Supplementary Information

CRISPR/Cas9-mediated Generation of Pathogen-resistance Tomato against *Tomato Yellow Leaf Curl Virus* and Powdery Mildew

Dibyajyoti Pramanik ^{1,†}, Rahul Mahadev Shelake ^{1,†,*}, Jiyeon Park ², Mi Jung Kim ¹,

Indeok Hwang ³, Younghoon Park ^{2,*}, Jae-Yean Kim ^{1,*}

Affiliations

- ¹ Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea; dpinbiotech@gmail.com (D.P.); ecastle109@gmail.com (M.J.K.)
- ² Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Korea; o_omad@naver.com (J.P); ypark@pusan.ac.kr (Y.H.P.)
- ³ R&D Center, Bunongseed Co., Ltd., Gimje 54324, Korea; usename@hanmail.net (I.H.)
- [†] These authors contributed equally as co-first authors to this work.
- * Corresponding author: rahultnau@gmail.com (R.M.S.); ypark@pusan.ac.kr (Y.H.P.); kimjy@gnu.ac.kr (J.-Y. K.)

Phone: +82-55-772-1361 (J.-Y. K.)

Running title: CRISPR-mediated multi-pathogen resistance in tomato

Supplementary: Table of content

	Content	Page No		
Supplementary Figures				
1.	PELO amino acid sequence and conserved domain structure.	1		
2.	Secondary structures of gRNA-scaffold predicted using the Mfold tool	2		
3.	Genotyping of CRISPR/Cas9-regenerated G0 plants (Batch 1)	3		
4.	Genotyping of CRISPR/Cas9-regenerated G0 and G1 plants (Batch 2)	4		
5.	Sanger decomposition data of G0 and G1 SlPelo-edited lines	5		
6.	Screening of G1 tomato plants for editing at targeted loci in the tomato genome	6		
7.	CRISPR/Cas9-generated SlMlo1-edited alleles in the G1 generation			
Supplementary Table				
1.	List of the primers used in this study	9		
2.	RNA sequences used in present work and evaluated potential off-target sites	11		

MKIVRRDFVPDGSGSVKIIPEEADDLWVAYNLIAEGDTVLAVTVRKVLREAASGGRDAER VKLKLEIKVENVEYDKEGSALRIRGKNILENEHVKIGAFHTLEIEQHRPFVLRKVVWDSL AREVLRQASDPSASADLAVVLMQEGLAHILLIGKSVTITRSRIESSIPRKHGPAIAGYDK ALNKFFDNVLQAFVKHVDFKVVRCAVIASPGFTKDQFHRHLLLEAERKQLRPIIENKSRI ILVHTTSGYKHSLKEVMDAPNVMTMIKDTKAAKEVQALKDFFNMLSNDPDRACYGPKHVE VAHERLAIQTLLITDELFRSSDVETRKKYANLVDSVKDSGGTALIFSSMHVSGEQLNQLT GIAAILRFPLPELEDIEM

Figure S1.

PELO amino acid sequence and conserved domain structure.

PELO amino acid sequence and conserved domain structure. InterProScan scanning of the PELO polypeptide predicted to form three conserved eRF1 domains (eRF1_1, eRF1_2, and eRF1_3). The guide RNAs (gRNAs) were designed for targeting the eRF1_1, depicted with a red box.

Figure S2.

Secondary structures of gRNA-scaffold predicted using the Mfold tool.

(a) Target sgRNA secondary structure

(b) Parameters calculated from the predicted secondary structures of sgRNAs. TSL: total stem loop; GSL: Stem loop in the guide sequence; CBP: consecutive base pair (guide sequence and the other sequence); TBP: total base pairs in guide sequence with other sequence; IBP: internal base pairs in gRNA; GC content (%) of gRNA. Further details about the criteria available on the webpage of the CRISPR-P 2.0 tool.

Figure S3.

Genotyping of CRISPR/Cas9-regenerated G0 plants (Batch 1).

Genotyping of G0 plants generated from (a) pP1 and (b) pPM2 for T-DNA integration (*SpCas9*) and target gene modifications. The *SpCas9*-positive independent G0 lines were analyzed in agarose gel electrophoresis after PCR amplification of the targeted genomic region. WT- targeted genomic region amplified from wild-type plant. Purified T-DNA plasmid was used as a positive control (+C) for *SpCas9* in PCR experiments. The plant line shows a shorter amplicon due to possible large deletion in the targeted region indicated using a blue arrow and red star symbol.

Figure S4.

Genotyping of CRISPR/Cas9-regenerated G0 and G1 plants (Batch 2).

(a) G0 plants genotyped for stable Cas9 integration alongside wild type and positive control (SpCas9-L2 plasmids);

(b, c) Agarose gel electrophoresis of PCR-amplified fragments of *SlPelo* and *SlMlo1* from the genome DNA of *SpCas9*-positive G0 lines, including wild-type (WT). The blue arrow indicating the size of the expected PCR product, the red dotted arrow indicates band shift due to large deletion.

(d) Screening of genome-edited plants in G1 generation. The G1 plants were genotyped for possible target gene modification and transgene presence. PCR-amplified target regions of *SlPelo* and *SlMlo1* locus separated on agarose gel electrophoresis. Purified T-DNA plasmid was used as a positive control (+C) for *SpCas9* in PCR. *GAPDH* used as an internal control gene.

Figure S5.

Sanger decomposition data of G0 and G1 SlPelo-edited lines.

The gRNA target area of respective (a) G0 and (b) G1 plants was PCR amplified, sequenced with Sanger sequencing, and evaluated with the ICE tool. Indel and contribution showing the type of mutation and editing efficiency in the analyzed population, respectively. Dotted vertical lines denoting the target cleavage sites. Dash indicating deleted nucleotide bases. 'N' indicating the presence of mix chromatogram pick. Nucleotide deletions are implied by dashes.

Figure S6.

Screening of G1 tomato plants for editing of targeted loci in the tomato genome. Line number G0-22 was self-crossed and produced G1 plants genotyped for transgene presence (*SpCas9*) and possible editing of target genes. Agarose gel electrophoresis showing the PCR-amplified target region. Purified T-DNA plasmid used as s positive control (+C) for *SpCas9* in PCR experiments. *GAPDH* used as an internal control gene.

Figure S7.

CRISPR/Cas9-generated *SlMlo1*-edited alleles in the G1 generation.

Sanger sequencing data of individual G1 plants were analyzed using the ICE Synthego tool. The *SlMlo1* mutant allele with indel pattern and contribution of editing efficiency indicated. The SpCas9-sgRNA cleavage site marked with dotted vertical lines and nucleotide deletions drawn with dashes.

N 0.	Primer Name	Sequence (5'-3')	Purpose	Product size (bp)
1	66F	TGTGGTCTCAGATTGTGATGGTTCTGGTA	SlPelo-Target	-
2	67F	TGTGGTCTCAGATTGGCTTATAATCTGAT	SlPelo-Target B cloning	-
3	114F	TGTGGTCTCAATTGCGTAGAGACTTTGTTC CTGAGTTTTAGAGCTAGAAATAGCAAG	SlPelo-Target C cloning	-
4	115F	TGTGGTCTCAATTGCATAGATCATCAGCT TCTTCGTTTTAGAGCTAGAAATAGCAAG	SlPelo-Target D cloning	-
5	160F	TGTGGTCTCAATTGGCTCCAGAAGCAGCT TCCCTCGTTTTAGAGCTAGAAATAGCAAG	SlPelo-Target1 cloning	-
6	161F	TGTGGTCTCAATTGGATACTTCATCTCGAC CACATGTTTTAGAGCTAGAAATAGCAAG	SlPelo-Target2 cloning	-
7	162F	TGTGGTCTCAATTGGATTCTTCAACTTAAT CCTTTGTTTTAGAGCTAGAAATAGCAAG	SlPelo-Target3 cloning	-
8	154F	TGTGGTCTCAATTGGATTCTTCCCGCGAAT ACGCAAGGGTTTTAGAGCTAGAAATAGCA AG	SlPelo-Target4 cloning	-
9	163F	TGTGGTCTCAATTGGCTAATTATTTATTG CAGATGTTTTAGAGCTAGAAATAGCAAG	<i>SlPelo</i> -Target5 cloning	-
10	87F	TGTGGTCTCAATTGGGGAGTAAGGATTTC AGAAAGTTTTAGAGCTAGAAATAGCAAG	Mlo1 gRNA1-	-
11	88F	TGTGGTCTCAATTGGTACAAAGTTAATCA	Mlo1 gRNA-2	-
12	70R	TGTGGTCTCAAGCGTAATGCCAACTTTGT AC	Universal Rev. primer for gRNA- scaffold cloning	-
13	gRNA-A-F	TGTGGTCTCAGATTGGTGATGGTTCTGGT AGTGTAAGTTTTAGAGCTAGAAATAGCAA G	<i>SlPelo</i> sgRNA-A cloning	-
14	gRNA-B-F	TGTGGTCTCAGATTGGGCTTATAATCTGA TAGCTGAGTTTTAGAGCTAGAAATAGCAA G	SlPelo sgRNA-B cloning	-
15	gRNA-C-F	TGTGGTCTCAGATTGGCGTAGAGACTTTG TTCCTGAGTTTTAGAGCTAGAAATAGCAA G	<i>SlPelo</i> sgRNA-C cloning	-
16	gRNA-D-F	TGTGGTCTCAGATTGGCATAGATCATCAG CTTCTTCGTTTTAGAGCTAGAAATAGCAA G	<i>SlPelo</i> sgRNA-D cloning	-
17	138F	GACGAGTACAAGGTGCCGAGCA	spCas9-	022
18	139R	GGTGGTGCTCATCATAGCGCT	F/R(partial)	922
19	142F	ATGTGAATCGGGACCACAC	SIMI01	816
20	144R	GGTCTGCAGCATTCTTATGAAA	primers	010

Table S1 List of the primers used in this study.

21	149F	GGTAAGCTATTGACACATTGTAT	Pelo flanking primers	1108
22	150R	CCATGAGATTCAAAAGTCGTTC	(Target A to D)	
23	158F	GGGTCTTTGCTGATTGTTAAC	Pelo flanking	0.42
24	159R	CATATATCACCAGCTTGATAGC	(Target 1 to 5)	943
25	GAPDH-F	GATTCGGAAGAATTGGCCG	C + D D V	())(
26	GAPDH-R	TCATCATACACACGGTGAC	GAPDH	606
27	pJET1.2 F	CGACTCACTATAGGGAGAGCGGC		-
28	pJET1.2 R	AAGAACATCGATTTTCCATGGCAG	TA cloning	
29	L2-F	GGCAGGATATATTGTGGTGTAAAC	Sequencing for	
30	L2-F	GTTTACCCGCCAATATATCCTGTC	L2 plasmids	-
31	qTYLCV-C1- F	GCTCGTAGAGGGTGACGAA		-
32	qTYLCV-C1- R	CACAAAGTACGGGAAGCCCA	RT-PCR	-
33	EF-1αF	GGAACTTGAGAAGGAGCCTAAG		-
34	EF-1aR	CAACACCAACAGCAACAGTCT		-
35	On-F	CCCACCCGTGTCGATTTCTA	16S rRNA	404
36	On-R	CCGCCACTATCTTTAAGAGCTG	for On	
37	off-1-F	GGTGTTCGACTTTCACTTG		5.40
38	off-1-R	GGTGGTTGAAATTGTTGAAAG		549
39	off-2-F	CAGATGCACCAGAGTACATG		5.00
40	off-2-R	CTGGTGACTTCAGTCTCTG		569
41	off-3-F	CCGCGTCTCCACTAAAATG		4.47
42	off-3-R	CCATACTGTGTAAACGTAGGG		447
43	Off-4-F	GCGAAAATAAGCATGGCATAAAG		270
44	Off-4-R	CTCAAATGTTGTGGTGAGTAGTG		578
45	off-5-F	CCGATGAATGGGAAGATTGA	off-target	501
46	off-5-R	TCTCATCTGACTGCGAGC	analysis	381
47	Off-6-F	TGCACTTCACTAACAACCCA		259
48	Off-6-R	CTAAGCCTATGCAAATTCATTCTC		338
49	Off-7-F	AGTGATGCGACAGTTTGGT		557
50	Off-7-R	CGTACGGCTCAGTGAACAC		557
51	off-8-F	AAATGGGTCAGGCGTGTCA		470
52	off-8-R	AGTCGATGGTTCAGCTTCTC		+17
53	off-9-F	CATCCTCCAAGAATGGGTCG		175
54	off-9-R	TTGATGGCTCGGCTCTTCTT		473

55	off-10-F	CGATAATTCCGTTGATCCGT	510
56	off-10-R	GGAATTTGAGAATACATTCCCTCC	512
57	off-11-F	GCTTATGCACTAGGGTGGT	460
58	off-11-R	CACTTGAATGATCTGTGGGGAC	400
59	off-12-F	GAGGCAAGTAAAGGAGGGC	591
60	off-12-R	CAGCCGGAAAGATGAAACTGT	384

Cono	Target	Target sequence with PAM (5'-3')	Chromosome	Position	Direction	Mismatches	Off-target mutation	
Gene							G1-41-40	G1-22-32
SlPelo	on-target-1	CTCCAGAAGCAGCTTCCCTCAGG	SL2.40ch04	3124039	+	-	NA	NA
	on-target-2	ATACTTCATCTCGACCACATTGG	SL2.40ch04	3123787	+	-	NA	NA
	off-target-2-1	ATACTTCAcCTCGACCACcaTGG	SL2.40ch04	18337804	-	3	0	0
	on-target-3	ATTCTTCCCGCGAATACGCAAGG	SL2.40ch04	3123483	+	-	NA	NA
	off-target-3-1	ATTtTCAACTccATCCTTTTGG	SL2.40ch12	12025128	-	3	0	0
	on-target-4	ATTCTTCAACTTAATCCTTTTGG	SL2.40ch04	3123430	-	-	NA	NA
	off-target-4-1	ATTtTCtcCTTAATCCTTTTGG	SL2.40ch02	43011559	+	3	0	0
	on-target-5	CTAATTATTTTATTGCAGATAGG	SL2.40ch04	3123370	-	-	NA	NA
	off-target-5-1	tTAATTtTTTTTTTTTGgAGATGGG	SL2.40ch06	16572393	-	3	0	0
	off-target-5-2	CTAATaATaTTATTGgAGATCGG	SL2.40ch03	58511693	-	3	0	0
	off-target-5-3	CTAAaTATTTTcTTaCAGATAGG	SL2.40ch04	27617425	+	3	*	0
	on-target-6	GGGAGTAAGGATTTCAGAAAGGG	SL2.40ch04	38701781	-	-	NA	NA
	off-target-6-1	GGGAGcAAGaATTTCAGcAAAGG	SL2.40ch01	19670702	-	3	*	*
	off-target-6-2	GGGAG <mark>c</mark> AAG <mark>a</mark> ATTTCAGAAgAGG	SL2.40ch03	4352564	+	3	*	*
CIMI 1	off-target-6-3	GGGAG <mark>c</mark> AAG <mark>a</mark> ATTTCAG <mark>c</mark> AAAGG	SL2.40ch03	43975264	-	3	0	0
SIMIOT	on-target	GTACAAAGTTAATCAAGAATAGG	SL2.40ch04	38701685	+	-	NA	NA
	off-target-7-1	GTACAgAGTTAATgAAtAATAGG	SL2.40ch02	42572234	-	3	0	0
	off-target-7-2	GTACAAAGTTgAcaAAGAATGGG	SL2.40ch03	19272711	-	3	0	0
	off-target-7-3	ATAC <mark>c</mark> AAGTTA <mark>g</mark> TgAAGAATTGG	SL2.40ch05	54920595	+	3	0	0

Table S2. gRNAs sequences and potential off-target sites evaluated.

NA- Not applicable. * failed in Sanger sequencing due to noise.