Supporting Information ## Micellar carriers of active substances based on amphiphilic PEG/PDMS heterograft copolymers: synthesis and biological evaluation of safe use on skin Justyna Odrobińska¹, Magdalena Skonieczna^{2,3}, and Dorota Neugebauer ^{1,*} ## **Content:** **Synthesis procedure S1.** Synthesis of P(AlHEMA-*co*-MPEGMA) with EiBBr initiator (Example for I). **Synthesis procedure S2.** Synthesis of P(AlHEMA-*co*-MPEGMA) with 4nBREBr₂ initiator (Example for IV). Procedure S3. Cell culture. Table S1. Dh by volume for obtained micelles. **Table S2.** Maximum amount of released drug for pH=7.4a and pH=5.5b in time. **Table S3.** Results of Annexin V/PI double staining apoptosis assay. **Table S4.** Typical graphs of Annexin V/PI double staining apoptosis assay. **Figure S1.** ¹H NMR spectrum of the reaction mixture for copolymerization I, where m, p - the resonances related to monomer and polymer, respectively. **Figure S2.** GPC traces of representative AlHEMA/MPEGMA copolymers. Figure S3. ¹H NMR spectra of (a) PDMS-OH, (b) PDMS-Br and (c) PDMS-N₃. Figure S4. ¹³C NMR spectra of (a) PDMS-OH, (b) PDMS-N₃. Figure S5. GPC traces before and after modifications of PDMS. **Figure S6.** Plots of intensity I₃₃₆/I₃₃₂ ratio as a function of the logarithm of copolymer concentration in aqueous solution determined by spectrofluorometry. **Figure S7.** Size distribution intensity plots for micelles formed by heterografted copolymers (a) Ic, (b) IIIc, and (c) Vc. **Figure S8.** Kinetic profiles for (a) VitC, and (b) FA released from heterografted polymer micelles in PBS, pH=5.5. **Figure S9.** Increase in confluency of (a) Me45, (b) 451-Lu cells in time treated with copolymer IIIc_FA ($c = 100 \mu g/mL$), CTR is control. **Figure S10.** Me45 normal and senescent cells observed under the microscope after senescence test. Magnification 100 x, transit channel, scale bars $100 \text{ }\mu\text{m}$. ¹ Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland ² Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland ³ Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland ^{*} Correspondence: dorota.neugebauer@polsl.pl Synthesis procedure S1. Synthesis of P(AlHEMA-co-MPEGMA) with EiBBr Initiator (Example for I). dNdpy (41.05 mg, 0.101 mmol), MPEGMA (6.20 mL, 13.39 mmol), AlHEMA (1.00 g, 4.46 mmol), and solvents (10 vol.% of monomers; MeOH : ANS = 1: 6): MeOH (0.103 mL), ANS (0.612 mL) were placed in a Schlenk flask and degassed by two freeze–pump–thaw cycles. Then, EiBBr (6.62 μ L, 0.045 mmol) was added and degassed again. After that, CuBr (6.40 mg, 0.045 mmol) was added. The reaction flask was immersed in an oil bath at 60 °C. The polymerization was stopped by exposure to air. Then, the mixture was dissolved in chloroform and passed through a neutral alumina column to remove CuBr. The solution was concentrated and the polymer was precipitated by dropwise addition of a concentrated solution into diethyl ether. The product was isolated by decantation and dried under vacuum to constant mass. **Synthesis procedure S2.** Synthesis of P(AlHEMA-*co*-MPEGMA) with 4nBREBr₂ Initiator (Example for IV). 4nBREBr₂ (22.10 mg, 0.051 mmol), dNdpy (41.05 mg, 0.101 mmol), MPEGMA (6.20 mL, 13.39 mmol), AlHEMA (1.00 g, 4.47 mmol), and solvents (10 vol.% of monomers; MeOH: ANS = 1: 3): MeOH (0.180 mL), ANS (0.540 mL) were placed in a Schlenk flask and then degassed by three freeze-pump-thaw cycles. After that, CuBr (6.40 mg, 0.045 mmol) was added. The reaction flask was immersed in an oil bath at 60 °C. The next steps were performed according to above-described procedure for the synthesis of P(AlHEMA-*co*-MMA) with EiBBr (Synthesis procedure S1). ## Procedure S3. Cell culture. All cells (Me45, 451-Lu, NHDF, HaCaT) were grown in sterile culture bottles with a culture area of 75 cm² in DMEM-F12 medium supplemented with 10% (v/v) inactivated fetal bovine serum (FBS) (EURx, Poland) and 1% antibiotics (10,000 μ g/mL of streptomycin and 10,000 units/mL of penicillin) (Sigma-Aldrich, Germany) at 37 °C in a humidified atmosphere with 5% CO₂. Cell lines were seeded in a 96-well plate at a density of 10,000 cells per well in the case of MTT tests and a density of 100000 cells per well in the case of apoptosis and cell cycle analyses (6-well plate). **Table S1.** Dh by volume for obtained micelles. | No | $D_h \pm SD$ (nm) | | | | | | |------|-------------------|--------|--------|-------------------|--|--| | | empty | VitC | ARG | FA | | | | Ic | 154±21 | 543±70 | 260±4 | 690±31 | | | | IIc | a64±17 | a92±8 | a117±2 | 134±4 | | | | IIIc | 431±98 | 267±55 | 231±27 | ^a 50±8 | | | | IVc | 385±9 | 142±13 | 458±82 | 105±3 | | | | Vc | 93±10 | 178±26 | 364±20 | 10±1 | | | ^a value of particle size for dominated fraction **Table S2.** Maximum amount of released drug for pH=7.4a and pH=5.5b in time. | No. – | Maximum amount of released drug (%)/time (min) | | | | | | | |-------|--|--------|--------|------|--------|--------|--| | | VitCa | VitCb | ARGa | ARGb | FAa | FAb | | | Ic | 43/60 | 77/75 | 23/10 | n.o. | 95/90 | 80/180 | | | IIc | 63/130 | 63/180 | 74/60 | n.o. | 84/240 | 69/180 | | | IIIc | 31/130 | 13/120 | 92/180 | n.o. | 99/120 | 76/180 | | | IVc | 24/50 | 99/75 | 96/180 | n.o. | 92/300 | 53/180 | | | Vc | 24/80 | 59/50 | n.o. | n.o. | 81/300 | 82/180 | | n.o.: no released substance was observed **Table S3.** Results of Annexin V/PI double staining apoptosis assay. | IIIc_FA | | % of cells ± S.D. | | | | | | |--------------------------|-------|-------------------|-----------------|-----------------|------------------|--|--| | concentration
[µg/mL] | | A-/PI- | A+/PI- | A+/PI+ | A-/PI+ | | | | 0 (CTR) | NHDF | 95.82 ± 0.24 | 1.64 ± 0.15 | 1.17 ± 0.13 | 1.36 ± 0.18 | | | | 3 | | 95.61 ±0.51 | 1.34 ± 0.18 | 0.96 ± 0.30 | 2.09 ± 0.26 | | | | 100 | | 95.83 ± 0.38 | 0.64 ± 0.14 | 1.36 ± 0.29 | 2.17 ± 0.66 | | | | 0 (CTR) | HaCaT | 85.07 ± 0.67 | 0.19 ± 0.06 | 0.17 ± 0.04 | 14.58 ± 0.72 | | | | 3 | | 80.21 ± 1.48 | 0.24 ± 0.16 | 0.46 ± 0.11 | 19.09 ± 1.27 | | | | 100 | | 87.94 ± 2.76 | 0.05 ± 0.08 | 0.19 ± 0.13 | 11.81 ± 2.65 | | | | 0 (CTR) | Me45 | 90.22 ± 1.63 | 0.03 ± 0.02 | 0.07 ± 0.03 | 9.68 ± 1.60 | | | | 3 | | 91.00 ± 1.44 | 0.01 ± 0.01 | 0.07 ± 0.03 | 8.91 ± 1.42 | | | | 100 | | 93.43 ± 1.42 | 0.02 ± 0.02 | 0.06 ± 0.03 | 6.49 ± 1.41 | | | A-/PI-: live cells; A+/PI-: early apoptosis; A+/PI+: late apoptosis; A-/PI+: necrosis **Table S4.** Typical graphs of Annexin V/PI double staining apoptosis assay. **Figure S1.** ¹H NMR spectrum of the reaction mixture for copolymerization I, where m, p - the resonances related to monomer and polymer, respectively. **Figure S2.** GPC traces of representative AlHEMA/MPEGMA copolymers. Figure S3. ¹H NMR spectra of (a) PDMS-OH, (b) PDMS-Br and (c) PDMS-N₃. **Figure S4.** ¹³C NMR spectra of (a) PDMS-OH, (b) PDMS-N₃. Figure S5. GPC traces before and after modifications of PDMS. **Figure S6.** Plots of intensity I₃₃₆/I₃₃₂ ratio as a function of the logarithm of copolymer concentration in aqueous solution determined by spectrofluorometry. **Figure S7.** Size distribution intensity plots for micelles formed by heterografted copolymers (a) Ic, (b) IIIc, and (c) Vc. **Figure S8.** Kinetic profiles for (a) VitC, and (b) FA released from heterografted polymer micelles in PBS pH=5.5. **Figure S9.** Increase in confluency of (a) Me45, (b) 451-Lu cells in time treated with copolymer IIIc_FA ($c = 100 \mu g/mL$), CTR is control. **Figure S10.** Me45 normal and senescent cells observed under the microscope after senescence test. Magnification $100 \, x$, transit channel, scale bars $100 \, \mu m$.