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Abstract: Phenolic compounds have emerged in recent years as an option to face insulin resistance
and diabetes. The central aim of this study was: (1) to demonstrate that physiological doses of
resveratrol (RSV) or quercetin (Q) can influence glucose metabolism in human myotubes, (2) to
establish whether AMP-activated protein kinase (AMPK) and protein kinase B –PKB- (Akt) pathways
are involved in this effect. In addition, the effects of these polyphenols on mitochondrial biogenesis
and fatty acid oxidation were analysed. Myotubes from healthy donors were cultured for 24 h
with either 0.1 µM of RSV or with 10 µM of Q. Glucose metabolism, such as glycogen synthesis,
glucose oxidation, and lactate production, were measured with D[U-14C]glucose. β-oxidation using
[1–14C]palmitate as well as the expression of key metabolic genes and proteins by Real Time PCR
and Western blot were also assessed. Although RSV and Q increased pgc1α expression, they did not
significantly change either glucose oxidation or β-oxidation. Q increased AMPK, insulin receptor
substrate 1 (IRS-1), and AS160 phosphorylation in basal conditions and glycogen synthase kinase
3 (GSK3β) in insulin-stimulated conditions. RSV tended to increase the phosphorylation rates of
AMPK and GSK3β. Both of the polyphenols increased insulin-stimulated glycogen synthesis and
reduced lactate production in human myotubes. Thus, physiological doses of RSV or Q may exhibit
anti-diabetic actions in human myotubes.

Keywords: resveratrol; quercetin; glucose; human primary myotubes

1. Introduction

Insulin resistance and diabetes currently represent pandemic diseases at a global level.
In 2016, diabetes caused an estimated 1.6 million deaths, and high blood glucose levels
were responsible for 2.2 million deaths [1]. For this reason, great effort is being made to
find new strategies in the fight against this disease.

Skeletal muscle is the main tissue that is involved in glycaemic control in the post-
prandial state. It contributes to 85% of the whole body glucose uptake, which is essential
in avoiding insulin resistance development [2]. Furthermore, it should be noted that
80% of glycogen storage is located in the skeletal muscle. Glucose transporter 4 (GLUT4)
mediates glucose uptake, where the activation can be promoted in an insulin-dependent or
insulin-independent manner [3]. In the former case, when insulin binds its receptor, the
latter phosphorylates insulin receptor substrate 1 (IRS-1) and new binding sites for other
proteins are originated. Some of these proteins belong to the phosphoinositide 3-kinases
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(PI3K) family, which stimulate Akt through the PI3K pathway. This fact leads not only
to GLUT4 glucose transporter activation, but also to glycogen synthase kinase 3 (GSK3β)
inhibition and, thus, to glycogen synthase (GS) activation [2,4,5]. AMP-activated protein
kinase (AMPK) is another GLUT4 activator, although in an insulin-independent manner [6].
AMPK is also considered to be a critical regulator of lipid oxidation [7], which regulates
exercise-related metabolic adaptations. Consequently, it can be a therapeutic target for
several metabolic disorders, including obesity and diabetes [6].

Other stimuli, such as drugs, energy restriction, or dietary compounds, can trigger
glucose uptake through both insulin-dependent and insulin-independent pathways, as
occurs with physical activity in AMPK activation [8–10]. Among these stimuli, phenolic
compounds have emerged as an alternative in recent years. Several in vitro and in vivo
studies have shown that resveratrol (RSV) and quercetin (Q) have anti-diabetic proper-
ties [11–13]. Although both of the phenolic compounds are multi-target molecules, it
seems that skeletal muscle is involved in achieving this effect. A clear example of this is
the large amount of research that has been conducted to date with RSV and Q in muscle
tissue or muscle cells, mainly in rodent models [14,15]. Nevertheless, the extrapolation of
these results to humans is limited, in that the doses that are used to analyse their effect
in in vitro and in vivo studies are not always in the concentration that these compounds
reach in human tissues and cells after oral intake [16–19]. For this reason, in the present
study we analyse whether doses of RSV or Q in the range of the amounts that are found
in tissues after oral treatments with these phenolic compounds are able to influence glu-
cose metabolism in human myotubes. In addition, we determine whether AMPK and
Akt pathways are involved in this effect. To conclude, the effect of these polyphenols on
mitochondrial biogenesis and fatty acid oxidation is also assessed.

2. Results
2.1. Results in Cytotoxicity Assay of RSV and Q

The potential cytotoxic effect of both polyphenols was analysed using a commercial
kit, and no statistical change in the release of adenylate kinase (AK) to the incubation media
between the treated and control cells was observed. The obtained data were, as follows:
2332.31 ± 403.3 RLU/mg protein in the control group, 2876.12 ± 208.98 RLU/mg protein
in RSV group, and 2307.66 ± 220.18 RLU/mg protein in Q group.

2.2. Effects of RSV and Q in the Expression of Mitochondrial and Cytosolic Genes

The expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha
(pgc-1α), mitochondrial transcription factor A (tfam), and nuclear respiratory factor 1 (nrf1),
genes that regulate mitochondrial biogenesis, and that of cytochrome C (cycs), succinate
dehydrogenase complex, subunit alpha (sdha), ATP synthase, H+ transporting, mitochondrial
F1 complex, alpha subunit 1 (atp5a1), cytochrome c oxidase subunit7C (cox7c), and NADH
dehydrogenase (ubiquinone) 1 beta subcomplex 8 (ndufb8), which encode the respiratory chain
components, was measured. Among them, only pgc1α expression increased after cell
treatment with either RSV or Q (Figure 1a). The mRNA levels of hexokinase 2 (hk2), pyruvate
kinase M1/2 (pkm), and lactate dehydrogenase A (ldh), cytosolic genes related to glucose
oxidation and lactate production were also measured and the results yielded a reduction of
hk2 expression after RSV treatment (Figure 1b).
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Figure 1. Mitochondrial (a) and cytosolic (b) gene expression in human myotubes treated with 0.1 
μM of resveratrol (RSV) and 10 μM of quercetin (Q) for 24 h. All of the data are presented as the 
mean ± SEM of two independent experiments (n = 6 per group). Comparisons between biological 
replicates of each treatment group and biological replicates of the control group were analysed by 
Student’s ݐ-test. The asterisks represent differences versus the controls (* p < 0.05). 

2.3. Effects of RSV and Q on Glucose Uptake and Oxidation and Palmitate Oxidation 
Neither RSV nor Q modified GLUT4 protein expression (Figure 2a). The cells were 

treated with both molecules under basal and insulin-stimulated conditions, and labelled 
glucose was added to the media, in order to test whether RSV or Q modified glucose oxi-
dation. After CO2 quantification, it can be observed that insulin-treated cells were not sta-
tistically modified as compared to the basal state (C basal vs. C insulin p = 0.09; RSV basal 
vs. RSV insulin p = 0.076; Q basal vs. Q insulin p = 0.319). Furthermore, the result showed 
that RSV or Q treatments did not modify the flow of glucose to oxidation in the basal (C 
vs. RSV p = 0.443; C vs. Q p = 0.483) or in the stimulated state (C vs. RSV p = 0.463; C vs. Q 
p =0.149) (Figure 2b). In addition, we wanted to analyse whether cell treatment could en-
hance fatty acid β-oxidation, so labelled palmitate was added to incubation media and the 
resulting CO2 was quantified. No changes were observed between the control and cells 
treated with each polyphenol (Figure 2c). 

Figure 1. Mitochondrial (a) and cytosolic (b) gene expression in human myotubes treated with
0.1 µM of resveratrol (RSV) and 10 µM of quercetin (Q) for 24 h. All of the data are presented as the
mean ± SEM of two independent experiments (n = 6 per group). Comparisons between biological
replicates of each treatment group and biological replicates of the control group were analysed by
Student’s t-test. The asterisks represent differences versus the controls (* p < 0.05).

2.3. Effects of RSV and Q on Glucose Uptake and Oxidation and Palmitate Oxidation

Neither RSV nor Q modified GLUT4 protein expression (Figure 2a). The cells were
treated with both molecules under basal and insulin-stimulated conditions, and labelled
glucose was added to the media, in order to test whether RSV or Q modified glucose
oxidation. After CO2 quantification, it can be observed that insulin-treated cells were not
statistically modified as compared to the basal state (C basal vs. C insulin p = 0.09; RSV
basal vs. RSV insulin p = 0.076; Q basal vs. Q insulin p = 0.319). Furthermore, the result
showed that RSV or Q treatments did not modify the flow of glucose to oxidation in the
basal (C vs. RSV p = 0.443; C vs. Q p = 0.483) or in the stimulated state (C vs. RSV p = 0.463;
C vs. Q p = 0.149) (Figure 2b). In addition, we wanted to analyse whether cell treatment
could enhance fatty acid β-oxidation, so labelled palmitate was added to incubation media
and the resulting CO2 was quantified. No changes were observed between the control and
cells treated with each polyphenol (Figure 2c).
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Figure 2. GLUT4 protein expression (a), glucose oxidation (b) and palmitate oxidation (c) in hu-
man myotubes treated with 0.1 μM of resveratrol (RSV) and 10 μM of quercetin (Q) for 24 h. All of 
the data are presented as the mean ± SEM of six (a) or three (b and c) biological replicates. Com-
parisons between each treatment group and the control group were analysed by Student’s ݐ-test.

Figure 2. GLUT4 protein expression (a), glucose oxidation (b) and palmitate oxidation (c) in human
myotubes treated with 0.1 µM of resveratrol (RSV) and 10 µM of quercetin (Q) for 24 h. All of the
data are presented as the mean ± SEM of six (a) or three (b,c) biological replicates. Comparisons
between each treatment group and the control group were analysed by Student’s t-test.
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2.4. Effects of RSV and Q in Glucose Homeostasis

The phosphorylated protein expression of AMPK, IRS-1, protein kinase B –PKB- (Akt),
and AKT Substrate of 160 kDa (AS160) was measured to test the effect of RSV and Q on
the insulin-signalling cascade. The expression of GSK3β, a key enzyme that is involved
in glycogen synthesis, was also assessed. This analysis was carried out under basal and
insulin-stimulated conditions, with the exception of AMPK, which is insulin-independently
regulated. Under basal conditions, Q increased the phosphorylation of AMPK, IRS-1,
and AS160 (Figure 3a,b,e), while increasing IRS-1 and GSK3β expression under insulin-
stimulated conditions (Figure 3b,d). Although RSV notably increased the phosphorylation
of some proteins, such as AMPK (197%) and GSK3β (161%), these enhancements did not
reach statistical significance (Figure 3a,d).
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Figure 3. Protein expression of AMPK (a), IRS-1 (b), Akt (c), GSK3β (d), and AS160 (e) in human
myotubes that were treated with 0.1 µM of resveratrol (RSV) and 10 µM of quercetin (Q) for 24 h in
the presence or absence of insulin, with the exception of AMPK, which was measured only in basal
conditions. Target protein bands are shown on the chart top as representative blot images. All of
the data are presented as the mean ± SEM of six biological replicates. Comparisons between each
treatment group and the control group were analysed by Student’s t-test. The asterisks represent
differences versus the controls (* p < 0.05; ** p < 0.01).
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2.5. The Effect of RSV and Q in Glycogen Synthesis and Lactate Production

The effect of RSV and Q on glycogen synthesis was tested under basal and insulin-
stimulated conditions. We observed that both of the polyphenols significantly increased
insulin-stimulated glycogen synthesis (Figure 4a). The increase in insulin-induced glyco-
gen synthesis versus the increase under basal conditions was calculated. Both phenolic
compounds increased this ratio when compared to the controls (p < 0.05). Regarding lactate
production, after cell incubation with 0.1 µM of RSV and 10 µM of Q, the content that was
present in the incubation media was significantly lower than that present in the control
cells (Figure 4b).
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Figure 4. Glycogen synthesis (a) and lactate content in the media (b) in human myotubes treated
with 0.1 µM of resveratrol (RSV) and 10 µM of quercetin (Q) for 24 h. Glycogen synthesis data are
presented as the mean ± SEM of three biological replicates. The data of lactate content in the media
are presented as the mean ± SEM of six biological replicates. Comparisons between each treatment
group and the control group were analysed by Student’s t-test. The asterisks represent differences
versus the controls (* p < 0.05; (*** p < 0.001)).

3. Discussion

Several research studies that have been conducted in the last decades have demon-
strated that phenolic compounds decrease the incidence of cardiovascular diseases, several
types of cancer, liver disorders, obesity, and type 2 diabetes, among others [20,21]. In
the case of RSV or Q, the anti-diabetic effect emerges as one of the most studied positive
effects in experiments that were conducted in cell cultures and animal models. In the same



Int. J. Mol. Sci. 2021, 22, 1384 8 of 16

way, this effect has been observed in clinical trials, where the used doses range widely
between 10 mg/day and 3 g/day in the case of RSV and 30mg/day to 1 g/day in the case
of Q [22–24]. It is important to bear in mind that these studies have been performed using
doses that can be achieved only by phenolic compound supplementation. Actually, the
average dietary intake of both RSV and Q is much lower; regarding RSV, Zamora-Ros esti-
mated that stilbene intake was around 2–3 mg per day, with total RSV intake being almost
1 mg per day [25]. By contrast, Q intake is clearly higher than that of RSV, its mean dietary
ingestion has been estimated to be between 5 and 40 mg per day, although significantly
higher amounts have been reported in individuals with a very high consumption of fruit
and vegetables [26]. Concerning their safety, RSV and Q have been reported to be safe in
humans when administered at doses up to 5 g/day and 1g/day respectively [27,28].

However, the specific contribution of skeletal muscle in the described beneficial
effects for both molecules in humans has not been clearly elucidated, mainly due to the
difficulty in obtaining human skeletal muscle samples, as the lack of references in reviews
demonstrates [22,29–31]. Conversely, the doses used in the majority of the reported studies
are far from those found in human plasma and tissues after oral administration of both
compounds, as stated in the Introduction section. Overall, RSV and Q are found in
nanomolar and low micromolar range, suggesting that doses as high as 50, 100 or 200 µM,
very commonly used in in vitro studies with incubated cells, are hardly found [32–37]. For
this reason, in the present study, we wanted to provide more information regarding the
potential activity of both molecules in human muscle, by using healthy human myotubes
and doses of RSV and Q that are closer to those that were achieved in plasma and tissues.

With this intention, the first challenge that we encountered was selecting the doses for
cell treatment. In a study that was conducted by Brown et al., repetitive administration
of RSV at doses ranging from 0.5 g to 5 g per day resulted in plasma concentrations of
the phenolic compound of around 4 µM [38]. In a clinical trial that was carried out by
Olthof et al., the ingestion of 150 mg of Q glycosides led to a Q plasma concentration of
around 5 µM [19]. In view of this information, we decided to choose doses that ranged
from 0.1 to 10 µM as potential active doses. Pgc1α was chosen in order to verify whether
selected doses of RSV and Q were able to exert physiological effects on cells; this gene
is the master regulator of fatty acid oxidation and mitochondrial biogenesis, and it has
been demonstrated to be affected by both phenolic compounds [19,39–42]. In the case of
RSV, incubation with 0.1 µM for 24 h was enough to induce a significant increase in pgc1α
expression, whereas, in the case of Q, 10 µM was the lowest active dose (data not shown).
It is important to highlight that none of the treatments had any toxic effects on myotubes.
These effects are in good accordance with those that were obtained in other studies while
using RSV at 25 µM for 72 h or Q 50 µM for 18 h in C2C12 cells [43,44] or RSV at 100 µM
for 4 h in human primary muscle cells [45].

The activation of insulin-dependent pathway—Akt—or the stimulation of an insulin-
independent pathway, induce glucose uptake, with AMPK as the key promoter. Because
exercise stimulates AMPK activity in muscle, and RSV has been demonstrated to activate
molecular mechanisms analogous to exercise training, it might be inferred that it also
probably stimulates this insulin independent pathway [39]. In the present study, no
changes in the phosphorylation of IRS-1, Akt, AS160, and AMPK were observed in cells
that were treated with RSV under basal conditions, which suggested that this polyphenol
did not act directly on the proteins that are involved in the insulin-signalling cascade or the
insulin-independent pathway mediated by AMPK. These results are in good accordance
with the observed lack of effect on glucose uptake and oxidation, as well as on glycogen
synthesis. The same situation took place under insulin stimulation. The present results
suggest that, under our experimental conditions, a dose of RSV in the physiological range
do not promote glucose utilization.

We revised the literature in order to compare our results with those reported by other
authors and we found controversial results. Breen et al. showed that a minimum dose of
25 µM RSV and 30 min of treatment were needed to induce a significant glucose uptake
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enhancement in L6 myotubes [46]. However, in another study using the same cell line,
lower doses of RSV (1 µM) were able to increase the glucose uptake by both insulin and
AMPK signalling [47]. On the other hand, Skrobuk and co-workers found that RSV at 1 or
10 µM for 4h in primary muscle cells increased basal glucose uptake, whereas exposure to
very high concentrations (100 and 200 µM) led to a decrease [45]. Fröjdö et al. observed a
similar phenomenon, when human primary cells were treated with doses ranging from
5 to 100 µM [48]. In the same line, Kaminski et al., showed decreased glut4 mRNA levels
after 30 µM RSV treatment for 48 h in C2C12 myotubes [49]. The discrepancies between
our results and those that were reported by other authors, as well as among the published
studies, can be due to RSV dosage [45]. It is important to emphasize that the dose used in
the present study (0.1 µM) was lower than those that were used in all of the reported studies.
In addition, other factors that are related to the experimental design that can explain these
differences, because they have been described as important influencing factors for the effect
of RSV on glucose uptake, are the treatment period length or the cell origin. Thus, Barger
et al. observed that, while RSV enhanced insulin-stimulated glucose transport in the soleus
muscle, it did not in extensor digitalis muscle of mice, which means that the type of muscle
utilised is also relevant [50].

Concerning Q, although this polyphenol was able to increase IRS-1 phosphorylation
in the basal state, no changes were observed in the downstream proteins of the insulin-
signalling cascade. Because AMPK phosphorylation was enhanced, it can be proposed
that this enzyme was responsible for the increase in AS-160 phosphorylation. However,
it seems that AS-160 boost was not enough for rising glucose uptake in cells due to the
lack of change observed in GLUT4 protein content. This fact is in good accordance with no
variation noted in glucose oxidation and glycogen synthesis after Q treatment.

Finally, Q did not potentiate the effect of insulin on the phosphorylation of proteins
that are involved in insulin signalling cascade, with the exception of IRS-1. The attenuation
of the PI3K/AKT pathway by Q could be proposed as a potential explanation to justify
this result; it has been described that Q increases the expression of PTEN, a PI3K/AKT
pathway natural inhibitor phosphatase and tensin homolog, in cancer cells [51]. Other
polyphenols, such as curcumin and xanthohumol, also increase the expression of PTEN in
glioblastoma cells and myocytes, respectively [52–54]. Of note, such a lack of correlation
between the phosphorylation of Akt and AS-160 is not without precedent. In a previous
study from our group, which was devoted to comparing the effects of RSV and energy
restriction on insulin signalling cascade in skeletal muscle, increased phosphorylation
of AS-160 was not accompanied by increases in the phosphorylation status of IRS-1 and
Akt [55]. Consequently, this issue needs further research.

By comparing our results with the literature, we observed that they are in line with
those that were observed in other studies, where the incubation of L6 or C2C12 murine cells
with 25 and 50 µM of Q for 18 or six hours promoted an increase in AMPK phosphorylation,
but not through Akt activation [44,56]. By contrast, Jiang et al. observed a clear activation
of Akt in a study that was carried out in L6 rat muscle cells by using very low doses of Q
(0.1 and 10 nM) [8]. Dai et al. demonstrated that, after 24 h treatment in C2C12 myotubes,
the dose of 5 and 10 µM of Q were without effect, whereas the dose of 20 µM induced
Akt activation [57]. Hence, as in the case of RSV, the dose of Q is a crucial factor in for the
effectiveness of this phenolic compound.

It is well known that skeletal muscle is an important storage tissue for glycogen, as it is
the main site for glucose disposal in humans. However, glycogen synthesis is compromised
in insulin-resistant or type 2 diabetes patients, which could be caused by GS dysfunction
or by a lack of glucose to be stored as glycogen, which, in turn, reduces GS activity [58].
In fact, it is not totally established which comes first, glucose supply or a reduction in GS
activity, although the first option seems to be more likely, since insulin-resistant subjects
had normal glycogen synthesis rates after exercise training [58,59]. Bearing this in mind,
promising results were obtained for RSV or Q in the present study, because both of the
phenolic compounds were able to enhance glycogen synthesis and decrease the lactic acid
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content in human muscle cells, when incubated in the presence of insulin. These results are
not in good accordance with those that were reported by Skrobuk et al., who observed a
reduction in glycogen content in human primary myocytes after 100 µM RSV treatment
for 4h [45]. By contrast, in the case of Q, the results concerning lactic acid in stimulated
C2C12 cells presented in the patent entitled “methods for reducing lactate concentration”
are similar to those that are found in the present study [60].

As previously described in this Discussion section, although RSV or Q treatments
increased the mRNA levels of pgc1α, the expression of other genes that regulate mito-
chondrial biogenesis and genes of the respiratory chain were not modified. These results,
together with the lack of effect on palmitate and glucose oxidation, support the hypoth-
esis that the number of mitochondria was not altered after RSV or Q treatments in our
experiment using human muscle cells. In contrast with our results, Skrobuk et al. reported
that the incubation of primary human muscle cells with 100 µM of RSV for 4 h, a dose
clearly higher than that used in the present study, was able to decrease palmitate oxidation
without modification of PGC1α acetylation, and that incubation with RSV at 1 µM for
4h increased PGC1α acetylation [45]. Altogether, these results reinforce the importance
of the dose when assessing the effects of RSV. With regard to clinical studies that were
conducted using RSV, while some of them confirmed the mitochondriogenic effect that
was observed in animals [18,61,62], others did not reveal any effect in muscle mitochondria
after RSV intervention [63–65]. In the case of Q, Nieman et al. [66] did not show any effect
on mitochondrial biogenesis in thirty-nine trained cyclists after a two-week treatment with
1 g/day of Q and three days of heavy exertion. Nevertheless, one year later, the same
authors described Q influence on moderate exercise performance and muscle mitochon-
drial biogenesis in physically sedentary young patients who received 1 g/day of Q for
two weeks [67]. Thus, both Nieman’s trial results showed that different conditions, such
as exercise, age, previous metabolic state, dose, and treatment period length, can have a
relevant influence on the effect of Q on mitochondrial biogenesis in muscle.

It is well known that polyphenols show low bioavailability [68–70]. Indeed, after
oral ingestion of phenolic compounds, these undergo intense phase II metabolism in
both the intestine and liver. Those phase II reactions include glucuronidation, sulfatation,
and methylation, catalysed by uridine-5´-diphosphate glucuronosyltransferases (UGT),
sulfotransferases (SULT) and catechol-O-methyltransferases (COMT), respectively [71].
This explains why their metabolites are found in plasma and tissues, even at concentrations
that are higher than those of their parent compounds [71,72]. For this reason, it is crucial
to study, in vitro, the effects of the main metabolites of RSV and Q, under the belief that
they can contribute to the observed beneficial effects. Nevertheless, the activity of the
parent compounds should also be measured, as we did in the present study; if they are
active, the amounts that are found in target tissues may be responsible for a part of the
effect that was observed after its in vivo administration, as we demonstrated in previous
studies. In these studies, we found that the delipidating effect of RSV in 3T3-L1 maturing
adipocytes was due to the effects of the parent compound and two of its main metabolites,
trans-resveratrol-4-O-glucuronide and trans-resveratrol-3-O-sulfate, as well as the effects
on mature adipocytes were due to RSV and to trans-resveratrol-3-O-glucuronide and trans-
resveratrol-4′-O-glucuronide [73]. With regard to Q metabolites, we observed that the
parent compound and the metabolite quercetin-3-O-glucuronide were both responsible for
the anti-adipogenic effect that was induced in 3T3-L1 pre-adipocytes [74]. Finally, it should
be pointed out that the deconjugation of phenolic compounds in tissues can occur, thus
increasing the actual amount of the parent compounds [75–77].

4. Materials and Methods
4.1. Experimental Design

Satellite cells from rectus abdominis of healthy male subjects (age 34.3 ± 2.5 years,
BMI 26.0 ± 1.4 kg/m2, fasting glucose 5.0 ± 0.2 mM) were obtained after abdominal
surgery interventions and kindly provided by Prof. Arild C. Rustan (Oslo University,
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Oslo, Norway). Informed written consent was obtained from all of the participants and
the ethical aspects were considered as previously described [78]. The ethical approval
number was 2013-A01543-42. The cells were grown in Dulbecco’s modified Eagle’s medium
(DMEM) low glucose-GlutamaxTM (GIBCO, BRL Life Technologies, Grand Island, NY, USA)
supplemented with 10% Foetal Bovine Serum (FBS) (GIBCO, BRL Life Technologies, Grand
Island, NY, USA) and growth factors. At 90% of confluence, myoblasts were differentiated
from myotubes by switching to α-minimum essential medium (α-MEM) low glucose-
GlutamaxTM (GIBCO, BRL Life Technologies, Grand Island, NY, USA), 2% FBS, and fetuin
(0.5 mg/mL) (Sigma-Aldrich Corporation, St. Louis, MO, USA) until myoblasts were
harvested five days after the induction of differentiation. Cells were maintained at 37 ◦C
in a humidified 5% CO2 atmosphere and both incubation media were changed every
two days.

4.2. Cell Treatment

Myotubes were incubated with either 0.1 µM of RSV or 10 µM of Q (Sigma, St. Louis,
MO, USA), diluted in 95% ethanol for 24 h, and, afterwards, cells were harvested. In the
case of the control group the same volume of the vehicle (ethanol 95%) was used.

4.3. Cytotoxicity Assay

Cytotoxicity assay was carried out using the ToxiLightTM bioassay kit (Lonza, Walk-
ersville, MD, USA) following the manufacturer´s instructions. The activity of released AK
from damaged cells was c measured by means of chemiluminescence.

4.4. Glycogen Synthesis Assay

Myotubes were pre-incubated in a glucose and serum-free medium for 90 min in order
to obtain metabolically consistent cells, followed by 3 h incubation using DMEM supple-
mented with D[U-14C]glucose (1µCi/mL) with or without 100 mM of insulin. Following
incubation, the cells were solubilised in KOH 30% and glycogen synthesis was determined,
as previously described [79]. The total glycogen content was spectrophotometrically mea-
sured after complete hydrolysis into glucose by α-amiloglucosidase. All of the assays were
performed in duplicate and data were normalized to cell protein content.

4.5. Glucose Oxidation Assay

Myotubes were pre-incubated in a glucose and serum-free medium for 90 min, as
in the case of glycogen synthesis assay. In order to study basal and insulin-mediated
glucose oxidation, cells were incubated with DMEM supplemented with D[U-14C]glucose
(1 µCi/mL) in the presence or absence of 100 mM of insulin. Following incubation, glucose
oxidation was determined by counting the 14CO2 released into the culture medium. All
of the assays were performed in duplicate, and the data were normalized to cell protein
content, as previously described [80].

4.6. Palmitate Oxidation Assay

Myotubes were pre-incubated for three hours with [1–14C]palmitate (1 µCi/mL;
PerkinElmer, Boston, Massachusetts) and non-labelled (cold) palmitate, without glucose.
Palmitate was coupled to a fatty acid (FA)–free BSA in a molar ratio of 5:1. After incubation,
14CO2 and 14C-ASM were measured, as previously described [80]. All of the assays were
performed in duplicate and data were normalized to cell protein content.

4.7. Measurement of Lactate Content in the Media

After cell treatment, aliquots of the incubation media were removed and analysed for
lactate quantification using a commercial kit and following the manufacturer´s instructions.
The results were expressed as mmol/L.
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4.8. RNA Preparation and Quantitative Real Time PCR

The RNA samples from treated cells were extracted while using RNeasy mini kit
(QIAGEN, Valencia, California, USA) following the manufacturer´s instructions. The
integrity of the RNA extracted from all of the samples was verified and quantified using a
NanoDrop ND-1000 spectrophotometer (Thermo Scientific, Wilmington, DE, USA). 1 µg
of total RNA of each sample was reverse-transcribed to first-strand complementary DNA
(cDNA) using the MultiScribe reverse transcriptase method (Applied Biosystems, Foster
City, CA, USA) on a GeneAmpPCRSystem 9700 (Applied Biosystems, Foster City, CA,
USA). Relative pgc-1α, tfam, (nrf1, cycs, sdha, atp5a1, cox7c, and ndufb8 were quantified using
Real-time PCR with a StepOne-Plus real-time PCR system (Applied Biosystems, Foster
City, CA, USA). Hk2, pkm and ldha were measured by TaqMan® Gene Expression Assays
(Hs00606086_m1, Hs00761782_s1 and Hs01378790_g1 respectively) in MyiQ™ Single-Color
Real-Time PCR Detection System (BioRad, Hercules, CA, USA). The Rplp0 mRNA levels
were similarly measured and served as the reference gene. The amplification reaction was
performed in duplicate on 0.67 µL of cDNA and the amplification parameters were, as
follows: 50 ◦C for two minutes, 95 ◦C for 10 min, 40 cycles of 95 ◦C for 15 s, and 60 ◦C for
one minute. All fo the sample mRNA levels were normalized to Rplp0 values and the data
were expressed as relative fold changes of threshold cycle (Ct) value relative to controls
using the 2−∆∆Ct method [81].

4.9. Western Blot Analysis

The myotubes were incubated for 20 min in DMEM-low glucose-Glutamax in the
presence or absence of 100 nM insulin. Afterwards, the cells were harvested in a RIPA
buffer (Sigma, St. Louis, MO, USA) complemented with 10 µL/mL protease inhibitor, 10
µL/mL phosphatase I inhibitor and 10 µL/mL phosphatase II inhibitor. Afterwards, the
protein concentration was determined by BCA reagent (Thermo Scientific, Rockfold, IL,
USA). 20 µg of total protein were run on 4–15% Mini-PROTEAN® TGX™ Precast Gels
(Bio-Rad, Hercules, CA, USA), electroblotted onto PVDF membranes (Millipore, Bradford,
MA, USA), and immunodetected with ChemiDoc MP imaging system (BioRad, Hercules,
CA, USA) while using the following primary antibodies: GLUT4 (Santa Cruz Biotech, CA,
USA), Ser9 pGSK-3β, Thr172pAMPK, Ser473 pAkt (Cell Signaling Technology, Danvers,
MA, USA), Tyr-989 pIRS-1 (Abcam, Cambridge, UK), and Thr642 pAS160 (Gene Tex, CA,
USA). Histone H3 (Cell Signalling Technology, Danvers, MA, USA) served as an internal
control, with the exception of pAkt, where the internal control was GAPDH (Cell Signalling
Technology, Danvers, MA, USA). The bound antibodies were visualized by an ECL system
(Thermo Fisher Scientific Inc., Rockford, IL, USA) and quantified using Chemi-Doc MP
imaging system (Bio-Rad, Hercules, CA, USA).

4.10. Statistical Analysis

The results are presented as mean ± standard error of the mean (SEM). Statistical
analysis was performed using SPSS v. 26.0 (SPSS Inc. Chicago, IL, USA). The analysed
variables were normally distributed, according to Shapiro–Wilk´s test. Because our interest
lay in determining the effectiveness of each phenolic compound and not in comparing the
effects among them, comparisons between the cells treated with each compound and the
control cells were made using Student’s t test. Statistical significance was represented, as
follows: * p < 0.05, ** p < 0.01; *** p < 0.001

5. Conclusions

It can be concluded that, under our experimental conditions, neither RSV nor Q
modify glucose uptake in primary myotubes, at physiological doses. Conversely, both
are able to enhance glycogen synthesis and reduce lactate content, two effects that could
represent a beneficial effect for glucose homeostasis and exercise endurance.
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AMPK AMP-activated protein kinase
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PKM Pyruvate kinase M1/2
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References
1. Diabetes. World Health Organization: 2018; Volume 2019. Available online: https://www.who.int/health-topics/diabetes#tab=

tab_1 (accessed on 12 May 2020).
2. Carnagarin, R.; Dharmarajan, A.M.; Dass, C.R. Molecular aspects of glucose homeostasis in skeletal muscle—A focus on the

molecular mechanisms of insulin resistance. Mol. Cell. Endocrinol. 2015, 417, 52–62. [CrossRef] [PubMed]
3. Lauritzen, H.P.; Schertzer, J.D. Measuring GLUT4 translocation in mature muscle fibers. Am. J. Physiol. Metab. 2010, 299,

E169–E179. [CrossRef] [PubMed]
4. Saltiel, A.R.; Kahn, C.R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001, 414,

799–806. [CrossRef]
5. Villarroel-Espíndola, F.; Maldonado, R.; Mancilla, H.; Stelt, K.V.; Acuña, A.I.; Covarrubias, A.; López, C.; Angulo, C.; Castro, M.A.;

Slebe, J.C.; et al. Muscle glycogen synthase isoform is responsible for testicular glycogen synthesis: Glycogen overproduction
induces apoptosis in male germ cells. J. Cell. Biochem. 2013, 114, 1653–1664. [CrossRef] [PubMed]

https://www.who.int/health-topics/diabetes#tab=tab_1
https://www.who.int/health-topics/diabetes#tab=tab_1
http://doi.org/10.1016/j.mce.2015.09.004
http://www.ncbi.nlm.nih.gov/pubmed/26362689
http://doi.org/10.1152/ajpendo.00066.2010
http://www.ncbi.nlm.nih.gov/pubmed/20501875
http://doi.org/10.1038/414799a
http://doi.org/10.1002/jcb.24507
http://www.ncbi.nlm.nih.gov/pubmed/23386391


Int. J. Mol. Sci. 2021, 22, 1384 14 of 16

6. Day, E.A.; Ford, R.J.; Steinberg, G.R. AMPK as a Therapeutic Target for Treating Metabolic Diseases. Trends Endocrinol. Metab.
2017, 28, 545–560. [CrossRef]

7. Osler, M.E.; Zierath, J.R. Minireview: Adenosine 5′-Monophosphate-Activated Protein Kinase Regulation of Fatty Acid Oxidation
in Skeletal Muscle. Endocrinology 2007, 149, 935–941. [CrossRef]

8. Jiang, H.; Yamashita, Y.; Nakamura, A.; Croft, K.D.; Ashida, H. Quercetin and its metabolite isorhamnetin promote glucose
uptake through different signalling pathways in myotubes. Sci. Rep. 2019, 9, 1–15. [CrossRef]

9. Klip, A.; Schertzer, J.D.; Bilan, P.J.; Thong, F.; Antonescu, C.N. Regulation of glucose transporter 4 traffic by energy deprivation
from mitochondrial compromise. Acta Physiol. 2009, 196, 27–35. [CrossRef]

10. Alvim, R.O.; Cheuhen, M.R.; Machado, S.R.; Sousa, A.G.P.; Santos, P.C. General aspects of muscle glucose uptake. An. Acad. Bras.
Ciências 2015, 87, 351–368. [CrossRef]

11. Szkudelski, T.; Szkudelski, T. Resveratrol, obesity and diabetes. Eur. J. Pharmacol. 2010, 635, 1–8. [CrossRef]
12. Portillo, M.P.; Aguirre, L.; Arias, N.; Macarulla, M.T.; Gracia, A. Beneficial Effects of Quercetin on Obesity and Diabetes. Open

Nutraceuticals J. 2011, 4, 189–198. [CrossRef]
13. Carpene, C.; Gomez-Zorita, S.; Deleruyelle, S.; Carpene, M. Novel Strategies for Preventing Diabetes and Obesity Complications

with Natural Polyphenols. Curr. Med. Chem. 2014, 22, 150–164. [CrossRef] [PubMed]
14. Fernández-Quintela, A.; Milton-Laskibar, I.; González, M.; Portillo, M.P. Antiobesity effects of resveratrol: Which tissues are

involved? Ann. N. Y. Acad. Sci. 2017, 1403, 118–131. [CrossRef] [PubMed]
15. Haddad, P.S.; Eid, H.M. The Antidiabetic Potential of Quercetin: Underlying Mechanisms. Curr. Med. Chem. 2017, 24,

355–364. [CrossRef]
16. Patel, K.R.; Scott, E.; Brown, V.A.; Gescher, A.J.; Steward, W.P.; Brown, K. Clinical trials of resveratrol. Ann. N. Y. Acad. Sci. 2011,

1215, 161–169. [CrossRef] [PubMed]
17. Goldberg, D.M.; Yan, J.; Soleas, G.J. Absorption of three wine-related polyphenols in three different matrices by healthy sub-jects.

Clin. Biochem. 2003, 36, 79–87. [CrossRef]
18. Timmers, S.; Konings, E.; Bilet, L.; Houtkooper, R.H.; Van De Weijer, T.; Goossens, G.H.; Hoeks, J.; Van Der Krieken, S.; Ryu, D.;

Kersten, S.; et al. Calorie Restriction-like Effects of 30 Days of Resveratrol Supplementation on Energy Metabolism and Metabolic
Profile in Obese Humans. Cell Metab. 2011, 14, 612–622. [CrossRef]

19. Olthof, M.R.; Hollman, P.C.H.; Vree, T.B.; Katan, M.B. Bioavailabilities of Quercetin-3-Glucoside and Quercetin-4′-Glucoside Do
Not Differ in Humans. J. Nutr. 2000, 130, 1200–1203. [CrossRef]

20. Wang, S.; Moustaid-Moussa, N.; Chen, L.; Mo, H.; Shastri, A.; Su, R.; Bapat, P.; Kwun, I.; Shen, C.-L. Novel insights of dietary
polyphenols and obesity. J. Nutr. Biochem. 2014, 25, 1–18. [CrossRef]

21. Rasouli, H.; Farzaei, M.H.; Khodarahmi, R. Polyphenols and their benefits: A review. Int. J. Food Prop. 2017, 20, 1–42. [CrossRef]
22. Öztürk, E.; Arslan, A.K.K.; Yerer, M.B.; Bishayee, A. Resveratrol and diabetes: A critical review of clinical studies. Biomed.

Pharmacother. 2017, 95, 230–234. [CrossRef] [PubMed]
23. Huang, D.-D.; Shi, G.; Jiang, Y.; Yao, C.; Zhu, C. A review on the potential of Resveratrol in prevention and therapy of diabetes

and diabetic complications. Biomed. Pharmacother. 2020, 125, 109767. [CrossRef] [PubMed]
24. Huang, H.; Liao, D.; Dong, Y.; Pu, R. Effect of quercetin supplementation on plasma lipid profiles, blood pressure, and glucose

levels: A systematic review and meta-analysis. Nutr. Rev. 2020, 78, 615–626. [CrossRef] [PubMed]
25. Zamora-Ros, R.; Knaze, V.; Rothwell, J.A.; Hémon, B.; Moskal, A.; Overvad, K.; Tjønneland, A.; Kyrø, C.; Fagherazzi, G.;

Boutron-Ruault, M.-C.; et al. Dietary polyphenol intake in Europe: The European Prospective Investigation into Cancer and
Nutrition (EPIC) study. Eur. J. Nutr. 2016, 55, 1359–1375. [CrossRef] [PubMed]

26. Harwood, M.; Danielewska-Nikiel, B.; Borzelleca, J.; Flamm, G.; Williams, G.; Lines, T. A critical review of the data related to
the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem.
Toxicol. 2007, 45, 2179–2205. [CrossRef] [PubMed]

27. Singh, A.P.; Singh, R.; Verma, S.S.; Rai, V.; Kaschula, C.H.; Maiti, P.; Gupta, S.C. Health benefits of resveratrol: Evidence from
clinical studies. Med. Res. Rev. 2019, 39, 1851–1891. [CrossRef]

28. Andres, S.; Pevny, S.; Ziegenhagen, R.; Bakhiya, N.; Schäfer, B.; Hirsch-Ernst, K.I.; Lampen, A. Safety Aspects of the Use of
Quercetin as a Dietary Supplement. Mol. Nutr. Food Res. 2018, 62. [CrossRef]

29. Shi, G.-J.; Li, Y.; Cao, Q.-H.; Wu, H.-X.; Tang, X.-Y.; Gao, X.-H.; Yu, J.-Q.; Chen, Z.; Yang, Y. In vitro and in vivo evidence that
quercetin protects against diabetes and its complications: A systematic review of the literature. Biomed. Pharmacother. 2019, 109,
1085–1099. [CrossRef]

30. Szkudelski, T.; Szkudelska, K. Resveratrol and diabetes: From animal to human studies. Biochim. Biophys. Acta 2015, 1852,
1145–1154. [CrossRef]

31. Chen, S.; Jiang, H.; Wu, X.; Fang, J. Therapeutic Effects of Quercetin on Inflammation, Obesity, and Type 2 Diabetes. Mediat.
Inflamm. 2016, 2016, 9340637. [CrossRef]

32. Boocock, D.J.; Faust, G.E.; Patel, K.R.; Schinas, A.M.; Brown, V.A.; Ducharme, M.P.; Booth, T.D.; Crowell, J.A.; Perloff, M.;
Gescher, A.J.; et al. Phase I Dose Escalation Pharmacokinetic Study in Healthy Volunteers of Resveratrol, a Potential Cancer
Chemopreventive Agent. Cancer Epidemiol. Biomark. Prev. 2007, 16, 1246–1252. [CrossRef] [PubMed]

http://doi.org/10.1016/j.tem.2017.05.004
http://doi.org/10.1210/en.2007-1441
http://doi.org/10.1038/s41598-019-38711-7
http://doi.org/10.1111/j.1748-1716.2009.01974.x
http://doi.org/10.1590/0001-3765201520140225
http://doi.org/10.1016/j.ejphar.2010.02.054
http://doi.org/10.2174/1876396001104010189
http://doi.org/10.2174/0929867321666140815124052
http://www.ncbi.nlm.nih.gov/pubmed/25139462
http://doi.org/10.1111/nyas.13413
http://www.ncbi.nlm.nih.gov/pubmed/28796895
http://doi.org/10.2174/0929867323666160909153707
http://doi.org/10.1111/j.1749-6632.2010.05853.x
http://www.ncbi.nlm.nih.gov/pubmed/21261655
http://doi.org/10.1016/S0009-9120(02)00397-1
http://doi.org/10.1016/j.cmet.2011.10.002
http://doi.org/10.1093/jn/130.5.1200
http://doi.org/10.1016/j.jnutbio.2013.09.001
http://doi.org/10.1080/10942912.2017.1354017
http://doi.org/10.1016/j.biopha.2017.08.070
http://www.ncbi.nlm.nih.gov/pubmed/28843911
http://doi.org/10.1016/j.biopha.2019.109767
http://www.ncbi.nlm.nih.gov/pubmed/32058210
http://doi.org/10.1093/nutrit/nuz071
http://www.ncbi.nlm.nih.gov/pubmed/31940027
http://doi.org/10.1007/s00394-015-0950-x
http://www.ncbi.nlm.nih.gov/pubmed/26081647
http://doi.org/10.1016/j.fct.2007.05.015
http://www.ncbi.nlm.nih.gov/pubmed/17698276
http://doi.org/10.1002/med.21565
http://doi.org/10.1002/mnfr.201700447
http://doi.org/10.1016/j.biopha.2018.10.130
http://doi.org/10.1016/j.bbadis.2014.10.013
http://doi.org/10.1155/2016/9340637
http://doi.org/10.1158/1055-9965.EPI-07-0022
http://www.ncbi.nlm.nih.gov/pubmed/17548692


Int. J. Mol. Sci. 2021, 22, 1384 15 of 16

33. Boocock, D.J.; Patel, K.R.; Faust, G.E.; Normolle, D.P.; Marczylo, T.H.; Crowell, J.A.; Brenner, D.E.; Booth, T.D.; Gescher, A.;
Steward, W.P. Quantitation of trans-resveratrol and detection of its metabolites in human plasma and urine by high performance
liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007, 848, 182–187. [CrossRef]

34. Gambini, J.; Inglés, M.; Olaso, G.; Lopezgrueso, R.; Bonetcosta, V.; Gimenomallench, L.; Mas-Bargues, C.; Abdelaziz, K.M.;
Gomezcabrera, M.C.; Vina, J.; et al. Properties of Resveratrol:In VitroandIn VivoStudies about Metabolism, Bioavailability, and
Biological Effects in Animal Models and Humans. Oxidative Med. Cell. Longev. 2015, 2015, 1–13. [CrossRef]

35. Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and bioefficacy of polyphenols in humans. I.
Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005, 81, 230S–242S. [CrossRef] [PubMed]

36. Conquer, J.A.; Maiani, G.; Azzini, E.; Raguzzini, A.; Holub, B.J. Supplementation with Quercetin Markedly Increases Plasma
Quercetin Concentration without Effect on Selected Risk Factors for Heart Disease in Healthy Subjects. J. Nutr. 1998, 128, 593–597.
[CrossRef] [PubMed]

37. Russo, M.; Spagnuolo, C.; Tedesco, I.; Bilotto, S.; Russo, G.L. The flavonoid quercetin in disease prevention and therapy: Facts
and fancies. Biochem. Pharmacol. 2012, 83, 6–15. [CrossRef]

38. Brown, V.A.; Patel, K.R.; Viskaduraki, M.; Crowell, J.A.; Perloff, M.; Booth, T.D.; Vasilinin, G.; Sen, A.; Schinas, A.M.; Piccirilli, G.;
et al. Repeat Dose Study of the Cancer Chemopreventive Agent Resveratrol in Healthy Volunteers: Safety, Pharmacokinetics, and
Effect on the Insulin-like Growth Factor Axis. Cancer Res. 2010, 70, 9003–9011. [CrossRef] [PubMed]

39. Dolinsky, V.W.; Dyck, J.R.B. Experimental Studies of the Molecular Pathways Regulated by Exercise and Resveratrol in Heart,
Skeletal Muscle and the Vasculature. Molecules 2014, 19, 14919–14947. [CrossRef]

40. Malaguti, M.; Angeloni, C.; Hrelia, S. Polyphenols in Exercise Performance and Prevention of Exercise-Induced Muscle Damage.
Oxidative Med. Cell. Longev. 2013, 2013, 825928. [CrossRef] [PubMed]

41. Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.;
et al. Resveratrol Improves Mitochondrial Function and Protects against Metabolic Disease by Activating SIRT1 and PGC-1α. Cell
2006, 127, 1109–1122. [CrossRef]

42. Krishnamoorthy, R.M.; Venkatraman, A.C. Polyphenols activate energy sensing network in insulin resistant models. Chem.
Interact. 2017, 275, 95–107. [CrossRef] [PubMed]

43. Montesano, A.; Luzi, L.; Senesi, P.; Mazzocchi, N.; Terruzzi, I. Resveratrol promotes myogenesis and hypertrophy in murine
myoblasts. J. Transl. Med. 2013, 11, 310. [CrossRef] [PubMed]

44. Haddad, P.S.; Eid, H.M.; Nachar, A.; Thong, F.; Sweeney, G. The molecular basis of the antidiabetic action of quercetin in cultured
skeletal muscle cells and hepatocytes. Pharmacogn. Mag. 2015, 11, 74–81. [CrossRef] [PubMed]

45. Skrobuk, P.; Von Kraemer, S.; Semenova, M.M.; Zitting, A.; Koistinen, H.A. Acute exposure to resveratrol inhibits AMPK activity
in human skeletal muscle cells. Diabetologia 2012, 55, 3051–3060. [CrossRef] [PubMed]

46. Breen, D.M.; Sanli, T.; Giacca, A.; Tsiani, E. Stimulation of muscle cell glucose uptake by resveratrol through sirtuins and AMPK.
Biochem. Biophys. Res. Commun. 2008, 374, 117–122. [CrossRef] [PubMed]

47. Minakawa, M.; Kawano, A.; Miura, Y.; Yagasaki, K. Hypoglycemic effect of resveratrol in type 2 diabetic model db/db mice and
its actions in cultured L6 myotubes and RIN-5F pancreatic β-cells. J. Clin. Biochem. Nutr. 2011, 48, 237–244. [CrossRef] [PubMed]

48. Fröjdö, S.; Cozzone, D.; Vidal, H.; Pirola, L. Resveratrol is a class IA phosphoinositide 3-kinase inhibitor. Biochem. J. 2007, 406,
511–518. [CrossRef]

49. Kaminski, J.; Lançon, A.; Tili, E.; Aires, V.; Demarquoy, J.; Lizard, G.; Michaille, J.; Latruffe, N. Dietary Resveratrol Modu-lates
Metabolic Functions in Skeletal Muscle Cells. J. Food Drug Anal. 2012, 20, 398–401.

50. Barger, J.L.; Kayo, T.; Vann, J.M.; Arias, E.B.; Wang, J.; Hacker, T.A.; Wang, Y.; Raederstorff, D.; Morrow, J.D.; Leeuwenburgh, C.;
et al. A Low Dose of Dietary Resveratrol Partially Mimics Caloric Restriction and Retards Aging Parameters in Mice. PLoS ONE
2008, 3, e2264. [CrossRef]

51. Gulati, N.; Laudet, B.; Zohrabian, V.M.; Murali, R.; Jhanwar-Uniyal, M. The antiproliferative effect of Quercetin in cancer cells is
mediated via inhibition of the PI3K-Akt/PKB pathway. Anticancer. Res. 2006, 26, 1177–1181.

52. Yoneyama, Y.; Inamitsu, T.; Chida, K.; Iemura, S.-I.; Natsume, T.; Maeda, T.; Hakuno, F.; Takahashi, S.-I. Serine Phosphorylation
by mTORC1 Promotes IRS-1 Degradation through SCFβ-TRCP E3 Ubiquitin Ligase. iScience 2018, 5, 1–18. [CrossRef] [PubMed]

53. Wang, Z.; Liu, F.; Liao, W.; Yu, L.; Hu, Z.; Li, M.; Xia, H. Curcumin suppresses glioblastoma cell proliferation by p-AKT/mTOR
pathway and increases the PTEN expression. Arch. Biochem. Biophys. 2020, 689, 108412. [CrossRef] [PubMed]

54. Sun, T.-L.; Li, W.-Q.; Tong, X.-L.; Liu, X.-Y.; Zhou, W. Xanthohumol attenuates isoprenaline-induced cardiac hypertrophy and
fibrosis through regulating PTEN/AKT/mTOR pathway. Eur. J. Pharmacol. 2020, 891, 173690. [CrossRef]

55. Milton-Laskíbar, I.; Aguirre, L.; Macarulla, M.; Etxeberria, U.; Milagro, F.I.; Martínez, J.; Contreras, J.; Portillo, M.P. Com-
parative effects of energy restriction and resveratrol intake on glycemic control improvement. BioFactors 2017, 43, 371–378.
[CrossRef] [PubMed]

56. Eid, H.M.; Martineau, L.C.; Saleem, A.; Muhammad, A.; Vallerand, D.; Benhaddou-Andaloussi, A.; Nistor, L.; Afshar, A.; Arnason,
J.T.; Haddad, P.S. Stimulation of AMP-activated protein kinase and enhancement of basal glucose uptake in muscle cells by
quercetin and quercetin glycosides, active principles of the antidiabetic medicinal plant Vaccinium vitis-idaea. Mol. Nutr. Food
Res. 2010, 54, 991–1003. [CrossRef]

57. Dai, X.; Ding, Y.; Zhang, Z.; Cai, X.; Bao, L.; Li, Y. Quercetin but not quercitrin ameliorates tumor necrosis fac-tor-alpha-induced
insulin resistance in C2C12 skeletal muscle cells. Biol. Pharm. Bull. 2013, 36, 788–795. [CrossRef]

http://doi.org/10.1016/j.jchromb.2006.10.017
http://doi.org/10.1155/2015/837042
http://doi.org/10.1093/ajcn/81.1.230S
http://www.ncbi.nlm.nih.gov/pubmed/15640486
http://doi.org/10.1093/jn/128.3.593
http://www.ncbi.nlm.nih.gov/pubmed/9482769
http://doi.org/10.1016/j.bcp.2011.08.010
http://doi.org/10.1158/0008-5472.CAN-10-2364
http://www.ncbi.nlm.nih.gov/pubmed/20935227
http://doi.org/10.3390/molecules190914919
http://doi.org/10.1155/2013/825928
http://www.ncbi.nlm.nih.gov/pubmed/23983900
http://doi.org/10.1016/j.cell.2006.11.013
http://doi.org/10.1016/j.cbi.2017.07.016
http://www.ncbi.nlm.nih.gov/pubmed/28751004
http://doi.org/10.1186/1479-5876-11-310
http://www.ncbi.nlm.nih.gov/pubmed/24330398
http://doi.org/10.4103/0973-1296.149708
http://www.ncbi.nlm.nih.gov/pubmed/25709214
http://doi.org/10.1007/s00125-012-2691-1
http://www.ncbi.nlm.nih.gov/pubmed/22898769
http://doi.org/10.1016/j.bbrc.2008.06.104
http://www.ncbi.nlm.nih.gov/pubmed/18601907
http://doi.org/10.3164/jcbn.10-119
http://www.ncbi.nlm.nih.gov/pubmed/21562645
http://doi.org/10.1042/BJ20070236
http://doi.org/10.1371/annotation/c54ef754-1962-4125-bf19-76d3ec6f19e5
http://doi.org/10.1016/j.isci.2018.06.006
http://www.ncbi.nlm.nih.gov/pubmed/30240640
http://doi.org/10.1016/j.abb.2020.108412
http://www.ncbi.nlm.nih.gov/pubmed/32445778
http://doi.org/10.1016/j.ejphar.2020.173690
http://doi.org/10.1002/biof.1347
http://www.ncbi.nlm.nih.gov/pubmed/28218490
http://doi.org/10.1002/mnfr.200900218
http://doi.org/10.1248/bpb.b12-00947


Int. J. Mol. Sci. 2021, 22, 1384 16 of 16

58. Kleinert, M.; Sylow, L.; Richter, E.A. Regulation of glycogen synthase in muscle and its role in Type 2 diabetes. Diabetes Manag.
2013, 3, 81–90. [CrossRef]

59. Christ-Roberts, C.Y.; Pratipanawatr, T.; Pratipanawatr, W.; Berria, R.; Belfort, R.; Kashyap, S.; Mandarino, L.J. Exercise training
increases glycogen synthase activity and GLUT4 expression but not insulin signaling in overweight nondiabetic and type 2
diabetic subjects. Metabolism 2004, 53, 1233–1242. [CrossRef]

60. Zachwieja, J.; Pirner, M.; Smith, J. Methods of Reducing Blood Lactate Content. 2017. Available online: https://patents.google.
com/patent/EP2615931A1/en (accessed on 19 June 2020).

61. Alway, S.E.; McCrory, J.L.; Kearcher, K.; Vickers, A.; Frear, B.; Gilleland, D.L.; Bonner, D.E.; Thomas, J.M.; Donley, D.A.; Lively,
M.W.; et al. Resveratrol Enhances Exercise-Induced Cellular and Functional Adaptations of Skeletal Muscle in Older Men and
Women. J. Gerontol. A Boil. Sci. Med. Sci. 2017, 72, 1595–1606. [CrossRef]

62. Pollack, R.M.; Barzilai, N.; Anghel, V.; Kulkarni, A.S.; Golden, A.; O’Broin, P.; Sinclair, D.A.; Bonkowski, M.S.; Coleville, A.J.;
Powell, D.; et al. Resveratrol Improves Vascular Function and Mitochondrial Number but Not Glucose Metabolism in Older
Adults. J. Gerontol. A Boil. Sci. Med. Sci. 2017, 72, 1703–1709. [CrossRef]

63. Scribbans, T.D.; Ma, J.K.; Edgett, B.A.; Vorobej, K.A.; Mitchell, A.S.; Zelt, J.G.; Simpson, C.A.; Quadrilatero, J.; Gurd, B.J.
Resveratrol supplementation does not augment performance adaptations or fibre-type–specific responses to high-intensity
interval training in humans. Appl. Physiol. Nutr. Metab. 2014, 39, 1305–1313. [CrossRef] [PubMed]

64. Olesen, J.; Gliemann, L.; Biensø, R.; Schmidt, J.; Hellsten, Y.; Pilegaard, H. Exercise training, but not resveratrol, improves
metabolic and inflammatory status in skeletal muscle of aged men. J. Physiol. 2014, 592, 1873–1886. [CrossRef] [PubMed]

65. Kjær, T.N.; Ornstrup, M.J.; Poulsen, M.M.; Stødkilde-Jørgensen, H.; Jessen, N.; Jørgensen, J.O.L.; Richelsen, B.; Pedersen, S.B. No
Beneficial Effects of Resveratrol on the Metabolic Syndrome: A Randomized Placebo-Controlled Clinical Trial. J. Clin. Endocrinol.
Metab. 2017, 102, 1642–1651. [CrossRef] [PubMed]

66. Nieman, D.; Henson, D.A.; Maxwell, K.R.; Williams, A.S.; McAnulty, S.R.; Jin, F.; Shanely, R.A.; Lines, T.C. Effects of Quercetin
and EGCG on Mitochondrial Biogenesis and Immunity. Med. Sci. Sports Exerc. 2009, 41, 1467–1475. [CrossRef] [PubMed]

67. Nieman, D.; Williams, A.S.; Shanely, R.A.; Jin, F.; McAnulty, S.R.; Triplett, N.T.; Austin, M.D.; Henson, D.A. Quercetin’s Influence
on Exercise Performance and Muscle Mitochondrial Biogenesis. Med. Sci. Sports Exerc. 2010, 42, 338–345. [CrossRef]

68. Marín, L.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Bioavailability of Dietary Polyphenols and Gut Microbiota Metabolism:
Antimicrobial Properties. BioMed Res. Int. 2015, 2015, 1–18. [CrossRef]

69. Ishizawa, K.; Yoshizumi, M.; Kawai, Y.; Terao, J.; Kihira, Y.; Ikeda, Y.; Tomita, S.; Minakuchi, K.; Tsuchiya, K.; Tamaki, T.
Pharmacology in Health Food: Metabolism of Quercetin In Vivo and Its Protective Effect Against Arteriosclerosis. J. Pharmacol.
Sci. 2011, 115, 466–470. [CrossRef]

70. Wang, P.; Sang, S. Metabolism and pharmacokinetics of resveratrol and pterostilbene. BioFactors 2018, 44, 16–25. [CrossRef]
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