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Abstract: Chronic inflammation contributes to the development and progression of various tumors.
Especially where the inflammation is mediated by cells of the innate immune system, the NLRP3
inflammasome plays an important role, as it senses and responds to a variety of exogenous and
endogenous pathogen-associated molecular patterns (PAMPs) and damage-associated molecular
patterns (DAMPs). The NLRP3 inflammasome is responsible for the maturation and secretion of
the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18 and for the induction of a type of
inflammatory cell death known as pyroptosis. Overactivation of the NLRP3 inflammasome can be
a driver of various diseases. Since leukemia is known to be an inflammation-driven cancer and
IL-1β is produced in elevated levels by leukemic cells, research on NLRP3 in the context of leukemia
has increased in recent years. In this review, we summarize the current knowledge on leukemia-
promoting inflammation and, in particular, the role of the NLRP3 inflammasome in different types of
leukemia. Furthermore, we examine a connection between NLRP3, autophagy and leukemia.
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1. Introduction

Leukemia is a broad group of clonal hematological malignancies affecting the mat-
uration and/or proliferation of cells of myeloid or lymphoid lineages and can be further
subdivided into acute and chronic forms. In adults, the most common types of leukemia are
acute myeloid leukemia (AML) [1,2], chronic lymphocytic leukemia (CLL) [3,4] and chronic
myeloid leukemia (CML) [5], whereas acute lymphocytic leukemia (ALL) [6] occurs mainly
in children. These four main types of leukemia differ in the speed of disease development
and progression, the type of hematopoietic cells that are affected, the genetic alterations
involved and treatment options and outlooks [1–6]. Leukemia is the 10th most common
cancer in the United States, and although treatment options have improved over the past
years, the five-year relative survival rate is comparatively low at 63.7% (2010–2016), and
leukemia is still listed as the seventh leading cause of cancer death in the United States [7].

According to the concept of immune surveillance of cancer, the immune system
is usually able to recognize and eliminate transformed cells [8]. However, tumor cells
often develop mechanisms to evade detection and destruction by the immune system,
and inflammation can even support cancer development and progression. Especially,
chronic inflammation drives many types of cancers by promoting mutagenesis, preventing
tumor surveillance, supporting clonal evolution and facilitating tumor spreading, among
other effects [9,10]. Therefore, both the avoidance of immune destruction and tumor-
promoting inflammation were defined, among others, as hallmarks of cancer by Hanahan
and Weinberg [11]. It is well-known that inflammation in the tumor microenvironment
is associated with the release of various growth factors and proinflammatory cytokines,
such as interleukin-1 (IL-1), IL-4, IL-6, tumor necrosis factor-α (TNF-α), transforming
growth factor-β (TGF-β) and IL-10, able to promote tumorigenesis [11–13]. This is the
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case not only for solid tumors but, also, for hematopoietic malignancies such as leukemia
and myelodysplastic syndrome (MDS), which are often characterized by strong chronic
inflammation stimulated by the overproduction of inflammatory cytokines [14].

Disorders of the hematopoietic system arise from alterations in the proliferation and
differentiation of hematopoietic stem cells (HSCs), which are responsible for the production
and maintenance of the immune system. Chronic inflammation can cause dysfunctional
HSC maturation and the abnormal differentiation of immune cells; thus, malignancies of the
hematopoietic system often display an elevated production of proinflammatory cytokines,
which is often a predictor of a poor prognosis [15]. In particular, IL-1 has been recognized
as a major mediator connecting inflammation and tumor promotion [16]. Among the IL-1
family, which comprises 11 cytokines/ligands and 10 related receptors [17,18], interleukin-
1β (IL-1β) stands out as one of the most potent proinflammatory cytokines, initiating and
amplifying inflammatory responses [19] and linking the innate and adaptive immune
systems. However, when released within the tumor microenvironment or during chronic
inflammation, IL-1β can support tumor development and progression by interfering with
different mechanisms, as described in detail by Bent et al. [20].

The functional role of IL-1β in hematological malignancies has been elucidated in
recent studies and is summarized in several reviews [19,21,22]. Already, in 1989, a study
suggested that IL-1 may act as an autocrine growth factor for AML cells [23]. This has
recently been confirmed in AML patients, who often exhibit enhanced levels of IL-1β
and IL-1 receptors. In the majority of AML patients, IL-1 secreted into the bone marrow
microenvironment plays a major role in favoring the clonogenicity of myeloid progenitor
cells while preventing the growth of normal precursors [24]. IL-1β is thought to increase cell
proliferation by stimulating the production of other growth factors and cytokines, such as
granulocyte-macrophage colony-stimulating factor (GM-CSF) [19,24]. Additionally, in ALL
patients, a highly dysregulated inflammatory state can be detected, which is characterized
by elevated circulating levels of proinflammatory cytokines such as IL-1β, TNF-α and
IL-6 [25]. Hematopoietic leukemic cells from the bone marrow of B-cell acute lymphocytic
leukemia (B-ALL) are involved in the production of proinflammatory mediators and
growth factors in ALL patients. This proinflammatory milieu was shown to stimulate the
proliferation and differentiation of normal stem and progenitor cells and to have a long-
term adverse effect on normal hematopoietic differentiation fates in the bone marrow [26].
Furthermore, upregulated IL-1 signaling plays an important role in CML by promoting
the proliferation and survival of primitive CML stem cells. Thus, IL-1 signaling might be a
potential therapeutic target to efficiently kill leukemic stem cells [27]. Indeed, blocking IL-1
signaling with monoclonal antibodies targeting the interleukin 1 receptor accessory protein
(IL1RAP and IL1R3) has been shown to have an antileukemic effect on CML and AML cells
in vivo [27,28]. Regarding CLL, specific polymorphisms in genes coding for IL-1β and IL-6
have been linked to an increased risk of developing CLL [29].

A crucial mechanism driving inflammatory processes and the production of the in-
flammatory cytokine IL-1β in immune cells is the activation of the NLRP3 inflammasome,
which is the best-characterized member of the inflammasome family. The NLRP3 in-
flammasome is a cytosolic pattern recognition receptor (PRR) that responds to different
pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns
(DAMPs) and metabolic changes. The activation of NLRP3 and formation of the NLRP3
inflammasome leads to caspase-1-mediated maturation and secretion of the proinflamma-
tory cytokines IL-1β and IL-18. In addition, gasdermin-D (GSDMD) cleavage by caspase-1
leads to pore formation in the cell membrane, which results in the inflammatory cell death
known as pyroptosis [30]. It is already well-established that inappropriate activation of
the NLRP3 inflammasome contributes to the onset and progression of various diseases,
including inflammatory disorders (inflammatory bowel diseases and rheumatoid arthritis);
neurodegenerative diseases (Parkinson’s disease, Alzheimer’s disease and multiple sclero-
sis) and metabolic disorders (type 2 diabetes and atherosclerosis) [31]. However, NLRP3
inflammasome formation has also been shown to be a key event in tumorigenesis. Depend-
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ing on the type of cancer, NLRP3 can have opposing functions, either promoting tumor
formation or, as some studies show, counteracting tumor development. This controversial
role of NLRP3 in the tumor development of various cancer types was well-summarized by
Hamarsheh and Zeiser [32].

Until recently, little was known about the influence of the NLRP3 inflammasome on
hematopoietic malignancies; however, the importance of the NLRP3 inflammasome is
becoming increasingly evident in hematological diseases. Therefore, this review discusses
chronic inflammation and the NLRP3 inflammasome in the context of leukemia and its
preforms and briefly summarizes the current knowledge about their interrelationships.

2. The NLRP3 Inflammasome

Inflammasomes are multiprotein complexes and an essential part of the innate im-
mune system. They belong to the family of pattern-recognition receptors (PRRs) and
link critical microbial and/or endogenous danger signals to caspase-1 activation and the
subsequent IL-1β secretion [30,33]. The inflammasome family consists of at least five
members: NLRP1, NLRP3, NLRC4, AIM2 and Pyrin. The NLRP3 inflammasome is the
best-characterized member of the NLRP subfamily of NOD-like receptors [34,35]. The
NLRP3 inflammasome is expressed in innate immune cells (monocytes, macrophages,
granulocytes and dendritic cells) but, also, in T and B lymphocytes and hematopoietic
stem progenitor cells (HSPCs) [36], where it acts as a sensor of changes in the microenvi-
ronment, cell activation and metabolic activity. It consists of three proteins that have to be
assembled to form the active complex. These include NOD-like receptor protein 3 (NLRP3),
apoptosis-associated speck-like protein (ASC) and pro-caspase-1 [33,37].

NLRP3 itself is a tripartite protein that consists of an amino-terminal pyrin domain
(PYD), a central nucleotide-binding and oligomerization domain (NACHT) and a carboxy-
terminal leucine-rich repeat (LRR) domain. Upon activation, the PYD domain interacts
with the amino-terminal PYD domain of ASC [38]. Whereas the NACHT domain has the
ATPase activity necessary for oligomerization of the inflammasome [39], the LRR domain
seems to be less important for the activation of NLRP3 [40]. Together with the adaptor
ASC—which consists of two protein interaction domains, an amino-terminal PYD domain
and a carboxy-terminal caspase recruitment domain (CARD)—and pro-caspase-1 [41],
NLRP3 forms the inflammasome complex. The effector pro-caspase-1 consists of an amino-
terminal CARD domain, a central, large catalytic domain (p20) and a carboxy-terminal
small catalytic domain (p10) [42]. In addition, the recently described NIMA-related kinase
7 (NEK7), a serine-threonine kinase known to be involved in mitosis, was identified as a
core component of inflammasome activation [43–46].

Since the uncontrolled formation of an inflammasome is potentially highly inflamma-
tory, several different signals must interact to ensure that its activation is tightly regulated.
Therefore, canonical NLRP3 inflammasome activation is often a two-step process consisting
of priming followed by activation [30,37,47].

The priming signal aims to upregulate the expression of inflammasome components
such as NLRP3 and pro-IL-1β at the transcriptional level. This occurs when distinct PAMPs
and DAMPs are recognized by PRRs such as the membrane-bound toll-like receptors (TLR)
or the cytoplasmic nucleotide-binding oligomerization domain-containing protein (NLR),
such as, for example, NOD1/2. Additionally, the recognition of endogenous cytokines such
as IL-1β and TNF by their receptors induces nuclear factor-κB (NF-κB), which activates
the transcription of inflammasome components and primes the cell for inflammasome
activation [48,49].

After the priming step, the inflammasome can be activated by various stimuli, as
recently summarized by Swanson et al. [30]. These usually do not act directly on NLRP3
but induce cellular stress and intracellular events that are then sensed by NLRP3, such
as K+ efflux [50–53], Ca2+ flux [54,55], Cl− efflux [56], mitochondrial dysfunction and
reactive oxygen species (ROS) production [57–59] or lysosomal damage [60,61]. As a
result of these processes, the inflammasome can be activated, which allows proximity-
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induced autoproteolytic cleavage of pro-caspase-1 between p20 and p10 to generate the
active caspase-1 tetramer, which is now able to proteolytically cleave the proinflammatory
cytokines pro-IL-1β and pro-IL-18 into their biologically active forms [30,37,42,47]. Caspase-
1 also cleaves GSDMD, enabling its amino-terminus to form a pore in the cell membrane, thus
initiating a proinflammatory form of lytic programmed cell death known as pyroptosis [62]
(Figure 1). This type of cell death is characterized by cell swelling, membrane rupture and,
subsequently, by the release of inflammatory compounds into the extracellular space, such
as IL-1β, IL-6 and IL-18 [63,64].
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Figure 1. The NLRP3 inflammasome. Oligomerization of NLRP3, ASC and pro-caspase 1 into
an active NLRP3 inflammasome leads to caspase-1 activation, which cleaves pro-interleukin-1β
(IL-1β) and pro-IL-18 into their active forms, IL-1β and IL-18. Biologically active IL-1β and IL-18
exit the cell and cause inflammation. Additionally, GSDMD is cleaved by capsase-1, whereupon its
amino-terminal end forms a transmembrane pore, leading to pyroptosis. NLRP3, NOD-like receptor
protein 3; ASC, apoptosis-associated speck like protein; NEK7, NIMA-related kinase 7; GSDMD,
Gasdermin-D; GSDMD-N, GSDMD amino-terminal cell-death domain; LRR, leucine-rich repeat;
PYD, pyrin domain and CARD, caspase activation and recruitment domain.

However, the NLRP3 inflammasome can also be activated via a noncanonical pathway,
in which cellular priming is unnecessary for inflammasome activation [30,37,65–67] and,
in some cell types such as human monocytes, in a one-step process [68,69]. This indicates
that the activation does not necessarily have to consist of two steps.

3. The Role of the NLRP3 Inflammasome in Different Types of Leukemia

Several studies have shown that dysregulated IL-1β secretion and/or signaling in
leukemia, especially AML, ALL and CML, positively correlates with disease progression
and poor prognosis. In addition, recent data also indicate that the NLRP3 inflammasome
plays an important role in hematological malignancies (Table 1 and Figure 2), as in, for
example, myelodysplastic syndrome (MDS), myeloproliferative neoplasms (MPNs) and
leukemia [36]. The genetic polymorphisms and expression profiles of NLRP3 and related
genes have been determined in MDS, AML, ALL and CML, revealing that certain polymor-
phisms in IL-1β, IL-18, NF-κB or NLRP3 could be potential predictors of these malignant
diseases [70–73].
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Table 1. Key findings of the role of the NLRP3 inflammasome in different hematologic malignancies.
NLRP3, NOD-like receptor protein 3; MDS, myelodysplastic syndrome; IL-1β, interleukin-1β; TLR4,
Toll-like receptor 4; KRAS, Kristen rat sarcoma viral oncogene homolog; RAC1, Ras-related C3
botulinum toxin substrate 1; ROS, reactive oxygen species; AML, acute myeloid leukemia; CMML,
chronic myelomonocytic leukemia; JNNL, juvenile myelomonocytic leukemia; ALL, acute lympho-
cytic leukemia; and CLL, chronic lymphocytic leukemia.

Type of Hematologic
Malignancy Key Findings Reference

MDS

NLRP3 inflammasome activation in MDS
disorders is responsible for the key biological

features of MDS, which drive pyroptotic cell death
and β-catenin activation.

[74,75]

Cellular senescence in bone marrow stromal cells
from MDS patients is induced by increased
S100A9 expression through TLR4, NLRP3

inflammasome activation and IL-1β secretion.

[76]

AML, CMML, JNNL
Oncogenic KrasG12D mutation activates the
KRAS/RAC1/ROS/NLRP3/IL-1β axis and
promotes myeloproliferation and cytopenia.

[77]

AML
Enhanced NLRP3 expression correlates with an
increased aryl hydrocarbon receptor and might

influence T-helper cell differentiation.
[78]

ALL

Overexpression of NLRP3 and caspase-1 is
responsible for glucocorticoid resistance through

the cleavage of the glucocorticoid receptor by
caspase-1.

[79]

CLL

NLRP3 negatively regulates the progression of
CLL by promoting the expression of P2X7R, while
NLRP3 overexpression inhibits cell proliferation

and survival.

[80]

3.1. Myelodysplastic Syndrome (MDS)

The term MDS encompasses a heterogeneous group of preleukemic HSC malignancies
caused by abnormal and ineffective hematopoiesis. MDS bone marrow precursors are
characterized by excessive programmed cell death, chromosomal abnormalities and so-
matic gene mutations, with the tendency to transform into AML [81]. It was suggested that
NLRP3 inflammasome activation serves as a driver of the MDS phenotype. In particular,
the alarmin S100A9 and/or founder gene mutations lead to the generation of ROS and,
consequently, to pyroptosis by activating the NLRP3 inflammasome and β-catenin, thereby
ensuring the propagation of MDS clones. By blocking the inflammasome signaling pathway,
normal hematopoiesis was effectively restored, highlighting the NLRP3 inflammasome as a
potential therapeutic target for MDS patients [74]. Another study supported these findings,
showing that S100A9 expression is elevated in MDS patients and promotes the senescence
phenotype of bone marrow stromal cells via Toll like receptor 4 (TLR4) signaling, NLRP3
inflammasome formation and IL-1β secretion [76].
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upregulation of inflammasome components mainly via activation of the transcription factor NF-κB. DAMPs and/or MDS
gene mutations lead to the production of ROS, which cause NLRP3 inflammasome activation and, consequently, pyroptotic
cell death and altered inflammatory cytokine secretion in MDS patients. In CMML, JNNL and AML, the oncogenic KrasG12D

mutation leads to NLRP3/ASC transcription and ROS production via the activation of RAC. Elevated NLRP3 and caspase-1
expression in ALL results in caspase-1-mediated cleavage of the glucocorticoid receptor. Enhanced NLRP3 expression in
AML patients correlates with an increased expression of AHR and a shift in Th cell subsets, while NLRP3 overexpression
inhibits cell proliferation and induces apoptotic cell death in CLL. ↓ = Activation; ⊥ = Inhibition. NLRP3, NOD-like receptor
protein 3; ASC, apoptosis-associated speck-like protein; NEK7, NIMA-related kinase 7; GSDMD, Gasdermin-D; GSDMD-N,
GSDMD amino-terminal cell death domain; DAMP, damage-associated molecular pattern; NF-κB, nuclear factor-κB; CLL,
chronic lymphocytic leukemia; AML, acute myeloid leukemia; AHR, aryl hydrocarbon receptor; Th subset, T-helper cell
subset; ALL, acute lymphocytic leukemia; CMML, chronic myelomonocytic leukemia; JNNL, juvenile myelomonocytic
leukemia; RAC, Ras-related C3 botulinum toxin substrate 1; ROS, reactive oxygen species; IL-1β, interleukin-1β; MDS,
myelodysplastic syndrome and S100A9, S100 calcium-binding protein A9.
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3.2. Acute Myeloid Leukemia (AML)

In addition to MDS, the NLRP3 inflammasome has also been implicated in the
pathogenic phenotype of other hematological diseases. For example, a recent study showed
that the oncogenic KrasG12D mutation, which occurs in several types of leukemia, not only
promotes cancer development and progression via constantly activated RAS/MEK/ERK
signaling (also known as mitogen-activated protein kinases (MAPK) pathway) but, also, by
activating the NLRP3 inflammasome, thereby promoting myeloproliferation and cytopenia.
This effect is reversible in KrasG12D murine models showing NLRP3 deficiency in the
hematopoietic system or by the pharmacological inhibition of NLRP3 inflammasome acti-
vation. The pathology stems from Kristen rat sarcoma viral oncogene homolog-Ras-related
C3 botulinum toxin substrate 1 (KRAS-RAC1) activation stimulating the production of
ROS, a well-known trigger for the activation of the NLRP3 inflammasome. This important
role of the NLRP3 inflammasome in the pathogenesis of myeloid malignancies and the
newly identified KRAS/RAC1/ROS/NLRP3/IL-1β axis has been demonstrated in chronic
myelomonocytic leukemia (CMML), juvenile myelomonocytic leukemia (JNNL) and AML
patients harboring the KRAS mutation. These findings highlight the potential central role
of the NLRP3 inflammasome in hematological disorders, providing a promising target for
therapeutic approaches, especially in KRAS-mutated myeloid malignancies [77].

Regarding AML, there is also evidence that the increased NLRP3 expression in bone
marrow mononuclear cells (BMMCs) and peripheral blood mononuclear cells (PBMCs) of
newly diagnosed patients correlates with the enhanced expression of the aryl hydrocarbon
receptor (AHR). The authors further described an increased population of T-helper 22 (Th22)
cells in the peripheral blood of newly diagnosed AML patients, while the Th1 proportion
is reduced. Since AHR is involved in the differentiation of Th cell subsets, the authors
hypothesized that the NLRP3/AHR axis might be involved in regulating Th cell subset
differentiation in AML [78]. While it was previously suggested that AML is characterized
by enhanced Th22 and reduced Th1 levels, with Th22 cells being involved in promoting
the pathogenesis of leukemia, the underlying mechanisms are barely defined [82]. Thus,
further studies are urgently required to confirm this hypothesis.

3.3. Acute Lymphocytic Leukemia (ALL)

High NLRP3 inflammasome activity not only promotes carcinogenesis, it also carries
the additional risk of causing anticancer-drug resistance, as Paugh et al. showed [79]. ALL
is often treated with glucocorticoids, which regulate many physiological processes and
alter the transcriptional programs of cells, such that the proliferative capacity of ALL cells
is diminished and apoptosis is induced. Thus, patients whose ALL cells are sensitive to
glucocorticoids have a significantly better prognosis than those whose cells are resistant
to the treatment [83–85]. Moreover, ALL cells that are resistant to glucocorticoids have
significantly higher expression levels of NLRP3 and caspase-1. Caspase-1 cleaves the
glucocorticoid receptor, thereby blunting the effects of the glucocorticoids. The inhibition
or knockdown of caspase-1 with short hairpin RNA (shRNA) restored the glucocorticoid
sensitivity of caspase-1-overexpressing ALL cells. This suggests that NLRP3 or caspase-1
inhibitors might improve the treatment of ALL patients by reversing the resistance to
glucocorticoids [79].

3.4. Chronic Lymphocytic Leukemia (CLL)

The studies described so far have all reported that NLRP3 is upregulated in differ-
ent types of leukemia and has a tumor-promoting effect through different mechanisms.
However, there is one study that focused on CLL that stated the opposite. Salaro et al.
showed that NLRP3 was significantly downmodulated in CLL lymphocytes compared
to those of healthy donors, whereas the P2X7 receptor (P2X7R) was overexpressed [80].
P2X7R is mainly known as an activator of the NLRP3 inflammasome [30,86], but it also
prevents apoptosis and promotes cell proliferation [87]. The expression of P2X7R is con-
trolled by NLRP3, such that the downmodulation of NLRP3 drives P2X7R expression and
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simultaneously contributes to tumor growth, whereas NLRP3 overexpression inhibits cell
proliferation and induces cell death. Thus, these findings indicate that NLRP3 may act as a
negative regulator of tumor growth in CLL [80].

4. The NLRP3 Inflammasome as a Therapeutic Target

Since the NLRP3 inflammasome plays an important role not only in hematological
diseases but, also, in many inflammatory diseases [88] and cancers [89,90], it has gained
special interest as a promising therapeutic target. Therefore, several pharmacological
inhibitors of the NLRP3 inflammasome have been developed to intervene at different levels
in the complex signaling pathway, as recently summarized [86,91].

To date, the only drugs in clinical use for NLRP3-related diseases are those target-
ing IL-1β with IL-1β antagonists or recombinant IL-1β receptor antagonists, such as
canakinumab [92,93], anakinra [93] and rilonacept [93,94], which are already approved
by the US Food and Drug Administration (FDA) [93]. However, these drugs are not used
for the treatment of hematologic diseases, and, in general, there are only limited data
on the potential therapeutic use and efficacy of IL-1 inhibitors in hematopoietic disor-
ders. Nevertheless, some studies have already shown that monoclonal antibodies against
IL1RAP, the coreceptor of IL-1R1, suppress the proliferation of leukemic stem cells (LSCs)
in AML [28,95] and CML models [27]. In addition, in a mouse model of CML, IL-1R an-
tagonists (IL-1Ra) in combination with nilotinib [96], a BCR-ABL tyrosine kinase inhibitor,
reduced the number of leukemic cells in blood and bone marrow, as well as the self-renewal
potential of LSCs significantly better than nilotinib therapy alone [97]. Additionally, the
IL-1Ra anakinra was shown to improve the myeloproliferation and cytopenia phenotypes
in KrasG12D-mutated leukemia mouse models [77]. Since IL-1β can also be produced by
inflammasome-independent pathways or other inflammasomes, specific IL-1β inhibitors
may also lead to unintended immunosuppressive effects. Therefore, inhibiting the NLRP3
inflammasome with more specific pharmacological inhibitors might be more beneficial
for the treatment of NLRP3-driven diseases. Several direct NLRP3 inhibitors have been
discovered. Here, we discuss seven recently identified and promising direct or indirect
pharmacological inhibitors of NLRP3 inflammasome activation and their therapeutic po-
tential (Table 2).

Table 2. NLRP3 inhibitors and their targets.

Inhibitor Inhibition Mechanism Reference

MCC950 Binds Walker B motif of the NLRP3 NACHT
domain; NACHT ATPase inhibitor [98,99]

CY-09 Binds Walker A motif of the NLRP3 NACHT
domain; NACHT ATPase inhibitor [100]

OLT1177 NACHT ATPase inhibitor [101]

Tranilast Binds the NLRP3 NACHT domain and inhibits
NLRP3–NLRP3 interaction [102]

Oridonin Binds irreversibly to NLRP3 Cys279 and inhibits
NLRP3–NEK7 interaction [103]

Disulfiram Blocks gasdermin D pore formation and inhibits
pyroptosis and cytokine release [104]

Necrosulfonamide (NSA) Binds to gasdermin D and prevents pyroptosis [105]

The most potent and specific NLRP3 inhibitor is the compound MCC950 (CRID3/CP-
456773). It is known to specifically block both canonical and noncanonical NLRP3 activation
and IL-1β secretion in mouse and human macrophages in vitro without having an effect
on NLRP1, NLRC4 and AIM2 [98,106,107]. MCC950 was reported to interact with the
Walker B motif within the NACHT domain of NLRP3 and, thus, block ATP hydrolysis and
prevent NLRP3 oligomerization and activation [99,108]. The pharmacological inhibition
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of NLRP3 inflammasome activation by MCC950 has therapeutic efficacy against various
preclinical immunopathological models, such as cryopyrin-associated autoinflammatory
syndrome (CAPS), experimental autoimmune encephalomyelitis (EAE) [98], Alzheimer’s
disease [106], Parkinson’s disease [109], traumatic brain injury [110], atherosclerosis [111],
diabetes [112], steatohepatitis [113] and colitis [114]. In addition, there is evidence that
MCC950 also has a therapeutic benefit in a mouse model for KrasG12D-mutated myeloid
malignancies [77].

Another NLRP3 inhibitor is CY-09, an analog of cystic fibrosis transmembrane conduc-
tance regulator (CFTR) channel inhibitor-C172, which was found to effectively and directly
inhibit NLRP3 inflammasome activation in vivo in mouse models and ex vivo in human
monocytes. CY-09 binds directly to the Walker A motif of the NLRP3 NACHT domain
and inhibits its ATPase function and, consequently, NLRP3 oligomerization and activation.
Furthermore, CY-09 was shown to have therapeutic effects on mouse models of CAPS and
type 2 diabetes (T2D) [100].

OLT1177, a β-sulfonyl nitrile molecule, is another NLRP3 inhibitor that was shown
to specifically inhibit both canonical and noncanonical NLRP3 inflammasome activation
and, consequently, to reduce caspase-1 activity and IL-1β and IL-18 secretion. OLT1177
showed no effect on the NLRC4 and AIM2 inflammasomes, raising the possibility that it
specifically targets the NLRP3 inflammasome. Mechanistically, it was shown that OLT1177
directly binds to NLRP3, blocks its ATPase activity and prevents both the NLRP3–ASC
and NLRP3–capase-1 interactions [101]. OLT1177 showed therapeutic benefits in murine
models of joint arthritis [115] and multiple sclerosis (MS) [116] and has successfully passed
a phase I clinical trial for the treatment of degenerative arthritis and is now being evaluated
in a phase II clinical trial [117]. In addition, it is currently undergoing a phase I/II trial for
systolic heart failure and Schnitzler’s syndrome (clinicaltrials.gov identifiers NCT03534297
and NCT03595371, respectively).

Tranilast is a tryptophan metabolite analog and was initially recognized as an antial-
lergic drug and used for the treatment of various inflammatory diseases [118]. Huang
et al. identified Tranilast as a specific NLRP3 inhibitor that does not target NLRC4 or AIM2
inflammasomes [102]. It was shown to bind directly to the NACHT domain of NLRP3
and, thus, inhibit the NLRP3–NLRP3 interaction and subsequent oligomerization in an
ATPase-independent manner. It was also shown to have therapeutic benefits in gout, CAPS
and T2D mouse models [102] and is currently in a phase II clinical trial for CAPS syndrome
(clinicaltrials.gov identifier NCT03923140).

Oridonin is the major bioactive component of the plant Rabdosia rubescens, which
is an over-the-counter herbal medicine that is extensively utilized in traditional Chinese
medicine [119] and has been reported to have antitumor, anti-inflammatory and proapop-
totic effects [120–122]. Oridonin specifically inhibits the NLRP3 inflammasome but not the
AIM2 and NLRC4 inflammasomes. It blocks the interaction between NLRP3 and NEK7 by
forming an irreversible covalent bond with cysteine 279 of the NLRP3 NACHT domain,
which prevents NLRP3 inflammasome assembly and activation [103]. The inhibition of
NLRP3 activation by Oridonin has shown both preventive and therapeutic effects in mouse
models of T2D, peritonitis and gouty arthritis [103].

Recently, another drug has been discovered that indirectly inhibits NLRP3 further
downstream of its signaling cascade. Disulfiram, which has been used for decades in the
treatment of chronic alcohol addiction [123], has been identified as an effective inhibitor of
GSDMD pore formation by covalently modifying the human/mouse Cys191/Cys192 of
GSDMD. Disulfiram does not prevent the processing of IL-1β or GSDMD but exclusively
blocks the formation of the pore and, thus, pyroptosis and the release of inflammatory
cytokines after activation of the NLRP3 inflammasome [104]. Although its potential to
prevent pyroptosis was discovered only recently, it has been known for some time that
Disulfiram has antitumor activity in multiple types of tumors, including hematological
disorders such as AML [124–127] and ALL [128].

clinicaltrials.gov
clinicaltrials.gov
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Another compound that uses a similar mechanism to indirectly inhibit the effects
of inflammasome activation is necrosulfonamide (NSA), which has been identified as a
chemical inhibitor of GSDMD by binding directly to GSDMD and preventing pyroptosis.
This has been demonstrated in sepsis models and suggests that GSDMD inhibitors might
also be a potential therapeutic treatment option for NLRP3-related diseases [105].

Although leukemia is an inflammation-driven cancer, the effect of NLRP3 inhibitors
on this disease has hardly been investigated yet. However, the previously summarized
research findings on this topic suggest that certain types of leukemia may benefit from mod-
ifying the NLRP3 inflammasome pathway. Comprehensive future studies are needed to
investigate the potential use of NLRP3 inhibitors in NLRP3-driven hematological diseases.

5. The NLRP3 Inflammasome and Its Connection to Autophagy

While a plethora of external and host-derived stimuli, as well as oncogenic mutations,
have been shown to contribute to NLRP3 activation [30,32,77], autophagy induction may
play a role in limiting the inflammasome activity [129–132]. Autophagy is a “self-eating”
process necessary to maintain cellular homeostasis under stress conditions [133]. Studies
demonstrating that the loss of the autophagy-related protein Atg16L1 results in increased
endotoxin-induced IL-1β production provided the first evidence that autophagy regulates
inflammasome activation [129]. Furthermore, it was shown that autophagy may limit IL-1β
release by targeting inflammasome components for destruction. This process is mediated
by the recruitment of ubiquitinated inflammasome components to the autophagic adaptor
protein p62/SQSTM1, which directs ubiquitinated cargos into autophagosomes, leading
to their degradation in lysosomes [130]; thus, autophagy may regulate inflammatory re-
sponses by eliminating active inflammasomes. NF-κB, which is the main priming factor
promoting the expression of NLRP3, was recently shown to also limit NLRP3 activation
by inducing the expression of p62/SQSTM1, which, in turn, promotes mitophagy and
attenuated IL-1β release [131,132]. Mitophagy is a selective type of autophagy by which
damaged mitochondria are removed by Parkin-dependent ubiquitin conjugation and a
subsequent recognition by p62/SQSTM1 [134]. The blocking of mitophagy leads to an
accumulation of damaged mitochondria, which supports NLRP3 inflammasome activation
by the release of ROS [57]. Therefore, the clearance of damaged mitochondria through
mitophagy is considered to have a key function in regulating NLRP3 inflammasome activa-
tion [131,132,135] and may work as a safety mechanism counteracting the hyperactivation
of inflammasomes in chronic inflammation-driven cancer. While these studies indicate
that mitophagy inhibits NLRP3 inflammasome activation, the NLRP3 inflammasome con-
versely can also inhibit autophagy in pathological conditions [136]. This was shown to be
due to a mechanism in which the signal molecule TIR-domain-containing adapter-inducing
interferon-β (TRIF) is cleaved by caspase-1 [137,138]. Since TRIF, an important adaptor
molecule of TLR4 signaling, is an essential part of TLR4-mediated autophagy, the cleavage
of TRIF by caspase-1 may decrease the autophagy [139]. Although this inhibitory effect
of caspase-1 on autophagy has only been demonstrated in Prion disease [137] and during
Pseudomonas aeruginosa infection [138], it might also be involved in the pathogenicity of
leukemia, which is characterized by high NLRP3 activity and IL-1β secretion. However,
further studies are needed to confirm this hypothesis. Recent studies have also suggested
that p62/SQSTM1 deficiency compromises cellular homeostasis in leukemia cells through
the accumulation of dysfunctional mitochondria and impaired mitochondrial function. In
addition, the latter study reports that the deletion of p62/SQSTM1 resulted in a reduced
proliferation of leukemia cells and leukemia development in two murine AML models,
highlighting that p62 is essential for efficient cell proliferation in AML [140].

The reciprocal inhibition between inflammasome activation and mitophagy/autophagy
and the recently highlighted controversial and context-dependent role of mitophagy/ au-
tophagy in leukemia point to autophagy modulation as a possible therapeutic target in
leukemia [141,142]. Since the proinflammatory environment is known to support tumor
cell proliferation and survival, but excessive inflammation can also lead to cell death, unre-
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stricted inflammasome activation might be prevented by the induction of mitophagy in
order to dampen NLRP3 inflammasome activation. On the other hand, the suppression of
caspase-1-mediated autophagy might lead to increased NLRP3 activation and the increased
release of proinflammatory mediators. Under homeostatic conditions, this crosstalk is
necessary to prevent excessive inflammation while maintaining the ability to mount an
inflammatory response. However, in cancer, this fine balance between NLRP3 activation,
inflammation and autophagy might be dysregulated to support cell proliferation, survival
and resistance to chemotherapy of malignant cells in an adaptive and context-dependent
fashion (Figure 3).
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Figure 3. The NLRP3 inflammasome and its connection to mitophagy/autophagy. NLRP3 agonists promote the NF-κB-
induced expression of inflammasome components but, also, the expression of p62, which negatively regulates caspase-1
activation by the elimination of mitochondria via mitophagy. NLRP3 activation can also lead to the ubiquitination of NLRP3
inflammasome components and destruction in the autophagosome, thereby limiting IL-1β secretion. In addition, NLRP3
inflammasome activation is able to attenuate autophagy via the caspase-1-mediated cleavage of TRIF, which enhances
inflammasome activation. ↓ = Activation; ⊥ = Inhibition. NLRP3, NOD-like receptor protein 3; ASC, apoptosis-associated
speck-like protein; NEK7, NIMA-related kinase 7; GSDMD, Gasdermin-D; GSDMD-N, GSDMD amino-terminal cell death
domain; NF-κB, nuclear factor-κB; ROS, reactive oxygen species; Ub, ubiquitin; Parkin, E3 ubiquitin protein ligase; LC3,
microtubule-associated proteins 1A/1B light chain 3B and TRIF, TIR-domain-containing adapter-inducing interferon-β.
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6. Conclusions

The NLRP3 inflammasome has become a highly interesting topic in the last several
years, and a growing number of studies have focused on the role of NLRP3 in hematopoietic
malignancies. Even though NLRP3 is the best-studied member of the inflammasome
family, its specific roles in leukemia remain contentious. The functions of the NLRP3
inflammasome in leukemogenesis of the different leukemia types are very distinct; it can
both promote and, also, inhibit the emergence and progression of cancer. This appears to
depend on several factors, such as the expression level, cancer type, stage of tumorigenesis
and certain mutations. Furthermore, the NLRP3 inflammasome seems to be linked to
autophagy. This link was recognized previously, but the crosstalk between NLRP3 and
autophagy in the context of leukemia is poorly understood. Since the mechanisms behind
NLRP3 inflammasome activation and its regulation in leukemia remain controversial, a
deeper investigation of the relationship between inflammation, the NLRP3 inflammasome,
autophagy and leukemogenesis is needed before this pathway can be effectively targeted
by drugs to improve the therapeutic outcomes in leukemia patients.
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