Supplemental Figure. 1

Supplemental Fig. 1 The acetylation levels of H3K9 and H3K122 were not changed around the upstream region of the hypertrophic response gene promoters

(A-F) ChIP assays were performed using cardiomyocyte lysates treated with or without PE for 0, 15, 60, or 240 min with anti-acetyl-histone H3K9 antibody (A-C), anti-acetyl-histone H3K122 antibody (D-F), or normal rabbit IgG as a negative control (not detected). N=3 to 4; *one-way* ANOVA followed by Tukey test. * p < 0.05.

Supplemental Figure. 2

Supplemental Fig. 2 Curcumin treatment inhibited cardiomyocyte hypertrophy

Primary cultured neonatal rat cardiomyocytes were treated with curcumin (10 μ M) for 2 hours, then with PE (30 μ M), as described in Fig. 2. (A and B) Immunofluorescence staining was performed with anti-MHC antibody. The areas of 50 randomly-chosen cells were measured using ImageJ v4.16. (A) is representative photographic image of cardiomyocytes, and (B) is a quantification of (A). Scale bar: 20 μ m. (C-E) mRNAs were extracted from the cardiomyocytes, and mRNA levels of (C) ANF, (D) BNP, and (E) β -MHC were measured by qRT-PCR assay. (B-E), N=3; *one-way* ANOVA followed by Tukey test. * *p* < 0.05

Supplemental Figure. 3

Supplemental Fig. 3 Cardiac hypertrophy was observed in TG mice with cardiac overexpression of p300

(A) The hearts of p300-TG mice were subjected to hematoxylin eosin staining at 26 weeks of age. Scale bar: 5 mm. (B) Heart weight / body weight (HW/BW) ratios at 26 weeks of age. (B), N=4; unpaired t-test. * p < 0.05

Supplemental Table 1

Stage	LVH		HF	
Parameter	DR 12w	DS 12w	DR 21w	DS 21w
LVPWd (mm)	2.2 ± 0.3	$3.2 \pm 0.3^{*}$	2.4 ± 0.2	$3.4 \pm 0.3^{\dagger}$
IVSd (mm)	1.9 ± 0.2	$2.6 \pm 0.3^{*}$	1.8 ± 0.3	$3.0 \pm 0.3^{\dagger\ddagger}$
LVIDd (mm)	6.3 ± 0.4	5.7 ± 0.6	7.1 ± 0.2	6.9 ± 0.5
IVIDs (mm)	2.7 ± 0.4	2.2 ± 0.6	3.1 ± 0.2	$4.6 \pm 0.4^{\dagger \ddagger}$
FS (%)	57.8 ± 5.5	62.9 ± 6.9	57.1 ± 4.0	$34.2 \pm 5.2^{\dagger \ddagger}$
Supplemental Table 1. The data of echocardiography from salt resistant and sensitive Dahl rats Abbreviations: LVH, Left ventricular hypertrophy; HF, Heart failure; DR, Dahl salt-resistant rat; DS, Dahl salt-sensitive rat; LVPWT, Left ventricular posterior wall thickness; IVSd, Interventricular septum thickness at end-diastole; LVIDd, left ventricular internal diameter at end diastole; IVIDs, left ventricular internal diameter at end systole; FS, Fractional shortening. N=4; two-way ANOVA followed by Tukey test. * <i>p</i> < 0.05 DR 12w vs DS 12w, † <i>p</i> < 0.05 DR 21w vs DS 21w, † <i>p</i> < 0.05 DS 12w vs DS 21w				