currently in use as targets for drug discovery, redrawn from the literature [91].

3. SBDD as an Indispensable Tool in Computational Drug Design

Like target discovery and identification, novel drug development through identifying
compounds that can inhibit protein targets is critical in the drug discovery process. The
traditional method of identifying potential leads is through experimental HTS, which is
laborious, time-consuming, and relatively expensive [92]. A typical drug research cycle
might take up to 14 years [15] and cost about USD 1 billion [93] from the point of target
identification to FDA approval. With this traditional method, there has been a recent
decline in the number of new medications entering the market due to failures in various
phases of clinical trials [94], despite the invested time and limited available resources. In
November 2018, a study [95] showed the estimated total cost of pivotal trials for developing
novel FDA-approved medications. According to the American Pharmaceutical Association,
the median amount for effectiveness studies of the 59 new medicines authorized by the
FDA in 2015–2016 was USD 19 million [95]. As a result, it is critical to overcome the
constraints of current drug discovery approaches with computational alternatives that are
efficient, low-cost, and broad-spectrum in nature.

Conversely, rational drug design is more efficient and cost-effective than the traditional
drug discovery technique (classical or forward pharmacology). Reverse pharmacology is
another term used to describe the drug design and discovery process. The initial step is
to identify and confirm the target proteins, then use them to screen small-molecule data
libraries [96]. This concept benefitted from significant progress made in structural and
molecular biology and improvements in biomolecular structural identification techniques.
More than 100,000 proteins had their three-dimensional (3D) structures determined using
these approaches [97]. In combination with the storage and appropriate organization of
large amounts of data, there is a lot of excitement about developing sophisticated and
robust computational methods.

The completion of the Human Genome Project and advancements in bioinformatics
led to the availability of target proteins. These target proteins enhanced the pace of drug
development, laying the background for developing SBDD. SBDD is an increasingly impor-
tant component of industrial drug development initiatives and academic research [98,99].
It is a more precise, time-efficient, and hands-on approach for lead identification and opti-
mization (Figure 8). The most often utilized computational approaches in SBDD include
structure-based virtual screening (SBVS), molecular docking, and molecular dynamics
(MD) simulations, which are all examples of applicable techniques. These approaches have
several applications, including binding energetic predictions, ligand–protein or protein–
protein interactions study, and evaluating conformational changes [100]. The current
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advances in the bioinformatics and cheminformatics business were obtainable through a
significant increase in the number of software packages designed to facilitate the efficient
discovery of new drugs. However, it is critical to select exceptional packages to ensure a
successful SBDD process [101]. The automation of all phases in an SBDD process reduced
the SBDD timeframe [98]. The availability of supercomputers, computer clusters, and cloud
computing also aided in speeding up the discovery and assessment of potential leads.

 

Figure 8. An illustration of the SBDD process.

SBDD in Drug Discovery and Design

SBDD is the most potent and effective procedure in the entire drug discovery and
development framework. In the drug discovery process, computational resources are a
valuable tool for speeding up the process. The steps include various screening procedures,
combinatorial chemistry, and computations of drug properties, such as absorption and
distribution, metabolism, excretion, and toxicity (ADMET) [102]. SBDD is a monotony
sequence process that continues through several cycles to develop a therapeutic candidate
optimized for clinical trials. There are four stages in the drug discovery process, namely,
research and development, clinical trials, registration, and the regulatory submission phase.

The first phase involves the identification of a possible therapeutic target, as well as
efficacious ligands. Cloning the target gene and subsequent extraction, purification, and
three-dimensional structure identification of the protein are essential steps in this procedure.
The next stage is to identify the 3D structure of the target receptor in combination with the
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potential ligand discovered in the first stage. Structural perspectives into the ligand–protein
interaction aid in analyzing various binding geometries, identifying binding pockets and
ligand–protein interactions, and interpreting conformational changes resulting from ligand–
receptor interaction and detailed mechanistic and dynamics studies [97]. As a result, there
is an improvement in the effectiveness and specificity of the lead via many iterations. The
third phase entails clinical studies/trials of the lead compounds and is marked complete if
successful. The fourth step is when the medication is approved for release into the market
and made available for clinical usage.

A variety of computational techniques adopted to dock small molecules or fragments
of compounds from large databases enables inserting molecules into the catalytic site
of an enzyme. The scoring function allows determination of the relative importance of
these molecules in terms of their steric and electrostatic interactions with the catalytic
site of the protein. With the 3D structure of the target molecule, it is possible to conduct
in-depth research into the electrostatic characteristics of the active domain and determine
whether there are cavities, apertures, or allosteric pockets. Recent SBDD techniques
consider the essential features of the binding pocket of the targeted receptor to develop
effective ligands [103,104]. The top hits are synthesized and optimized in the second
step of the process. The biochemical tests used to evaluate the top-ranked compounds
with high affinity for selective regulation of the target enzyme are also performed in vitro
on the compounds with the highest affinity [105]. Because these ligands interact with
critical cellular processes, the creation of pharmaceuticals with the desired therapeutic and
pharmacological impact is facilitated [106]. Experimental techniques used to examine the
biological characteristics of the chosen compounds include their effectiveness, affinity, and
potency [107].

SBDD is a computer approach that pharmaceutical firms and researchers frequently
utilize. The SBDD approach led to the discovery of many medicines that are now available
on the market. The incredible success story of SBDD so far was the approval of HIV-1
inhibiting drugs by the Food and Drug Administration (FDA) [108]. SBDD medicines
include raltitrexed (a thymidylate synthase inhibitor) [98] and amprenavir (an HIV pro-
tease) [108,109]. Norfloxacin (an antibiotic) [110] and isoniazid (an anti-tuberculosis) stem
from pharmacophore modeling and virtual screening (VS). Other instances of successful
drug discovery using SBDD methods are available in Table 3. Despite the success story
of SBDD, there exist limitations in the available SBDD techniques because of the failure
scenarios that they encounter. Even though the SBDD workflow contains various efficient
approaches, they all have limits that necessitate further study.

Table 3. Drug discovery by SBDD computational approaches.

Drug Target Target Disease Computational
Methods Refs.

Epalrestat
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Table 3. Cont.

Drug Target Target Disease Computational
Methods Refs.

Dorzolamide

Carbonic anhydrase Glaucoma, cystoid
macular edema

Fragment-based
screening [112]

Flurbiprofen

Cyclooxygenase-2
Rheumatoid

arthritis,
osteoarthritis

Molecular docking [113,114]

Isoniazid

InhA TB
SBVS and

pharmacophore
modeling

[115]

Pim-1 kinase inhibitors
(E)-5-(4-hydroxybenzylidene)-2-

iminothiazolidin-4-one

3-fluoro-4-((4-(isopropylamino)-5-
nitropyrimidin-2-yl)amino)benzoic acid

4-(benzofuran-2-yl)-6-ethyl-2H-chromen-
2-one

Pim-1 kinase Cancer Hierarchical
multistage VS [116]

STX-0119

STAT3 Lymphoma SBVS [117]
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Table 3. Cont.

Drug Target Target Disease Computational
Methods Refs.

Raltitrexed

Thymidylate
synthase HIV SBDD [98]

Norfloxacin

Topoisomerase II,
IV

Urinary tract
infection SBVS [118]

Cimetidine

Histamine H2
receptor antagonist

Gastrointestinal
disorder (ulcer) SBVS [119]

Zanamivir

Neuraminidase
inhibitor Influenza SBVS [120]

Zolpidem

GABAA receptor
agonist Insomnia SBVS [121]

Imatinib
Bcr-Abi

tyrosine-kinase
inhibitor

Cancer SBVS [122]

Raltegravir

HIV integrase
strand transfer

inhibitor
HIV/AIDS SBVS [123]

4. Status of Computational-Aided Drug Design and Discovery in TB

The drug discovery process for novel anti-tubercular therapies has evolved throughout
the years due to the accumulation of biological and chemical data, the identification of
numerous validated targets, and the advancement of high-throughput screening methods
and software algorithm development. Aside from that, advances in data storage capacity,
supercomputing power, and parallel processing allowed computer-aided drug design
(CADD) to become an integrated component of TB drug design and discovery research
during the last several years. As computing power continues to grow, it may soon be
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possible to conduct extensive exploration of the vast chemical space, which is estimated
to contain about 1060 organic molecules below 500 Da, to identify potential therapeutic
attractive moieties [124] for effective Tb treatment.

Furthermore, the massive protein structural data, which includes more than 180,000 macro-
molecular structures available in the PDB (www.rcsb.org accessed on 8 November 2021) and
other protein repositories, gave the computational SBDD (Figure 9) concept an impetus.
The pulled structures allow identification of critical receptor catalytic and allosteric sites,
molecular nature, and crucial features for in silico SBDD research. There has been much
focus on TB with the countless ongoing drug discovery research, with several thousand
published CADD studies. Although this is the case, Ekins et al. [125] identified gaps in
the application of computational methods in TB research, resulting in a slow stream of
candidates’ drugs entering the TB drug pipelines, despite the evident need and immediacy
for an effective treatment against this infection. Therefore, there is a need for more rigorous
efforts to develop TB drugs leveraging the benefits provided by computational techniques.

Figure 9. Complementary integration of Structure–Based Drug Design (SBDD) and Ligand–Based drug Design
(LBDD) approaches.

www.rcsb.org
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Methods based on computation or in silico are currently burgeoning and knowledge-
driven, systematically evaluating existing data to explore protein function and develop
novel compounds that can modulate its activity. Depending on the availability of protein
structures, computational drug discovery techniques are typically SBDD and ligand-based
drug design (LBDD). To enhance the success rate of current drug development initiatives,
it has been standard practice in the pharmaceutical industry to integrate these approaches
in a complementary manner with one another (Figure 9). When using SBDD, it is necessary
to have a three-dimensional (3D) model of the target protein to evaluate and exploit the
druggable pockets for screening and creating appropriate ligands, which can subsequently
be experimentally confirmed and enhanced. Instead of relying on protein structural data,
LBDD uses the information obtained from a wide array of ligands with proven activity to
develop prediction models for hit and lead optimization [126].

Different SB and LB tactics, or a mix of them, might be used at different phases of
TB drug design, discovery, and development to mitigate the difficulties associated with
experimental techniques. With the availability of the TB genome and proteome and a
wealth of structural information, researchers can use big data and molecular simulation to
identify potential targets for treatment vs. allows choosing the most promising prospective
candidates from a database comprising millions of compounds for a specific TB target.
From the validated candidates, a quantitative structural activity relation (QSAR) study
is obtainable to understand the mechanism of action and ADMET properties. QSAR
facilitates compound development with improved efficacy, as well as pharmacokinetic and
pharmacodynamics properties.

The information gathered from this research (both positive and negative outcomes)
may be saved and used for additional iteration and technique optimization in design-
ing novel TB drugs in the future. Structure-based vs. produced many anti-tuberculosis
compounds with appreciable enzymatic inhibition (Tables 4 and 5). This study provides
an overview of the SBDD process and the current approaches for TB drug development
in the modern era. Furthermore, we provide an insight on the machine learning (ML)
techniques designed to accelerate the process, procedures, management, and application
of large amounts of data in TB drug design.

Table 4. Successful SBVS approaches on anti-Mtb and activities of the best compounds *. A summary of Mtb pathways is
available in the supporting information.

System PDB Structures Function Anti-Mtb Activity Ref.

L-alanine dehydrogenase 2VHW Biosynthesis of l-alanine IC50/35.5 µM b [127]
L-alanine dehydrogenase 4LMP Biosynthesis of l-alanine MIC/1.53 µM [128]
L-alanine dehydrogenase 2VOJ Biosynthesis of l-alanine MIC/11.81 µM [129]

7,8-diaminopelargonic
acid synthase 3TFU Biotin biosynthesis pathway MIC/25 µM [129]

7,8-diaminopelargonic
acid synthase 3TFU Biotin biosynthesis pathway MIC/7.86 µM [130]

Cyclopropane mycolic
acid synthase 1 1KPH Cell wall MIC50/5.1 µM [131]

l,d-transpeptidase 2 3TUR Cell wall MIC94/25.0 µM
MIC89/0.2 µM [132]

GlmU protein [58] 3ST8 a Cell wall IC50/9.0 µM b

NAD+-dependent DNA ligase A 1ZAU/1TAE DNA metabolism MIC50/15 µM [133]
Flavin-dependent

thymidylate synthase 2AF6 a DNA metabolism MIC90/125 µM [134]

Flavin-dependent
thymidylate synthase 2AF6 DNA metabolism IC29/100 µM b [135]

DNA gyrase 4BAE DNA topology MIC/7.8 µM [136]

Dihydrofolate reductase Mtb: 1DF7;
human: 1OHJ Folate pathway MIC/25 µM [137]

Salicylate synthase 3VEH Iron acquisition MIC99/156 µM [138]
Transcription factor IdeR 1U8R Iron acquisition control MIC90/17.5 µg/ml [139]
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Table 4. Cont.

System PDB Structures Function Anti-Mtb Activity Ref.

Flavin-dependent
oxidoreductase MelF 2WGK Needed to withstand

ROS-and RNS-induced stress MIC/13.5 µM [140]

Leucyl-tRNA synthetase 2V0C Protein synthesis MIC/25 µM [141,142]
3-dehydroquinate dehydratase 2Y71 Shikimate pathway MIC/6.25 µg/mL [143]
3-dehydroquinate dehydratase 15 PDB structures Shikimate pathway MIC/100 mg/ml [144]

Haloalkane dehalogenase 2QVB Unknown Kd/3.37 µM b [145]

* Structures are provided in Table 5. a Ligand-based approach and b in vitro enzymatic essays. PDB (Protein Data Bank).

Table 5. Structure of identified molecules with the best anti-Mtb activity or enzymatic inhibition.

Structure IUPAC Name Enzymatic Inhibition

(2S,2′S,3S,3′S,4R,4′R,5R,5′R,6S,6′S)-6,6′-([1,1′-
biphenyl]-4,4′-diylbis(azanediyl))bis(2-
(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol)

Biosynthesis of
l-alanine [127]

tert-butyl 2-(4-(benzyloxy)benzamido)-3-
carbamoyl-4,7-dihydrothieno
[2,3-c]pyridine-6(5H)-carboxylate

Biosynthesis of
l-alanine [128]

N1, N3-bis(benzo[d]thiazol-2-yl)-2-
(isonicotinamido)cyclobutane-1,3-dicarboxamide

Biosynthesis of
l-alanine [129]

(Z)-N-(2-isopropoxyphenyl)-2-oxo-2-((3-
(trifluoromethyl)cyclohexyl)amino)acetimidic acid

Biotin biosynthesis
pathway [129]

(E)-4-((2-(1-naphthoyl)hydrazono)methyl)
benzoic acid

Biotin biosynthesis
pathway [130]

N-(2,5-diethoxy-4-(3-(4-nitro-1,3-dioxoisoindolin-2-
yl)propanamido)phenyl)
benzamide

Cell wall [131]
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Table 5. Cont.

Structure IUPAC Name Enzymatic Inhibition

(Z)-N-(2-(5-methyl-1H-1,2,4-triazol-3-yl)
phenyl)-4-(methylsulfonamido)benzimidic acid Cell wall [132]

(Z)-5-(furan-3-ylmethylene)-6-hydroxy-3-(4-
methoxyphenyl)-2-thioxo-2,5-dihydropyrimidin-
4(3H)-one

Cell wall [133]

N-(1,3-dioxo-2-(2-(pyrrolidin-1-yl)ethyl)-2,3-
dihydro-1H-benzo[de]isoquinolin-5-yl)-N-
oxohydroxylammonium

DNA metabolism [134]

2-(10-hydroxydecyl)-5,6-dimethoxy-3-
methylcyclohexa-2,5-diene-1,4-dione DNA metabolism [135]

7-chloro-3,5-dihydro-4H-imidazo [4,
5-d]pyridazin-4-one DNA metabolism [136]

4-(7-chloroquinolin-4-yl)-N-(4-
fluorophenyl)piperazine-1-carbothioamide DNA topology [137]

4-((3-acetyl-1-benzyl-2-methyl-1H-indol-5-
yl)oxy)butanoic acid Folate pathway [138]
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Table 5. Cont.

Structure IUPAC Name Enzymatic Inhibition

5-(4-nitrophenyl)furan-2-carboxylic acid Iron acquisition [139]

1-(3-chloro-4-methylphenyl)-3-tosylpyrrolidine-
2,5-dione

Iron acquisition
control [140]

(E)-N-(4-(2-(4-((5-(diethylamino)pentan-2-
yl)amino)-6-methoxyquinolin-2-yl)vinyl)phenyl)-N-
oxohydroxylammonium

Needed to withstand
ROS- and
RNS-induced stress
[141]

(Z)-4-((2-(4-(4-bromophenyl)thiazol-2-
yl)hydrazono)methyl)-2-methoxy-6-nitrophenol Protein synthesis [142]

3-(((Z)-5-((E)-4-(benzyloxy)benzylidene)-3-methyl-
4-oxothiazolidin-2-ylidene)amino)benzoic acid

Shikimate pathway
[143]

7-((4,5-dihydroxy-6-(hydroxymethyl)-3-((3,4,5-
trihydroxy-6-methyltetrahydro-2H-pyran-2-
yl)oxy)tetrahydro-2H-pyran-2-yl)oxy)-5-hydroxy-2-
(4-hydroxyphenyl)chroman-4-one

Shikimate pathway
[144]

2-phenyl-5-(4H-1,2,4-triazol-4-yl)benzo[d]oxazole Unknown [145]

5. Data Application and Management in Tuberculosis Drug Development

Massive data and complex data analysis are the hallmark of the fourth industrial
revolution (4IR), profoundly impacting our daily lives’ coordination and conduct. The
rise of a big data approach transformed our strategies to deal with age-old challenges in
tuberculosis drug development through innovation in cloud data storage and management
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and improvement in bioinformatics and cheminformatics algorithms. Furthermore, the
affordable sequencing technology enables studying all aspects of molecular characters of
diseases. Examples are epigenetics, RNA sequencing, metagenomics, targeted sequencing,
whole-genome sequencing, and variant detection sequencing [146]. SBDD and other forms
of drug development leverage the analysis of vast biological and chemical data generated
and stored on publicly available database repositories in cyberspace [147].

Considering that tuberculosis is a long-standing disease, volumes of accumulated
information await usage to curb this infection. Information on TB drug development is
available on the TB Database (http://tbdb.bu.edu/tbdb_sysbio/MultiHome.html; accessed
on 5 September 2021) [148,149]. Similarly, Mycobrowser (https://mycobrowser.epfl.ch/;
accessed on 5 September 2021) [150] contains information on mycobacterium multi-omics.
This repository [150] stores experimental and computational models of TB molecular
mechanism pathways and several pathogenic mycobacteria. Mycobrowser also connects
with UniProt (https://www.uniprot.org/; accessed on 5 September 2021) [151], the most
widely used protein database containing mycobacterium protein information. Clinical data
on TB are also accessible on the TB Portals (https://tbportals.niaid.nih.gov/; accessed on 5
September 2021) [152]. Innovations in structural biology and bioinformatics resulted in
an influx of structural data. These interventions led to thousands of 3D protein structures
generated from X-ray crystallography, nuclear magnetic resonance (NMR), cryo-electron
microscopy (cryo-EM), and homology modeling experiments. PDB [19], PDBsum [153], and
other structural databases store these research results. Hence, the availability of chemical
libraries (Table 6) was made possible by expanding the digital chemical space [124] and
advancements in chemical synthesis [154].

Table 6. Accessible public and commercial repositories on TB drug development.

Database Number of
Compounds Website * Ref.

** Enamine REAL 700 million https://enamine.net/ [155]
** ZINC 230 million http://zinc.docking.org/ [156]

** GDB-17 166 billion http://gdb.unibe.ch/ [157]
** PubChem 97 million https://pubchem.ncbi.nlm.nih.gov/ [147]

** ChemSpider [142] 77 million http://www.chemspider.com/ [158]
*** eMolecules 24.6 million http://www.emolecules.com

** ChEMBL 1.9 million https://www.ebi.ac.uk/chembl/ [159]
*** ASINEX 600,000 http://www.asinex.com

** NCI 460,000 https://cactus.nci.nih.gov/download/roadma/ [160]

Note: * links accessed 5 September 2021, ** and *** indicate public and commercial types of databases, respectively.

5.1. SBDD Based on Mtb Proteins

The availability of therapeutically important protein 3D structures made SBDD the
most desirable approach for drug design and development ahead of ligand-based drug de-
sign (LBDD). However, to enhance the success rate of recent drug development initiatives,
it has become customary to integrate SBDD with LBDD approaches in a complementary
manner. Using the 3D structures of targets to study and exploit the catalytic pocket, SBDD
can search and create appropriate ligands that can subsequently be verified and optimized
experimentally. To mitigate the difficulties associated with experimental techniques, several
types of SB and LB tactics, or a mix of them, might be used at various phases of TB drug
design and development. With the availability of TB multi-omics and a large amount of
structural biodata, we can use cheminformatics data mining, data engineering, docking,
and homology modeling to identify potential targets.

Virtual screening facilitates choosing the most promising prospective ligand(s) from
a database comprising millions of identified molecules for a specific tuberculosis target.
The output of candidate compound validation using structure-activity (SA) studies enables
a better understanding of the mechanism of action and ADMET (absorption, distribu-

http://tbdb.bu.edu/tbdb_sysbio/MultiHome.html
https://mycobrowser.epfl.ch/
https://www.uniprot.org/
https://tbportals.niaid.nih.gov/
https://enamine.net/
http://zinc.docking.org/
http://gdb.unibe.ch/
https://pubchem.ncbi.nlm.nih.gov/
http://www.chemspider.com/
http://www.emolecules.com
https://www.ebi.ac.uk/chembl/
http://www.asinex.com
https://cactus.nci.nih.gov/download/roadma/
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tion, metabolism, excretion, and toxicity) properties, thus allowing better development of
compounds with improved activity and better pharmacological profiles. The information
gathered from this research (both good and negative outcomes) may be saved and used for
additional iteration and technique optimization in the future design of new tuberculosis
drugs. More than 800 CADD software and webservers (free or commercial) are available,
hosted by the Swiss Institute of Bioinformatics at www.click2drug.org (accessed on 5
September 2021). These provide unlimited opportunities to explore drug discovery and
design [1]. Table 7 summarizes some available CADD software.

Table 7. Accessible websites to retrieve software for CADD.

Purpose Program Website * Refs.

Prediction of binding
sites and drugability

** fpocket https://github.com/Discngine/fpocket [161,162]

** PockDrug http://pockdrug.rpbs.univ-paris-diderot.fr/cgi-bin/index.py?
page=home [163]

** PocketQuery http://pocketquery.csb.pitt.edu/ [164]
** PASS http://www.ccl.net/cca/software/UNIX/pass/overview.html [165]

Docking

** Autodock http://autodock.scripps.edu/ [166]

*** GOLD https://www.ccdc.cam.ac.uk/solutions/csddiscovery/
components/gold/ [167]

*** Glide https://www.schrodinger.com/glide/ [168]
*** FlexX https://www.biosolveit.de/flexx/index.html [169]

QSAR
*** SeeSAR https://www.biosolveit.de/SeeSAR/ [170]

** Open3DQSAR http://open3dqsar.sourceforge.net/?Home [171]
** ChemSAR http://chemsar.scbdd.com/ [172]

ADMET

*** QikProp https://www.schrodinger.com/qikprop [173]
*** ADMET Predictor https://www.simulations-plus.com/software/overview/ [174]

** admetSAR http://lmmd.ecust.edu.cn/admetsar1/home/ [175–177]
** VirtualToxLab http://www.biograf.ch/index.php?id=home [15,178–180]

Note: * links accessed 5 September 2021, ** and *** mean freely and commercially accessible, respectively.

SBDD takes advantage of target protein 3D structure availability. However, if the 3D
model of the therapeutically important receptor is not available, computational approaches
through homology modeling enable the 3D model prediction of the receptor. Homology
modeling or comparative modeling is the most reliable method for 3D protein structure
prediction. The methodology entails predicting the 3D structure of the receptor from a
homologous protein with at least a 40% similarity index. Threading and ab initio modeling
are also methods of protein structure prediction [15]. After obtaining the 3D structure of
the target, it is crucial to validate the model by examining the molecular characteristics in
a Ramachandran plot. This metric shows the distribution of the φ and ψ dihedral angle
conformations of the constituting residues in the receptor structure [179]. There are several
techniques to validate the predicted protein model [15,175,180].

After determining the target structure, the next step is to determine the catalytic pocket.
Catalytic or binding pockets are tiny spaces where ligands attach to the target, inducing the
intended result. Consequently, it is crucial to identify the most suitable location on the target
protein for ligand binding. Even though protein is dynamic in nature, only a few techniques
can identify possible binding residues in the binding pocket. Identification of binding sites
on a particular target requires the knowledge of interaction energy and van der Waals
(vdW) forces. There are many strategies for catalytic site mappings using interaction energy
computation through SBDD. This technique can identify locations on the target receptor
that interact positively with functional moieties on the drug-like compounds. These
approaches find probes that have energetically advantageous interactions with proteins.
Q-SiteFinder [176] is an energy-based technique for predicting catalytic sites widely utilized
in the pharmaceutical industry. It is possible to compute the vdW interaction energies of
proteins with a methyl probe by using this approach. Those with favored energy values
are maintained and grouped in the final product. The total interaction energies of these
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probe clusters serve as the determinant of their ranking. Aside from that, the functional
annotation of interacting protein residues in the binding site allows for the determination
of the binding site.

It is also essential to remember that additional possible binding sites, referred to
as allosteric sites, may also be present on the target protein surface. Drug development
attempts in the conventional sense frequently target the important (orthosteric) binding site
to prevent natural substrate binding. Besides, researchers have unveiled noncatalytic sites
of Mtb proteins. Shi and colleagues identified a second druggable binding site (allosteric)
in Mtb UDP-galactopyranose mutase (UGM) [181]. MS-208, a well-known Mtb-UGM
inhibitor, was categorized as a noncompetitive/mixed inhibitor based on NMR and ki-
netics investigations. This observation implies that MS-208 binds to another location
in the receptor and affects the natural enzyme substrate from recognizing the primary
pocket. They [181] predicted the allosteric sites for MS-208 on the enzyme via docking with
AutoDock Vina [182]. The two identified regions, designated A-site and S-site, show favor-
able and stable interaction with the ligand after molecular dynamics using Amber [183].
Simulations facilitate structural and functional relationship determination. Because the
A-site-bound structure demonstrated the most stable complex formation with good inter-
action energy and a higher number of contacts, they hypothesized that this site represents
an allosteric druggable binding site in Mtb-UGM [181].

After appropriate identification of all druggable sites on the receptor, next comes hit
discovery, accomplished by docking chemical libraries into the active cavity of the target
receptor. Earlier, the routine in lead discovery required choosing a specific collection of
ligands that can play a critical role in identifying and optimizing leads [177]. SBDD blends
two distinct approaches for hit search (VS and de novo design) into a single framework.

5.2. Virtual Screening as a Method of Lead Identification

Currently, vs. has emerged as a dynamic and profitable technique in the pharmaceu-
tical business, particularly for prospecting new drug-like compounds or so-called lead
identification [184]. There are two forms of VS: ligand-based vs. (LBVS) and structure-
based vs. (SBVS). Biological data is processed in LBVS to distinguish inactive molecules
from active ones. Based on consensus pharmacophores, this information facilitates highly
functional scaffold identification [185], similarity, or various descriptors. LBVS produces
results that are closely related to known active pharmaceutical ingredients. The proce-
dure involves scanning chemical libraries of structures to find molecules with known like
potency or that share a pharmacophore or moiety with known activity. The results are
typically positive (pharmacophore substructure similarity search) [186]. A moiety substruc-
ture search requires using the 2D- or 3D-structure of various ligands to find closely related
structures. Usually, comparable substances have similar effects when using ligand-based
techniques; thus, they are called similarity methods. For example, if one or more active
compounds are known, it is feasible to search a database for comparable but more potent
compounds [187].

SBVS allows docking numerous chemical compounds against an enzyme-binding or
catalytic site in a short time [188–191]. The computer algorithms facilitate target protein
docking with one of the vast libraries of drug-like chemicals that are commercially or
publicly accessible (Table 6). Subsequent steps for search refinement are molecular docking,
MD simulations, and experimental tests to obtain IC50 or other efficacy parameters [192].
SBVS relies on the scoring of ligands to function correctly. In contrast to ligand-based
techniques, structure-based techniques do not rely on previously collected experimental
data to be effective.

5.3. De Novo Drug Design—A Signature to the Drug Discovery Process

De novo drug design involves creating unique chemical compounds from the ground
up, starting with molecular building blocks. The essence of this technique is to design
chemical structures of tiny molecules that bind to the target active site with high affin-



Int. J. Mol. Sci. 2021, 22, 13259 26 of 39

ity [193], then test these structures experimentally. A variation in approach is typically
employed when designing from scratch, and the design algorithm must integrate the
search space information acquired. Usually, researchers incorporate positive and negative
designs with one another. When using the former strategy, a search is to constrain cer-
tain regions of chemical space, which increases the likelihood of discovering results with
notable characteristics. The search parameters are set in the negative mode to avoid choos-
ing false positives [194]. Despite its sufficiency in functional scoring analysis, chemical
compound design using computational approaches connects organic synthesis but cannot
replace it [195]. It is fundamental in the design stage to conduct a thorough evaluation of
candidates’ compounds. One of these evaluation tools is the scoring function; multiple
scoring functions for multi-objective drug discovery hybrids [196] create many different
characteristics simultaneously.

De novo drug design is in two categories: (A) ligand-based drug design and (B)
receptor/enzyme-based drug design. The latter method is popular currently. Creating
appropriate small molecules for enzyme-based design requires high-quality target protein
structures and precise knowledge of proteins’ active sites. The approach entails small
molecules designed by matching fragment moiety into the target proteins’ binding pockets.
The process requires using computer programs or co-crystallization of the ligand with
the receptor [197]. Two ways to execute the ligand-based design are by linking together
crucial components, such as atoms or fragments (single rings, amines, and hydrocarbons)
to produce an entirely new chemical molecule, or by simply generating ligands from a
single parent unit. The fragment-linking technique uses information of the active site to
map the likely interaction locations for the different functional groups contained in the
design drug fragments [198,199]. One must link these functional groups’ moieties to one
another to form an absolute compound. The fragment-growing method features fragment
development within the active site, monitored by appropriate search algorithms [199].

These search algorithms make use of scoring systems to determine the likelihood
of growth. Fragment-based de novo design is a method of creating new molecules that
use the whole chemical space. When using the linking technique, the selection of linkers
is imperative. The outside-in strategy and the inside-out approach are both methods
for anchoring fragments in the binding site. The outside-in system is the more common
method. The outside-in methodology involves the construction blocks placed near or on
the edge of the binding site, and the active site gradually expands inward. The inside-
out method uses construction pieces randomly placed within the active site region, then
constructed outward [100].

5.4. Molecular Docking and Density Functional Theory Applied to Mtb

Molecular docking has been a prime computational technique of SBVS against Mtb
enzymes. The molecular-docking technique was the subject of many published research
articles as a tool in drug design against Mtb (Table 8). According to the Himar1 transposon
mutagenesis study conducted by DeJesus in 2017 [200], the majority of the enzymes
targeted by this method are enzymes encoded by crucial genes, with the exclusion of
antigens BioA, NarL, 85c, EthR, and LipU. Although this technique assigns nonessentiality
to genes based on in vitro growth, it cannot be relied on to determine whether genes are
nonessential in vivo [201,202]. For instance, the NarL enzyme is necessary for anaerobic
survival throughout infection, while BioA is crucial for biotin synthesis during the latency
phase of Mycobacterium TB infection [203,204]. Furthermore, the EthR protein functions
in developing ethionamide resistance and, consequently, survives potentials after drug
treatment [205,206].



Int. J. Mol. Sci. 2021, 22, 13259 27 of 39

Table 8. Studies involving SBVS molecular-docking approaches against Mtb enzymes.

Program Library of Compounds Screened Enzyme (Function) Ref.

AutoDock Vina FDA-approved: DrugBank (1932); eLEA3D (1852) MurB and MurE (peptidoglycan
biosynthesis) [207]

ChemDiv dataset (135,755) DprE1 (arabinogalactan biosynthesis) [208]
NCI; Enamine; Asinex; ChemBridge; Vitas-M Lab

(total: 5.6 million) InhA (mycolic acid biosynthesis) [209]

AutoDock 4.0 Super Natural II database (570) RmlD (carbohydrate biosynthesis) [210]
CDOCKER Enamine REAL database (4.5 million) BioA (biotin biosynthesis) [203]

Frigate ZINC database (2 million) Antigen 85c (lipid metabolism) [211]
Glide FDA-approved (6282) LipU (lipid hydrolysis) [212]

ChEMBL antimycobacterial (30,789) DprE1 (arabinogalactan biosynthesis) [213]
FDA-approved (3176) PknA (protein kinase) [214]

Preselected from Maybridge database (1026) InhA (mycolic acid biosynthesis) [215]
Preselected from DrugBank database (1082) AroB (shikimate pathway) [216]

GOLD Drugs Now subset of ZINC database (409, 201) EthR (transcriptional regulator) [205]
GOLD and Plants Preselected from Enamine database (2050) MbtI (mycobactin synthesis) [138]

GOLD and RFScore Selection from 9 million compounds (4379) AroQ (Shikimate pathway) [217]

UCSF Chimera CDD-823953; GSK-735826A PyrG and PanK (siosynthesis of DNA
and RNA) [192]

Many studies of the different targeted enzymes indicate that many are engaged in
either intermediate metabolism or lipid metabolism in Mtb. In addition, DNA and RNA
regulatory enzymes and cell wall regulator proteins make up the remaining target proteins.
Researchers show at least three SBVS efforts against DprE1 and InhA, with InhA being the
most frequently targeted. Studies show that InhA is the ultimate target of both isoniazid
and ethionamide once activated [218]. As a result, InhA provides a validated target whose
suppression has an in vivo influence on the survival of Mtb. Also, numerous antimycobac-
terial medicines target DprE1 in the current anti-TB research pipeline [29,59]. PyrG, a newly
confirmed TB target, also attracted the attention of researchers [219]. The chemicals used in
most research works (Table 8) are from generic chemical databases containing millions of
compounds, while TB-specific databases and natural product, therapeutic repurposing-
focused, and other libraries comprise other chemical compounds reported. As a result,
the focus of these early drug discovery initiatives continues to be on totally new drug-
like chemical discoveries. The apparent lack of further experimental evidence (in vitro
or in vivo) showing compound bioactivity in many of these investigations (Table 8) is an
evident issue that precludes these anticipated compounds from being carried onward [206].

Another important computational tool in drug discovery is the density functional the-
ory (DFT), which applies to TB research for the investigations of catalytic processes [220,221],
structure-activity relationship analysis [222], and inhibitor potency [192,223]. Chi and col-
leagues [223] adopted DFT in an anti-tubercular study to confirm their first observations
of a change in an inhibitor-binding mechanism in the MbtI protein after adding a sub-
stituted enolpyruvyl moiety to the parent chemical structure previously generated from
isochorismate. From their [223] observation, there were two distinct binding mechanisms
(states 1 and 2) noted in the X-ray crystal structures of MbtI complexed with its inhibitors,
indicating that the active site is flexible enough to permit ligand binding. With the aid of
Gaussian 09 software application [224] and a theoretical-level hybrid B3LYP [225,226], they
computed the global minimum configuration of the (E)-3-(1-carboxyprop-1-enyloxy)-2-
hydroxybenzoic acid (AMT), Z-methyl-AMT, and E-methyl-AMT inhibitors complexed
in solution. The results revealed that the global minimum geometry of both free Z- and
E-methyl-AMT is comparable to its bound geometry (state 2), showing that its arrangement
enables binding to MbtI. The computation of conformational entropy quantities for the
three molecules indicated that Z-methyl-AMT is the least disorganized. Z-methyl-AMT
has a conformational lock provided by the methyl moiety in its structure. Even though a
pure Z-isomer has not yet surfaced to distinguish it from the E-isomer empirically, this dis-
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covery [224] justifies the powerful interaction of methyl-AMT to MbtI. It provides further
knowledge for the future creation of new and effective MbtI drug-like compounds with the
aid of DFT.

Despite the widespread success and popularity of DFT, it has flaws stemming from
the approximations employed in its operational mode. DFT is difficult to use for system
descriptions mainly composed of dispersion (van der Waals) forces, such as gaseous
systems, or systems in which dispersion contributes significantly, such as biomolecular
systems [227]. Thus, numerous research studies examined the incorporation of van der
Waals [228–230] to improve performance and enhance this technique. In addition to
these constraints, the description of global potential energy surfaces of charge exchange
excitations [230] is a prime restriction of DFT use in computational drug design. DFT usage
overly favors sophisticated users and requires thorough reviews to determine the level of
theory/methods to use for a particular system.

5.5. Advantages and Drawbacks of Computational Methods

The PDB [19] contains more than 2500 enzymes specifically on TB [206], and a good
guess is that there are likely thousands of ligand possibilities. The protein and ligand wealth
of data are immediately accessible on the Internet with a click. To better understand TB
proteins and their functionality, it is now feasible to examine them to know how to inhibit
them at the molecular level [231–233]. Even with computational technique advancement
for drug development, it is critical to remember that they are different from experimental
approaches; every methodology has certain limits that rely on the system and all other
relevant aspects of the studies [234–236].

The flexibility and efficiency of ligand-based drug design are the two most significant
advantages of this approach. LBDD indeed has a lengthy history and many identified
candidates, despite the absence of structural knowledge about the protein [237–239]. De-
spite this, the uses of ligand-based techniques require considering several factors. First
and foremost, ligand poses with the lowest conformational energy, which is frequently
different from the similar bioactive compound conformation [240,241]. LBDD requires
that ligands interact at the same active site and exhibit a similar conformation [240,241].
Second, for drugs to be deemed alike, they must be assessed using the same method and
conditions [242]. In a third instance, the occurrence of activity cliffs [243–245] induces
questioning the fundamental premise that “similar structures show comparable activities.”
Hence, while picking possible drug-like candidates from a pool of hits, investigators must
exercise caution during selection. Finally, considering the investigation aims, there are
challenges in measuring the impacts of solvation and enzyme flexibility. The advantages
of using SBVS for potential inhibitor discovery for a specific TB target [231,233] include
reduction in cost, time, and effort dissipated. The most promising hits identified go through
further experimental investigation and drug development. SBVS finds its best application
in screening millions of molecules for drug-like molecule identification.

On the other hand, the optimization and validation of the iteration approaches of
computation in virtual screening drug design and development are far from flawless. The
process is reliant on the enzyme system and chemical moiety utilized, resulting in prejudice
in the in silico model. The constraints associated with different models make it difficult
to establish that one approach is superior to the other. Many research findings have been
published in this area [246,247]. Another limitation of using computational study in drug
design is the computational cost inherent in incorporating protein mobility and solvent
parameters [126]. For instance, vs. methods disregard tautomerism and the protonation
effect. However, it considers the ionization level of the molecules, thus potentially missing
some lead hits. Fortunately, emerging computational systems are keeping up with these
drawbacks. Improved sampling methodologies, high-performance computing, molecular
dynamics, and multidisciplinary drug development frameworks are examples of new drug
discovery initiatives. These approaches enable simulations for a variety of enzyme targets
in nanoseconds [248–250]. Despite several advancements and current advances in SBDD, a
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reliable solution is yet to be uncovered and implemented in practice. For some difficulties
related to water molecule (solvation) inclusion and the flexibility of an enzyme molecule to
be resolved, they require breakthrough algorithms for accuracy [191].

6. Conclusions and Future Perspective

Tuberculosis continues to be a significant public health issue worldwide, prompting
the rapid discovery and development of new antimycobacterial medicines. CADD has
facilitated TB drug design and discovery. Currently, computers in medicine are a renowned
cornerstone in drug discovery and development research. Theoretical and computational
methods remain vital tools to search for potent therapeutic leads despite the harsh and
unfair criticism around their usage. There are successes achieved through various software
innovations in drug discovery and development pipelines, particularly in antitubercular
drug discovery and development. Continuous improvements in the capacity of computer
and software availability can improve the effectiveness of current computational tools
and their applications in various phases of the drug development pipeline. While these
approaches are plausible, they are not bulletproof because each instrument has limitations
and approximations frequently employed during the analytical process. Therefore, it is
advisable to combine several in silico techniques to avoid bias from using one software.
The implementation of SBDD in tuberculosis research resulted in the identification of many
antimycobacterial drugs that were already subjected to clinical assessment, demonstrating
their utility in the drug discovery and development framework. Although there is a
requirement for more work to accelerate the identification of anti-TB medicines, the status
of CADD in TB is a promising direction.

Another aspect of CADD is the nascent adoption of machine learning (ML) approaches
in drug development research. With the increasing amount of data accessible and the
sophisticated computers available, the world is witnessing a surge in drug discovery
research incorporating artificial intelligence (AI). The use of ML has swept throughout
the globe; integrating ML and deep learning (DL) strategies allows for effective and vast
solutions to issues related to drug design. This significant change in the drug development
framework facilitates interventions in personalized medicine and several relevant disorders,
such as cancer. While there are currently numerous FDA-approved applications of AI
in the healthcare sector holistically [251], the technology has not yet produced a viable
medication candidate, but this may not be too far in the future.

Presently, AI research addressing tuberculosis (TB) is typically concerned with di-
agnoses and treatment results. The full adoption of AI will accelerate the discovery of
innovative and effective anti-TB medicines. Eventually, AI might reduce the tremendous
burden imposed by TB on the world’s health systems. Another critical area of CADD is
the maturity of quantum computing and the perfection of clustered regularly interspaced
short palindromic repeats (CRISPR) [252]. These will revolutionize personalized medicine
and TB treatment in the future. Quantum computing can overcome most of the challenges
with the current computational approaches and the ability to proffer exact solutions to the
Schrödinger approximation equation for larger and more complex biomolecular systems.
This procedure will be a great relief to humanity in the future, as the scourge of TB may be
a thing of the past. CRISPR, a technique capable of gene modification, could be a viable
tool for the future eradication of TB. It could help affect treatment of TB at the latency stage
and possibly eliminate the bacterium via DNA modification. Hopefully, SBDD approaches
to TB drug discovery and development in the future will introduce a paradigm shift with
the hybrid incorporation of ML, AI, quantum computing, and CRISPR.
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198. Keserű, G.M.; Makara, G.M. Hit discovery and hit-to-lead approaches. Drug Discov. Today 2006, 11, 741–748. [CrossRef]
199. Tang, Y.; Zhu, W.; Chen, K.; Jiang, H. New technologies in computer-aided drug design: Toward target identification and new

chemical entity discovery. Drug Discov. Today Technol. 2006, 3, 307–313. [CrossRef]
200. DeJesus, M.A.; Gerrick, E.R.; Xu, W.; Park, S.W.; Long, J.E.; Boutte, C.C.; Rubin, E.J.; Schnappinger, D.; Ehrt, S.; Fortune, S.M.; et al.

Comprehensive essentiality analysis of the Mycobacterium tuberculosis genome via saturating transposon mutagenesis. MBio
2017, 8, e02133-16. [CrossRef] [PubMed]

201. Jiménez-Luna, J.; Cuzzolin, A.; Bolcato, G.; Sturlese, M.; Moro, S. A deep-learning approach toward rational molecular docking
protocol selection. Molecules 2020, 25, 2487. [CrossRef] [PubMed]

202. Abrahams, K.A.; Besra, G.S. Mycobacterial drug discovery. RSC Med. Chem. 2020, 11, 1354–1365. [CrossRef]
203. Billones, J.B.; Carrillo, M.C.O.; Organo, V.G.; Sy, J.B.A.; Clavio, N.A.B.; Macalino, S.J.Y.; Emnacen, I.A.; Lee, A.P.; Ko, P.K.L.;

Concepcion, G.P. In silico discovery and in vitro activity of inhibitors against Mycobacterium tuberculosis 7, 8-diaminopelargonic
acid synthase (Mtb BioA). Drug Des. Dev. Ther. 2017, 11, 563. [CrossRef] [PubMed]

204. Kumar, N.; Srivastava, R.; Prakash, A.; Lynn, A.M. Structure-based virtual screening, molecular dynamics simulation and
MM-PBSA toward identifying the inhibitors for two-component regulatory system protein NarL of Mycobacterium Tuberculosis.
J. Biomol. Struct. Dyn. 2020, 38, 3396–3410. [CrossRef]

205. Tatum, N.J.; Liebeschuetz, J.W.; Cole, J.C.; Frita, R.; Herledan, A.; Baulard, A.R.; Willand, N.; Pohl, E. New active leads for
tuberculosis booster drugs by structure-based drug discovery. Org. Biomol. Chem. 2017, 15, 10245–10255. [CrossRef] [PubMed]

206. Kingdon, A.D.; Alderwick, L.J. Structure-based in silico approaches for drug discovery against Mycobacterium tuberculosis.
Comput. Struct. Biotechnol. J. 2021, 19, 3708. [CrossRef] [PubMed]

207. Rani, J.; Silla, Y.; Borah, K.; Ramachandran, S.; Bajpai, U. Repurposing of FDA-approved drugs to target MurB and MurE enzymes
in Mycobacterium tuberculosis. J. Biomol. Struct. Dyn. 2020, 38, 2521–2532. [CrossRef]

208. Zhang, G.; Guo, S.; Cui, H.; Qi, J. Virtual screening of small molecular inhibitors against DprE1. Molecules 2018, 23, 524. [CrossRef]
[PubMed]

209. Ali, M.T.; Blicharska, N.; Shilpi, J.A.; Seidel, V. Investigation of the anti-TB potential of selected propolis constituents using a
molecular docking approach. Sci. Rep. 2018, 8, 12238. [CrossRef]

210. Ravichandran, R.; Ridzwan, N.F.W.; Mohamad, S.B. Ensemble-based high-throughput virtual screening of natural ligands
using the Super Natural-II database against cell-wall protein dTDP-4-dehydrorhamnose reductase (RmlD) in Mycobacterium
tuberculosis. J. Biomol. Struct. Dyn. 2020, 1–10. [CrossRef]

211. Scheich, C.; Szabadka, Z.; Vértessy, B.; Pütter, V.; Grolmusz, V.; Schade, M. Discovery of novel MDR-Mycobacterium tuberculosis
inhibitor by new FRIGATE computational screen. PLoS ONE 2011, 6, e28428. [CrossRef]

212. Kaur, G.; Pandey, B.; Kumar, A.; Garewal, N.; Grover, A.; Kaur, J. Drug targeted virtual screening and molecular dynamics of
LipU protein of Mycobacterium tuberculosis and Mycobacterium leprae. J. Biomol. Struct. Dyn. 2019, 37, 1254–1269. [CrossRef]
[PubMed]

213. Kumar, N.; Srivastava, R.; Prakash, A.; Lynn, A.M. Virtual screening and free energy estimation for identifying Mycobacterium
tuberculosis flavoenzyme DprE1 inhibitors. J. Mol. Graph. Model. 2021, 102, 107770. [CrossRef]

214. Sundar, S.; Thangamani, L.; Manivel, G.; Kumar, P.; Piramanayagam, S. Molecular docking, molecular dynamics and MM/PBSA
studies of FDA approved drugs for protein kinase a of Mycobacterium tuberculosis; application insights of drug repurposing.
Inform. Med. Unlocked 2019, 16, 100210. [CrossRef]

http://doi.org/10.1021/ci050458q
http://www.ncbi.nlm.nih.gov/pubmed/16563015
http://doi.org/10.2174/138920307781369427
http://www.ncbi.nlm.nih.gov/pubmed/17696867
http://doi.org/10.1021/jm001044l
http://doi.org/10.1021/ci9800211
http://doi.org/10.1021/ci0500177
http://www.ncbi.nlm.nih.gov/pubmed/16180913
http://doi.org/10.3390/ijms20112783
http://doi.org/10.1007/s11224-019-01422-w
http://doi.org/10.1016/0968-0004(89)90070-4
http://doi.org/10.1021/jm061356+
http://doi.org/10.1016/j.cbpa.2008.02.015
http://www.ncbi.nlm.nih.gov/pubmed/18331851
http://doi.org/10.1038/nrd1799
http://www.ncbi.nlm.nih.gov/pubmed/16056391
http://doi.org/10.1016/j.drudis.2006.06.016
http://doi.org/10.1016/j.ddtec.2006.09.004
http://doi.org/10.1128/mBio.02133-16
http://www.ncbi.nlm.nih.gov/pubmed/28096490
http://doi.org/10.3390/molecules25112487
http://www.ncbi.nlm.nih.gov/pubmed/32471211
http://doi.org/10.1039/D0MD00261E
http://doi.org/10.2147/DDDT.S119930
http://www.ncbi.nlm.nih.gov/pubmed/28280303
http://doi.org/10.1080/07391102.2019.1657499
http://doi.org/10.1039/C7OB00910K
http://www.ncbi.nlm.nih.gov/pubmed/29182187
http://doi.org/10.1016/j.csbj.2021.06.034
http://www.ncbi.nlm.nih.gov/pubmed/34285773
http://doi.org/10.1080/07391102.2019.1637280
http://doi.org/10.3390/molecules23030524
http://www.ncbi.nlm.nih.gov/pubmed/29495447
http://doi.org/10.1038/s41598-018-30209-y
http://doi.org/10.1080/07391102.2020.1867641
http://doi.org/10.1371/journal.pone.0028428
http://doi.org/10.1080/07391102.2018.1454852
http://www.ncbi.nlm.nih.gov/pubmed/29557724
http://doi.org/10.1016/j.jmgm.2020.107770
http://doi.org/10.1016/j.imu.2019.100210


Int. J. Mol. Sci. 2021, 22, 13259 38 of 39

215. Kuldeep, J.; Sharma, S.K.; Sharma, T.; Singh, B.N.; Siddiqi, M.I. Targeting Mycobacterium Tuberculosis Enoyl-Acyl Carrier Protein
Reductase Using Computational Tools for Identification of Potential Inhibitor and their Biological Activity. Mol. Inform. 2021,
40, 2000211. [CrossRef]

216. Sivaranjani, P.; Naik, V.U.; Madhulitha, N.R.; Kumar, K.S.; Chiranjeevi, P.; Alex, S.P.; Umamaheswari, A. Design of Novel
Antimycobacterial Molecule Targeting Shikimate Pathway of Mycobacterium tuberculosis. Indian J. Pharm. Sci. 2019, 81, 438–447.
[CrossRef]

217. Ballester, P.J.; Mangold, M.; Howard, N.I.; Robinson, R.L.M.; Abell, C.; Blumberger, J.; Mitchell, J.B.O. Hierarchical virtual
screening for the discovery of new molecular scaffolds in antibacterial hit identification. J. R. Soc. Interface 2012, 9, 3196–3207.
[CrossRef]

218. Chakraborty, S.; Rhee, K.Y. Tuberculosis drug development: History and evolution of the mechanism-based paradigm. Cold
Spring Harb. Perspect. Med. 2015, 5, a021147. [CrossRef] [PubMed]

219. Mori, G.; Chiarelli, L.R.; Esposito, M.; Makarov, V.; Bellinzoni, M.; Hartkoorn, R.C.; Degiacomi, G.; Boldrin, F.; Ekins, S.; de Jesus
Lopes Ribeiro, A.L.; et al. Thiophenecarboxamide derivatives activated by EthA kill Mycobacterium tuberculosis by inhibiting
the CTP synthetase PyrG. Chem. Biol. 2015, 22, 917–927. [CrossRef]

220. Rabi, S.; Patel, A.H.G.; Burger, S.K.; Verstraelen, T.; Ayers, P.W. Exploring the substrate selectivity of human sEH and M.
tuberculosis EHB Using QM/MM. Struct. Chem. 2017, 28, 1501–1511. [CrossRef]

221. Ramalho, T.C.; Caetano, M.S.; Josa, D.; Luz, G.P.; Freitas, E.A.; da Cunha, E.F.F. Molecular modeling of Mycobacterium tuberculosis
dUTpase: Docking and catalytic mechanism studies. J. Biomol. Struct. Dyn. 2011, 28, 907–917. [CrossRef]

222. Oliveira, C.G.; Maia, P.S.; Souza, P.C.; Pavan, F.R.; Leite, C.Q.F.; Viana, R.B.; Batista, A.A.; Nascimento, O.R.; Deflon, V.M.
Manganese (II) complexes with thiosemicarbazones as potential anti-Mycobacterium tuberculosis agents. J. Inorg. Biochem. 2014,
132, 21–29. [CrossRef]

223. Chi, G.; Manos-Turvey, A.; O’Connor, P.D.; Johnston, J.M.; Evans, G.L.; Baker, E.N.; Payne, R.J.; Lott, J.S.; Bulloch, E.M.M.
Implications of binding mode and active site flexibility for inhibitor potency against the salicylate synthase from Mycobacterium
tuberculosis. Biochemistry 2012, 51, 4868–4879. [CrossRef] [PubMed]

224. Frisch, M.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.;
Petersson, G.A.; et al. Gaussian 09, Revision d. 01; Gaussian Inc.: Wallingford, CT, USA, 2009; Volume 201.

225. Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab initio calculation of vibrational absorption and circular dichroism
spectra using density functional force fields. J. Phys. Chem. 1994, 98, 11623–11627. [CrossRef]

226. Beck, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648-6. [CrossRef]
227. Indarto, A. Theoretical Modelling and Mechanistic Study of the Formation and Atmospheric Transformations of Polycyclic Aromatic

Compounds and Carbonaceous Particles; Universal-Publishers: Gulf, CA, USA, 2010.
228. Hamada, I. van der Waals density functional made accurate. Phys. Rev. B 2014, 89, 121103. [CrossRef]
229. Grimme, S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J.

Comput. Chem. 2004, 25, 1463–1473. [CrossRef] [PubMed]
230. Cohen, A.J.; Mori-Sánchez, P.; Yang, W. Insights into current limitations of density functional theory. Science 2008, 321, 792–794.

[CrossRef]
231. Villoutreix, B.O.; Eudes, R.; Miteva, M.A. Structure-based virtual ligand screening: Recent success stories. Comb. Chem. High

Throughput Screen. 2009, 12, 1000–1016. [CrossRef]
232. Talele, T.T.; Khedkar, S.A.; Rigby, A.C. Successful applications of computer aided drug discovery: Moving drugs from concept to

the clinic. Curr. Top. Med. Chem. 2010, 10, 127–141. [CrossRef] [PubMed]
233. Clark, D.E. What has virtual screening ever done for drug discovery? Expert Opin. Drug Discov. 2008, 3, 841–851. [CrossRef]
234. Scior, T.; Bender, A.; Tresadern, G.; Medina-Franco, J.L.; Martínez-Mayorga, K.; Langer, T.; Cuanalo-Contreras, K.; Agrafiotis, D.K.

Recognizing pitfalls in virtual screening: A critical review. J. Chem. Inf. Modeling 2012, 52, 867–881. [CrossRef] [PubMed]
235. Hassan Baig, M.; Ahmad, K.; Roy, S.; Mohammad Ashraf, J.; Adil, M.; Haris Siddiqui, M.; Khan, S.; Amjad Kamal, M.; Provazník,

I.; Choi, I. Computer aided drug design: Success and limitations. Curr. Pharm. Des. 2016, 22, 572–581. [CrossRef] [PubMed]
236. Coupez, B.; Lewis, R. Docking and scoring-Theoretically easy, practically impossible? Curr. Med. Chem. 2006, 13, 2995–3003.
237. Fujita, T. Recent success stories leading to commercializable bioactive compounds with the aid of traditional QSAR procedures.

Quant. Struct.-Act. Relatsh. 1997, 16, 107–112. [CrossRef]
238. Gao, Q.; Yang, L.; Zhu, Y. Pharmacophore based drug design approach as a practical process in drug discovery. Curr. Comput.-

Aided Drug Des. 2010, 6, 37–49. [CrossRef] [PubMed]
239. Sardari, S.; Dezfulian, M. Cheminformatics in anti-infective agents discovery. Mini Rev. Med. Chem. 2007, 7, 181–189. [CrossRef]
240. Boström, J.; Norrby, P.-O.; Liljefors, T. Conformational energy penalties of protein-bound ligands. J. Comput.-Aided Mol. Des. 1998,

12, 383. [CrossRef]
241. Perola, E.; Charifson, P.S. Conformational analysis of drug-like molecules bound to proteins: An extensive study of ligand

reorganization upon binding. J. Med. Chem. 2004, 47, 2499–2510. [CrossRef]
242. Verma, J.; Khedkar, V.M.; Coutinho, E.C. 3D-QSAR in drug design-a review. Curr. Top. Med. Chem. 2010, 10, 95–115. [CrossRef]
243. Hu, Y.; Bajorath, J. Extending the activity cliff concept: Structural categorization of activity cliffs and systematic identification of

different types of cliffs in the ChEMBL database. J. Chem. Inf. Modeling 2012, 52, 1806–1811. [CrossRef]
244. Hu, Y.; Stumpfe, D.; Bajorath, J. Advancing the activity cliff concept. F1000Research 2013, 2, 199. [CrossRef] [PubMed]

http://doi.org/10.1002/minf.202000211
http://doi.org/10.36468/pharmaceutical-sciences.528
http://doi.org/10.1098/rsif.2012.0569
http://doi.org/10.1101/cshperspect.a021147
http://www.ncbi.nlm.nih.gov/pubmed/25877396
http://doi.org/10.1016/j.chembiol.2015.05.016
http://doi.org/10.1007/s11224-017-0982-3
http://doi.org/10.1080/07391102.2011.10508617
http://doi.org/10.1016/j.jinorgbio.2013.10.011
http://doi.org/10.1021/bi3002067
http://www.ncbi.nlm.nih.gov/pubmed/22607697
http://doi.org/10.1021/j100096a001
http://doi.org/10.1063/1.464913
http://doi.org/10.1103/PhysRevB.89.121103
http://doi.org/10.1002/jcc.20078
http://www.ncbi.nlm.nih.gov/pubmed/15224390
http://doi.org/10.1126/science.1158722
http://doi.org/10.2174/138620709789824682
http://doi.org/10.2174/156802610790232251
http://www.ncbi.nlm.nih.gov/pubmed/19929824
http://doi.org/10.1517/17460441.3.8.841
http://doi.org/10.1021/ci200528d
http://www.ncbi.nlm.nih.gov/pubmed/22435959
http://doi.org/10.2174/1381612822666151125000550
http://www.ncbi.nlm.nih.gov/pubmed/26601966
http://doi.org/10.1002/qsar.19970160202
http://doi.org/10.2174/157340910790980151
http://www.ncbi.nlm.nih.gov/pubmed/20370694
http://doi.org/10.2174/138955707779802633
http://doi.org/10.1023/A:1008007507641
http://doi.org/10.1021/jm030563w
http://doi.org/10.2174/156802610790232260
http://doi.org/10.1021/ci300274c
http://doi.org/10.12688/f1000research.2-199.v1
http://www.ncbi.nlm.nih.gov/pubmed/24555097


Int. J. Mol. Sci. 2021, 22, 13259 39 of 39

245. Stumpfe, D.; de León, A.V.; Dimova, D.; Bajorath, J. Follow up: Advancing the activity cliff concept, part II. F1000Research 2014,
3, 75. [CrossRef] [PubMed]

246. Geppert, H.; Vogt, M.; Bajorath, J. Current trends in ligand-based virtual screening: Molecular representations, data mining
methods, new application areas, and performance evaluation. J. Chem. Inf. Modeling 2010, 50, 205–216. [CrossRef]

247. Jain, A.N.; Nicholls, A. Recommendations for evaluation of computational methods. J. Comput.-Aided Mol. Des. 2008, 22, 133–139.
[CrossRef]

248. Lindorff-Larsen, K.; Maragakis, P.; Piana, S.; Shaw, D.E. Picosecond to millisecond structural dynamics in human ubiquitin. J.
Phys. Chem. B 2016, 120, 8313–8320. [CrossRef]

249. Noé, F. Beating the millisecond barrier in molecular dynamics simulations. Biophys. J. 2015, 108, 228. [CrossRef] [PubMed]
250. Shi, J.; Nobrega, R.P.; Schwantes, C.; Kathuria, S.V.; Bilsel, O.; Matthews, C.R.; Lane, T.J.; Pande, V.S. Atomistic structural ensemble

refinement reveals non-native structure stabilizes a sub-millisecond folding intermediate of CheY. Sci. Rep. 2017, 7, 44116.
[CrossRef]

251. Park, C.-W.; Seo, S.W.; Kang, N.; Ko, B.; Choi, B.W.; Park, C.M.; Chang, D.K.; Kim, H.; Kim, H.; Lee, H.; et al. Artificial intelligence
in health care: Current applications and issues. J. Korean Med. Sci. 2020, 35, e379. [CrossRef]

252. Al-Attar, S.; Westra, E.R.; Van Der Oost, J.; Brouns, S.J. Clustered regularly interspaced short palindromic repeats (CRISPRs): The
hallmark of an ingenious antiviral defense mechanism in prokaryotes. Biol. Chem. 2011, 392, 277–289. [CrossRef]

http://doi.org/10.12688/f1000research.3788.1
http://www.ncbi.nlm.nih.gov/pubmed/24741442
http://doi.org/10.1021/ci900419k
http://doi.org/10.1007/s10822-008-9196-5
http://doi.org/10.1021/acs.jpcb.6b02024
http://doi.org/10.1016/j.bpj.2014.11.3477
http://www.ncbi.nlm.nih.gov/pubmed/25606670
http://doi.org/10.1038/srep44116
http://doi.org/10.3346/jkms.2020.35.e379
http://doi.org/10.1515/bc.2011.042

	Introduction 
	TB Pathology, Management, and Control 
	TB Drug Management and Classification 
	First-Line Drugs 
	Second-Line Drugs 
	Emergence and Treatment of Multi-Drug Resistant TB (MDR-TB) and Extensively Drug-Resistant TB (XDR-TB) 
	Current TB Drugs’ Mechanism and Resistance Development 
	New TB Drugs Discovered through HTS and Other Approaches 
	Protein Target in Mtb Drug Design 

	SBDD as an Indispensable Tool in Computational Drug Design 
	Status of Computational-Aided Drug Design and Discovery in TB 
	Data Application and Management in Tuberculosis Drug Development 
	SBDD Based on Mtb Proteins 
	Virtual Screening as a Method of Lead Identification 
	De Novo Drug Design—A Signature to the Drug Discovery Process 
	Molecular Docking and Density Functional Theory Applied to Mtb 
	Advantages and Drawbacks of Computational Methods 

	Conclusions and Future Perspective 
	References

