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Abstract: SINE-VNTR-Alu (SVA) retrotransposons are a subclass of transposable elements (TEs) 
that exist only in primate genomes. TE insertions can be co-opted as cis-regulatory elements (CREs); 
however, the regulatory potential of SVAs has predominantly been demonstrated using bioinfor-
matic approaches and reporter gene assays. The objective of this study was to demonstrate SVA cis-
regulatory activity by CRISPR (clustered regularly interspaced short palindromic repeats) deletion 
and subsequent measurement of direct effects on local gene expression. We identified a region on 
chromosome 17 that was enriched with human-specific SVAs. Comparative gene expression analy-
sis at this region revealed co-expression of TRPV1 and TRPV3 in multiple human tissues, which was 
not observed in mouse, highlighting key regulatory differences between the two species. Further-
more, the intergenic region between TRPV1 and TRPV3 coding sequences contained a human spe-
cific SVA insertion located upstream of the TRPV3 promoter and downstream of the 3′ end of 
TRPV1, highlighting this SVA as a candidate to study its potential cis-regulatory activity on both 
genes. Firstly, we generated SVA reporter gene constructs and demonstrated their transcriptional 
regulatory activity in HEK293 cells. We then devised a dual-targeting CRISPR strategy to facilitate 
the deletion of this entire SVA sequence and generated edited HEK293 clonal cell lines containing 
homozygous and heterozygous SVA deletions. In edited homozygous ∆SVA clones, we observed a 
significant decrease in both TRPV1 and TRPV3 mRNA expression, compared to unedited HEK293. 
In addition, we also observed an increase in the variability of mRNA expression levels in heterozy-
gous ∆SVA clones. Overall, in edited HEK293 with SVA deletions, we observed a disruption to the 
co-expression of TRPV1 and TRPV3. Here we provide an example of a human specific SVA with cis-
regulatory activity in situ, supporting the role of SVA retrotransposons as contributors to species-
specific gene expression. 
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1. Introduction 
SINE-VNTR-Alus (SVAs) are the evolutionarily youngest family of transposable ele-

ments (TEs) currently characterized within the human genome. The SVA family emerged 
throughout primate evolution (Figure 1A) and belong to a group of TEs termed non-long 
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terminal repeat (LTR) retrotransposons (which also includes long interspersed nuclear el-
ement 1 (LINE-1) and Alu), which collectively remain the only actively mobile TEs in the 
human genome [1,2]. Mobilization of non-LTR TEs leads to novel insertions which con-
tribute to genome sequence and structure—ultimately contributing to genome evolution 
[3–5]. The insertion site of TEs can affect gene regulation through multiple mechanisms 
including the introduction of transcription factor binding sites (TFBSs), novel transcrip-
tional start sites (TSS), alternative splicing, exonization, and alterations to epigenetic 
marks including DNA methylation and histone modifications [6–10]. Thus, novel TE in-
sertions can be co-opted for new regulatory functions which drives species-specific gene 
expression. In recent years, attention has turned towards the regulatory impact of SVAs 
in the human genome. Previously, we have demonstrated the transcriptional regulatory 
properties of isolated SVA sequences utilizing reporter gene assays [11,12]. More recently, 
bioinformatic studies utilizing ChIP-seq and RNA-seq datasets generated from liver 
across different primate species have identified that newly evolved (i.e., species-specific) 
cis-regulatory elements (CREs) were enriched in SVA sequences, highlighting SVAs as 
potentially important contributors to gene regulation in primates [13,14]. Candidate SVA 
CREs were verified using reporter gene assays, which lent support to the hypothesis that 
SVAs can have regulatory properties but this did not necessarily confirm regulatory func-
tion in situ in the human genome, and more specifically in the context of endogenous 
genes [13,14]. 

A direct approach to address the role of candidate regulatory domains in situ can be 
performed through CRISPR (clustered regularly interspaced short palindromic re-
peats)/Cas9 (CRISPR associated protein 9)-mediated deletion of entire TE sequences. An 
exemplar of this approach was seen in the investigation of the etiology of neurodegener-
ative disorder X-linked dystonia parkinsonism (XDP). In this study, an XDP-specific SVA 
insertion was shown to cause intron retention and reduced expression of the gene TAF1, 
which was causative of the disorder [15,16]. Upon CRISPR/Cas9 deletion of the SVA in 
patient derived induced pluripotent stem cells (iPSCs), aberrant splicing and TAF1 ex-
pression were rescued, implicating the SVA in disease-associated gene regulation. Herein, 
our specific aim was to extend this approach and demonstrate cis-regulatory effects of an 
SVA in a non-disease context, by highlighting the contribution of an endogenous SVA to 
human specific gene expression. 

We and others have previously demonstrated that SVAs preferentially insert into 
gene dense regions and several regions across the human genome are enriched for SVA 
insertions [17]. One such region previously identified was a 1 Mb region (chr17:3000001–
4000000, hg19) on chromosome 17 (chr17p13.2), which contained six SVA insertions (Fig-
ure 1B). These insertions were SVA subclass D, which is a subclass that shares some inser-
tions with gorilla and chimpanzee but the majority (67.5%) are human specific [3]. Fur-
thermore, SVA D comprises 44.4% of all SVAs in the human genome [17], highlighting 
this subclass as particularly active throughout human evolution. It has been established 
that there is a strong bias of human specific SVAs inserting into regions already containing 
SVAs [11,12,17]. All SVAs at chr17p13.2 were subclass SVA D (Figure 1C), with 5 out of 6 
being full length and human-specific (Figure 1B), highlighting chr17p13.2 as an area of the 
genome that has been tolerant to multiple SVA insertions throughout recent human evo-
lution and an area of the genome where human-specific gene regulation via SVA-medi-
ated activity may have evolved. Given the enrichment of human-specific SVAs at this re-
gion, in such close proximity to many genes, it provided a region of the genome with 
multiple potential human specific CREs to explore further. 

To identify a candidate SVA at this location with the potential to function as a cis-
regulatory element, we explored the location of SVAs at chr17p13.2 with respect to their 
adjacent genes and at the same time, compared RNA-seq data from humans and mice. 
This approach identified an SVA insertion, proximal to genes TRPV1 and TRPV3, which 
displayed human-specific expression patterns. TRPV1 and TRPV3 encode polymodal 
transient receptor potential channels which enable thermosensory perception and have 
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well established roles in pain and inflammation [18,19]. Our preliminary data obtained 
from reporter gene assays suggested this SVA was indeed regulatory, and thus high-
lighted this SVA as a candidate for further study. To determine cis-regulatory activity in 
situ, we devised a dual-targeting CRISPR/Cas9 strategy to delete the SVA in the HEK293 
cell line and measured effects on TRPV1 and TRPV3 gene expression. In this study, we 
deleted the entire SVA sequence in multiple HEK293 clones and demonstrated gene ex-
pression changes in comparison to unedited cells, providing in situ functional data that 
supported the role of SVAs as CREs in the human genome and highlighted their role in 
the evolution of gene regulation in humans. 

 
Figure 1. Chr17p13.2 is enriched for human specific SVA D insertions. (A) Schematic showing the emergence of short 
interspersed nuclear element-variable number tandem repeat (SINE-VNTR)-Alu (SVA) subclasses throughout primate 
evolution. SVA subclasses A, B, and C are evolutionarily older and are found in multiple primate species, whereas sub-
classes SVA E and SVA F emerged following divergence with the chimpanzee last common ancestor and are therefore 
human specific (adapted from Wang et al. 2005) (B) Summary of SVA D insertions at chr17p13.2. (C) A gene dense region 
(chr17:3000001–4000000, hg19) at chr17p13.2 contains 6 SVA D insertions. (D) The syntenic region in the mouse genome 
(chr11:72843250–74363624, mm10) contains orthologous genes conserved at chr11qB4-B5 in the opposite orientation to that 
displayed in the human genome. (E) UCSC image showing human specific SVA insertion at the TRPV1/TRPV3 intergenic 
region respect to adjacent genes. H3K4Me3 and H3K4Me1 histone marks are shown, highlighting regulatory domains. 
Conservation with the chimpanzee genome is also provided to assess SVA status as primate or human specific. 
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2. Results 
2.1. Intergenic Region between TRPV1 and TRPV3 Contains a Human Specific SVA Insertion 
Predicted to Function as a Regulatory Domain 

In the preliminary bioinformatic analysis of SVA insertions across the chr17p13.2 re-
gion (Figure 1C), the SVA at the TRPV1 and TRPV3 locus was notable as it was located 
within the intergenic region containing the TRPV3 promoter and directly adjacent to other 
prominent histone marks indicative of regulatory domains (Figure 1E). A more detailed 
overview of other SVA insertions in respect to other genes is provided in Figure S1. Anal-
ysis showed that the SVA and both TRPV1 and TRPV3 coding sequences, were all encoded 
on the antisense strand of DNA, with the SVA located approximately 400 bp downstream 
of the TRPV1 3′UTR and 5.7 kb upstream of the 5′ TRPV3 TSS (Figure 2A). The intergenic 
region contained numerous repetitive DNA sequences that were conserved with other 
primate species (Figure 2A,B). In total, 73% of the 7.4 kb intergenic sequence was com-
prised of TEs including multiple SINEs (specifically Alus) (36%) and LINEs (12%) (Figure 
2B). The single SVA insertion (chr17:3466973–3468374, hg19) was the largest TE (1402 bp) 
in this region, accounting for a substantial proportion (19%) of the intergenic sequence 
(Figure 2B). In addition, the SVA was directly adjacent to an evolutionary conserved re-
gion (ECR) (chr17:3466258–3466820 hg19) containing a mammalian-wide interspersed re-
peat (MIR) (Figure 2A). MIRs are the most ancient family of TEs in the human genome, 
enriched for TFBSs and have been shown to function as enhancers in vitro [20]. ENCODE 
histone data overlaid across this ECR was indicative of regulatory activity and it was also 
listed as a candidate CRE of TRPV1 and TRPV3 within ENCODE (ENCODE acc. no. 
EH38E1841572) (Figure 2A). No histone data were available for the SVA itself because 
larger repetitive sequences are difficult to map in short read sequence data, thus they are 
often excluded from such analyses (Figure 2A). Nevertheless, the available bioinformatic 
data supported that the ECR was a functional CRE and we reasoned that its modulation 
in humans may be impacted upon by the adjacent human specific SVA insertion. 

To address human-specific gene expression, we compared the expression of all pro-
tein coding genes encoded at chr17p13.2 (Figure 1C) with orthologous genes encoded at 
the syntenic region (33.4% of bases and 99.4% of span) chr11(qB4–qB5) in the mouse ge-
nome (Figure 1D). Utilizing data from an RNA-seq study which compared gene expres-
sion across multiple tissues between human and mouse [21], expression differences in 
various genes at chr17p13.2 were noted (e.g., ITGAE, P2RX1, P2RX1) (Figure 2C). How-
ever, the regulation of TRPV1 and TRPV3 was our focus, due to the organization of the 
surrounding regulatory domains with respect to the SVA insertion (Figure 2A). We ob-
served widespread expression of TRPV1 and TRPV3 across multiple human tissues in 
comparison to a tissue restricted expression profile in the mouse (Figure 2C). We observed 
hTRPV1 expression was generally at relatively low levels but with high expression in dor-
sal root ganglia (DRG). Similarly, mTrpv1 was also expressed at relatively high levels in 
DRG, however mTRPV1 expression was in general more restricted, with low levels of ex-
pression only documented in nucleus accumbens and skeletal muscle. hTRPV3 expression 
was seen in most tissues analyzed however mTrpv3 was restricted to spinal cord. This 
analysis also highlighted the co-expression of TRPV1 and TRPV3 in many human tissues 
compared to mice, suggesting differences in key regulatory mechanisms at the molecular 
level. We hypothesized that the SVA may be functional as a cis-regulatory domain con-
tributing to the regulatory differences of TRPV1 and TRPV3 observed in humans.  

2.2. Reporter Gene Assays Support Regulatory Potential of SVA at TRPV1/TRPV3 Locus 
To confirm the regulatory potential of the SVA and the adjacent ECR, both sequences 

were cloned into the reporter gene construct pGL3-P, upstream of the minimal SV40 pro-
moter in both forward and reverse orientations—with forward resembling the endoge-
nous orientation of the SVA with respect to TRPV1 and TRPV3 (Figure 2D). The sequences 
and coordinates of the cloned SVA and ECR fragments are given in supplementary file 2. 
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Luciferase activity was measured 48 h post-transfection. In HEK293 transfected with the 
SVA reporter gene constructs, a statistically significant 2-fold decrease (p < 0.05) in lucif-
erase activity was observed when the SVA was cloned in the forward orientation. Simi-
larly, a smaller yet still significant 1.6-fold decrease (p < 0.05) when cloned in the reverse 
orientation when compared to the unmodified pGL3-P vector was observed, indicating 
the SVA was functional as a transcriptional regulatory domain in this cell line, independ-
ent of orientation (Figure 2D). The ECR reporter gene construct displayed a small 1.3-fold 
increase (p < 0.05) in luciferase activity when the ECR was cloned in the forward orienta-
tion but no difference was observed when the ECR was cloned in the reverse orientation 
when compared to unmodified pGL3-P (Figure 2D). 

 
Figure 2. Intergenic region between TRPV1 and TRPV3 contains human-specific SVA insertion predicted to function as 
regulatory domain. (A) UCSC image of intergenic region between TRPV1 and TRPV3. RepeatMasker displays repetitive 
DNA including SVA insertion (ECR containing MIR element is highlighted in red). (B) Analysis of TE composition of the 
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intergenic sequence between TRPV1 and TRPV3. (C) RNA-seq data showing normalized gene expression values (ex-
pressed as transcripts per million; TPM) of genes encoded at chr17p13.2 in human and orthologous genes encoded at 
chr11qB4-B5 in mouse. (D) Relative luciferase activity of pGL3-P reporter gene constructs with SVA (chr17:3466973–
3468374) and ECR sequences (chr17:3466258–3466820) cloned upstream of the minimal SV40 promoter (green box) and 
transfected into HEK293 (n = 4). * p-value <0.05 (2-sample t-test). 

2.3. Dual-Targeted CRISPR/Cas9 Deletion of the SVA in HEK293  
To address the hypothesis in the context of the endogenous genes, expression of 

TRPV1 and TRPV3 was confirmed in the HEK293 cell line (Figure S2). HEK293 was chosen 
as a model cell line to conduct CRISPR due to its high transfection efficiency, which was 
found to be a limiting factor in the genome editing efficiency in other cell lines we tested 
(e.g., HAP1 and SH-SY5Y) during early stages of protocol development (data not shown). 
Upon confirmation both genes were active in this cell line, a dual-targeted CRISPR strat-
egy to delete the entire SVA sequence in HEK293 cells was developed to subsequently 
measure the potential impact on TRPV1 and TRPV3 expression (Figure 3A) [22]. Two 
guide RNAs (gRNAs) were designed, which targeted sequences 66 bp downstream and 
213 bp upstream of the SVA, and cloned into the Cas9 expression vector pSpCas9(BB)-2A-
GFP, resulting in two separate vectors each containing a single gRNA sequence (Figure 
3A) [23]. The dual-target strategy, based on co-transfection of the two independent Cas9 
vectors each containing a specific gRNA tag, was predicted to result in generation of two 
double strand breaks (DSBs) at positions chr17:3563606 and chr17:3565282 (hg19), follow-
ing which the intermediate sequence containing the SVA would be lost and the ends re-
paired via non-homologous end joining (NHEJ). This approach was designed to facilitate 
the deletion of a 1677 bp sequence containing the SVA (1402 bp) (Figure 3A). 

Edited HEK293 cells were expanded as clonal cells lines and CRISPR-edited genetic 
regions were screened via PCR to identify clones containing the desired SVA deletions 
(Figure 3B). PCR products for unedited (containing SVA) and edited (deleted SVA) re-
gions were 2486 bp and 808 bp in length, respectively (Figure 3B). Following transfection, 
215 clonal cell lines were screened in total. Three independent clonal cell lines (<2%) am-
plified only edited PCR products, indicating all SVA alleles were successfully deleted, and 
were termed homozygous ∆SVA clones. In addition to the desired homozygous ∆SVA 
HEK293 genotype, several clonal cell lines (10%) amplified both unedited and edited PCR 
products, indicating that these clones carried an intact SVA and an SVA deletion (Figure 
3B). These clones were termed heterozygous ∆SVA clones and three (chosen at random) 
were included in subsequent analysis. As an additional control, HEK293 clones trans-
fected with non-target gRNAs (ntgRNAs) were also generated; these guides were specif-
ically designed to not recognize any human DNA sequence, thus should not guide the 
Cas9 to any specific sequence or result in any modifications. 

Sequencing of the PCR products across the predicted DSB breakpoints was per-
formed in all homozygous and heterozygous ∆SVA clones. In all three homozygous ∆SVA 
clones, the breakpoints were identified at the predicted DSB sites with no indels, high-
lighting effective and accurate repair at the edited sites (Figure 3C). This data confirmed 
the predicted modifications had been generated in these clones, with a precise deletion of 
1677 bp containing the SVA. Sequencing of the heterozygous ∆SVA clones demonstrated 
that only clone 3 had breakpoints at the predicted DSB sites. Clone 1 and 2 carried slightly 
larger deletions (Figure 3C). Breakpoints in clone 2 extended 2 bp and 16 bp beyond the 
predicted gRNA1 and gRNA2 DSB sites, respectively. Clone 1 carried the largest deletion, 
with breakpoints extending 4 bp and 16 bp beyond the predicted gRNA1 and gRNA2 DSB 
sites, respectively. These data confirm that the desired modifications were successfully 
generated in homozygous ∆SVA clones and additional modifications had occurred in het-
erozygous ∆SVA clones which were also taken forward for gene expression analysis. 
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Figure 3. Generation of clonal cell lines containing knockout of entire SVA sequence. (A) Schematic of dual-gRNA strategy 
designed to delete entire SVA sequence. gRNAs were designed to anneal to short 20 bp sequences upstream of protospacer 
adjacent motif (PAM) sites (5′-NGG-3′) situated on either side of the SVA. Cas9 generates double strand breaks 3–4 bp 
upstream of the PAM sequence. The SVA is then excised before the two ends are repaired typically by NHEJ, resulting in 
deletion of the SVA. Schematic not to scale. (B) PCR screening showing isolation of several homozygous ΔSVA clones 
with all SVAs deleted and heterozygous ΔSVA clones demonstrating presence and absence of SVA alleles. (C) Sequencing 
analysis across breakpoints in PCR products. 

2.4. TRPV1 and TRPV3 Expression Was Disrupted in CRISPR Edited HEK293 Clones 
Containing SVA Deletions 

To assess if the SVA was functional as a CRE, total mRNA expression levels of adja-
cent genes TRPV1 and TRPV3 were measured using qPCR (Figure 4). Validation of qPCR 
products and primer efficiencies are shown in Figure S2. Expression levels in edited clonal 
cell lines were compared against unedited HEK293. All relative expression levels were 
normalized against reference gene ACTB. Relative expression values were plotted as log2 
fold change to enable comparative visualization of increases and decreases in expression 
levels. HEK293 cells transfected with ntgRNAs showed negligible difference in TRPV3 
levels (p > 0.05), when compared to unedited cells, indicating that any changes observed 
in edited cells could be directly attributed to deletion of the SVA and not due to transfec-
tion of CRISPR machinery without genome modification (Figure 4A). We did observe a 
slight decrease in TRPV1 in ntgRNA cells, however this was negligible and not deter-
mined to be statistically significant (p > 0.05) (Figure 4A). In homozygous ΔSVA clones, a 
significant decrease in TRPV3 mRNA expression (p < 0.05) was observed (Figure 4B). A 
decrease in TRPV1 expression was also seen that was determined to be statistically signif-
icant (p < 0.05), however it was relatively small compared to unedited cells and also similar 
to the small decrease in cells transfected with ntgRNAs. This implied that, under the ex-
perimental conditions employed, TRPV1 expression between individual HEK293 clones 
was minimally affected by the presence or absence of the SVA. However, a consistent and 
much greater decrease in TRPV3 expression was observed. These results provided evi-
dence which supported the role of this SVA as a CRE at the intergenic region between 
TRPV1 and TRPV3 in HEK293. 
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In contrast with homozygous ΔSVA HEK293 clones, which had shown relatively 
consistent decreases in TRPV1 and TRPV3 mRNA levels, highly variable gene expression 
results between individual heterozygous ΔSVA HEK293 clones were observed (Figure 
4B). For example, TRPV1 expression did not change in clone 2, whereas clone 1 and clone 
3 both showed a decrease in TRPV1 expression. When we measured TRPV3 levels, clone 
1 showed a large increase, clone 2 showed a small increase, and clone 3 showed a small 
decrease (p > 0.05). No statistical significance was determined for either TRPV1 or TRPV3 
expression, however the overall trend observed in heterozygous ΔSVA clones was an in-
crease in mRNA expression variability in both genes. 

Analysis of RNA-seq data had shown co-expression of TRPV1 and TRPV3 in multiple 
human tissues (Figure 2C), therefore the ratio of TRPV1:TRPV3 in unedited and edited 
cell lines was examined (Figure 4C). A weak positive correlation between TRPV1 and 
TRPV3 expression in unedited HEK293 cells was identified and a strong positive correla-
tion in cells transfected with ntgRNAs (Figure 4D). It should be noted that a small decrease 
in TRPV3 expression in one unedited replicate was observed, however TRPV1 expression 
remain consistent across all unedited replicates. Given the small range in expression val-
ues between replicates, this small decrease in TRPV3 was enough to decrease the strength 
of the positive correlation in unedited replicates. However, this trend of positive correla-
tion in unedited cells was lost in all edited clones. Homozygous ΔSVA clones showed a 
weak negative correlation between TRPV1 and TRPV3 expression and no correlation was 
observed in heterozygous ΔSVA clones (Figure 4D). Across individual homozygous 
ΔSVA clones consistently increased levels of TRPV1 compared to TRPV3 were observed, 
which was not seen in unedited cells, indicating that co-expression of TRPV1 and TRPV3 
was disrupted in edited cells completely lacking the SVA insertion (p-value > 0.05) (Figure 
4C). Due to the variability of TRPV1 and TRPV3 expression in heterozygous ΔSVA clones, 
no clear directional change in ratio was evident however the overall trend was an increase 
in variability (p-value > 0.05). It should be acknowledged that the statistical power in this 
study was limited due to the number of biological replicates (n = 3). These data further 
support that the regulatory mechanism contributing to the co-expression of TRPV1 and 
TRPV3 observed in unedited cells, was not maintained in the absence of the SVA. 
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Figure 4. Clustered regularly interspaced short palindromic repeats (CRISPR)-mediated deletion of SVA in HEK293 dis-
rupts co-expression of TRPV1 and TRPV3 mRNA. (A) TRPV1 and TRPV3 mRNA expression in cells transfected with 
ntgRNAs compared to unedited HEK293. (B) mRNA expression in unedited cells, ntgRNA controls, homozygous ΔSVA 
clones, and heterozygous ΔSVA clones. (C) Ratio of TRPV1:TRPV3 mRNA levels. (D) Pearson’s correlation of TRPV1 and 
TRPV3 mRNA in all cell lines. Abbreviations; not significant (ns), * p-value < 0.05 (2-sample t-test). 

3. Discussion 
3.1. Human Specific SVA Insertion at the TRPV1/TRPV3 Locus Identified as a Candidate CRE 

In this study, we identified an SVA (subclass D) at the TRPV1/TRPV3 intergenic re-
gion, which we hypothesized was functional as a human specific CRE following compar-
ative gene expression analysis showing species differences in TRPV1 and TRPV3 regula-
tion between human and mouse. The differential expression of TPRV3 between human 
and mouse has been previously reported in the literature, with a focus on roles in the 
nervous system (e.g., expression in DRG) [19,24], however the data analysis conducted 
here suggested a broader physiological role for both TRPV1 and TRPV3 in many more 
human tissues. The results from our reporter gene assays conducted in HEK293 showed 
a repressive effect of the SVA when cloned into the pGL3-P system. These findings were 
consistent with data previously published by our group, showing repressive effects of 
other SVAs cloned into the same pGL3P system when tested in clonal cell lines SH-SY5Y 
and SKNAS [11,12]. Furthermore, our data is also consistent with that published by Trizz-
ino et al., who cloned SVAs into the pGL4.23 system and conducted reporter assays in 
HepG2 cells [13,14]. Furthermore, a study of repression in exogenous SVA reporter con-
structs showed repressive binding of the human silencing hub (HUSH) complex to the 
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central VNTR, which induced methylation at the SV40 promoter [25]. Overall, trends from 
various reporter models show a repressive effect of SVAs. However, this does not neces-
sarily reflect the endogenous role of SVAs in situ, as they are simplistic and cannot account 
for additional factors like chromatin structure or adjacent regulatory sequences. Interest-
ingly, the ECR adjacent to the SVA displayed all the hallmarks of a regulatory domain, 
therefore we expected to see greater changes in luciferase than those observed in this ex-
periment. Nevertheless, when comparing results from both the ECR and SVA in HEK293, 
the SVA exerted a stronger transcriptional effect, leading us to further investigate its po-
tential function as a CRE using CRISPR/Cas9.  

3.2. CRISPR-Cas9 Deletion of SVA in HEK293 Generated Homozygous and Heterozygous 
Clones 

Using a dual-target CRISPR/Cas9 approach, we successfully generated edited 
HEK293 clones with deletion of all SVA alleles (homozygous ΔSVA) and clones demon-
strating the presence and absence of SVA alleles (heterozygous ΔSVA). Attempts were 
made to also delete the ECR using CRISPR to assess for endogenous effects that were not 
apparent in the reporter gene assays, however this was unsuccessful. A limitation of this 
method was the low yield of clones with the desired genetic modifications. We deter-
mined an editing efficiency of 10% for heterozygous ΔSVA clones and <2% for homozy-
gous ΔSVA. The previously published TAF1 SVA study reported a modification efficiency 
of 30%, but this was performed in patient derived cell lines which possessed only a single 
pathogenic SVA insertion polymorphism at the TAF1 gene [16], in comparison to the SVA 
at TRPV1/TRPV3 which is not an insertion-based polymorphic variant and thus required 
deletion of more than one copy. The lower modification efficiencies for homozygous 
ΔSVA clones, highlighted the difficult nature of deleting both copies of large DNA se-
quences. However, sequencing across edited regions in homozygous ΔSVA clones did 
reveal a high level of modification accuracy using this dual-target CRISPR/Cas9 system.  

3.3. TRPV3 Expression Was Significantly Decreased in Homozygous ΔSVA Clones 
Following the deletion of all SVA alleles in homozygous ΔSVA clones, a significant 

decrease in TRPV3 mRNA expression was seen compared to unedited cells, indicating 
that the presence of the SVA is contributing to the expression of TRPV3 in HEK293. Whilst 
a significant decrease in TRPV1 was also observed in homozygous ΔSVA clones compared 
to unedited cells, the level of decrease was similar to HEK293 transfected with ntgRNA 
controls, therefore the effects of the SVA deletion on TRPV1 mRNA expression could not 
be determined. Nevertheless, co-expression of TRPV1 and TRPV3 is found in many hu-
man tissues, which is not true of mouse tissues (e.g., DRG) which have been shown to 
express TRPV1 but not TRPV3 (Figure 2C). These functional data lend support to the hy-
pothesis that SVAs serve as newly evolved CREs in primate genomes and contribute to 
gene regulation in primate species [13,14,17,26]. When we compared the ratio of 
TRPV1:TRPV3 expression between unedited and homozygous ΔSVA clones, a greater de-
crease in TRPV3 expression compared to TRPV1 was observed. It should be noted how-
ever that the greater effect observed on TRPV3 should be considered within this model 
only, and that differential regulation of TRPV1 and TRPV3 may be possible in a tissue-
specific and stimulus-inducible fashion. In this model however, it is interesting that closer 
proximity of the SVA was much closer to the promoter of TRPV3 (~5 kb) than to that of 
TRPV1 (~27 kb). A recent study supporting the role of SVAs as proximal CREs showed 
that silencing of SVAs via induction of H3K9me3 marks, resulted in greater deregulation 
of genes with TSSs in close proximity (0–5 kb) to the SVA, than compared to genes with 
TSSs situated farther away (>100 kb) [26]. An alternative explanation is that the SVA is in 
even closer proximity (400 bp) to the 3′UTR of TRPV1. The 5′ end of the SVA contains a 
CT rich hexamer domain which contain MAZ-binding sites, which can affect polyadenyl-
ation signals and gene regulation—also in a tissue dependent manner [27]. Therefore, it 
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would be interesting to quantify TRPV1 and TRPV3 protein levels to determine if there is 
any effect on mRNA stability and subsequent protein levels.  

3.4. TRPV1 and TRPV3 mRNA Expression Was Highly Variable in Heterozygous ΔSVA Clones 
Gene expression in heterozygous ΔSVA clones was highly variable, unlike homozy-

gous ΔSVA clones that demonstrated consistent decreases in expression of TRPV1 and 
TRPV3. No statistical significance was determined for either TRPV1 or TRPV3 in hetero-
zygous ΔSVA clones, however the overall trend in heterozygous ΔSVA clones was an in-
crease in mRNA expression variability of both genes. Furthermore, unlike homozygous 
ΔSVA clones, there was no correlation between gene expression values in heterozygous 
Δ SVA clones (Figure 4F). This indicated that loss of an SVA at the intergenic region be-
tween both genes may be disruptive to the regulatory mechanisms that drive co-expres-
sion in unedited cells. Deletion breakpoints were consistent in all homozygous ΔSVA 
clones but variable in heterozygous ΔSVA clones. It is hypothesized that this may have 
contributed to the observed differences. Consistent with this hypothesis, heterozygous 
ΔSVA clone 3 carried the same breakpoints in the edited region as all homozygous ΔSVA 
clones and showed expression of TRPV1 and TRPV3 that was consistent with the homo-
zygous ΔSVA clones. However, heterozygous clones 1 and 2 showed increases specifically 
in TRPV3 expression. Interestingly, heterozygous clones 1 and 2 carried breakpoints in the 
edited region that resulted in a slightly larger deletion, which extended 10 bp into a (CA)n 
repeat. This suggested that there was potentially unresolved regulatory potential in this 
additional sequence. Consideration must also be paid to the remaining SVA alleles in het-
erozygous ΔSVA clones. PCR genotyping indicated that an SVA allele was still present, 
however this did not guarantee that it was unedited. For example, DSBs could have been 
created and then repaired, failing to result in excision of the SVA, however indels or in-
versions could have occurred. We sequenced across breakpoints of the remaining SVA 
alleles following the CRISPR modification process. Annotated DNA sequences are given 
in supplementary file 5. We found SNPs and a lack of alignment in clone 1 and 2 with the 
reference genome (Figure S3), indicating introduction and repair of DSBs resulting in the 
SVA-containing sequence being retained, however some additional modifications had 
also taken place. The effect of these modifications is unclear; nevertheless, whilst not sta-
tistically significant, a clear trend emerged in heterozygous ΔSVA clones showing dereg-
ulation in both TRPV1 and TRPV3 expression when compared to unedited cells and the 
ratio of TRPV1:TRPV3 was disrupted in heterozygous ΔSVA clones, consistent with ho-
mozygous ΔSVA clones.  

3.5. CRISPR Deletion of SVA at TRPV1/TRPV3 Locus Demonstrates In Situ Function as Newly 
Evolved CRE  

Overall, when taking all the data into account, deregulation of expression of TRPV1 
and TRPV3 was observed in edited cells, regardless of homozygous or heterozygous 
ΔSVA deletions. The impact on gene expression following deletion of the SVA, supports 
its role as a CRE at the intergenic region between TRPV1 and TRPV3. The mechanism by 
which an SVA was previously identified as regulatory in TAF1 was intron retention which 
resulted in a decrease in TAF1 expression [16]. This specific disease mechanism is a differ-
ent context to that being explored here and whilst relevant, should be considered inde-
pendently [15,16]. The exact mechanism by which the SVA at TRPV1/TRPV3 functions 
remains to be determined however previous studies point to the recruitment of transcrip-
tion factors [9,28]. Aberrant expression of TRPV1 is implicated in multiple pain associated 
conditions including diabetic neuropathy [29], irritable bowel syndrome [30], chronic pan-
creatitis [31], vulvodynia [32], and TRPV3 is elevated in inflammatory skin-related condi-
tions like psoriasis [33,34]. Thus, TRPV1 and TRPV3 remain key targets for the develop-
ment of pharmaceuticals [35]. However, there have been difficulties translating advances 
identified in preclinical studies utilizing mouse models [36]. To our knowledge, to date, 
no regulatory domain contributing to the human specific expression of TRPV3 has yet 



Int. J. Mol. Sci. 2021, 22, 1911 12 of 16 
 

 

been identified [37,38]. There are reports of TRPV1 and TRPV3 forming heteromeric chan-
nels in humans which are hypothesized to contribute to the fine tuning of sensory inputs, 
therefore the influence of the SVA and its role in TRPV1/TRPV3 regulation may have con-
tributed to this molecular phenotype in human tissues and contributed to difficulties in 
developing drugs that are translatable based on mouse models [39,40]. It must be noted 
that the intergenic region contained many other transposable elements (e.g., Alus) that 
may also be predicted to contribute to gene regulation in human and non-human primates 
[19,24], therefore the SVA would be a contributor in part to the full regulatory network of 
TRPV1 and TRPV3 observed in humans. However, it remained our focus to study the im-
pact of a fairly recent SVA insertion—in terms of human genome evolution. In conclusion, 
the work presented here is the first reported example of a non-disease SVA being deleted 
using CRISPR and functional data supporting its role as a cis-regulatory domain that di-
rectly impacts mRNA expression of adjacent genes in vitro. To our knowledge, this is the 
first description of a human specific regulatory domain identified at the TRPV1 and 
TRPV3 locus with the potential to contribute to the human specific expression of TRPV3 
previously reported in the literature. These data give support to the role of SVAs as driv-
ers of gene regulation and phenotypic evolution in primates, and shed light on the regu-
latory differences already identified between mice and humans at the TRPV1 and TRPV3 
locus.  

4. Materials and Methods 
4.1. Bioinformatic Analysis 

A list of SVA enriched regions was obtained from supplementary data published by 
Gianfrancesco et al. 2019 [4]. A list of all protein coding genes at the SVA enriched region 
at chr17p13.2–3, specifically at coordinates chr17:3000001–4000000 (hg19) were obtained 
from UCSC genome browser. The same coordinates were used to view the syntenic gene 
region in the mouse genome at coordinates chr11:72843250–74363624 (mm10). A list of 
protein coding genes was exported from UCSC from both human and mouse genomes at 
these coordinates. The list of protein coding genes was filtered for 1:1 orthologues. Ex-
pression values for 1:1 orthologues across multiple tissues in humans and mice was ob-
tained from the RNA-seq dataset published by Ray et al. 2018 (given as transcripts per 
million; TPM) [21]. Data for comparable tissues across human and mouse were filtered 
out and used for cross species comparison. Heatmaps reflecting relative TPM values 
across species were generated using Morpheus software, available at https://soft-
ware.broadinstitute.org/morpheus/ (accessed on 11 November 2020). 

4.2. Cell Culture 
Both luciferase reporter assays and CRISPR modifications were conducted in 

HEK293 cells (ATCC CRL-1573). Cells were cultured in Dulbecco’s Modified Eagle Me-
dium containing 4.5 g/L D-glucose and L-glutamine (Gibco, Paisley, UK) supplemented 
with; 10% FBS (Gibco), 1% 100 mM sodium pyruvate (Sigma, UK) and 1% penicillin/strep-
tomycin solution (10,000 units penicillin and 10 mg streptomycin/mL) (Sigma). Cells were 
maintained in a humidified incubator at 37 °C with 5% CO2.  

4.3. Generating SVA and ECR Reporter Gene Constructs 
The SVA and ECR sequences were amplified from HEK293 gDNA using PCR. PCR 

reactions consisted of the following reagents; 1× Green GoTaq reaction buffer (Promega, 
Southampton, UK), 2.5 mM MgCl2 (Promega), 0.2 mM dNTPs (Sigma), primers 0.1 mM 
(Sigma), 0.5 units GoTaq Hot Start Polymerase (Promega), gDNA template (10 ng), made 
up to a final volume of 20 µL with UltraPure™ DNase/RNase Free Distilled Water 
(Thermo Fisher Scientific, Gloucester, UK). Thermal cycles were performed using the Sim-
pliAmp™ Thermal Cycler (Applied Biosystems, UK). Specific primers pairs and cycling 
conditions are listed in Table S1. PCR products were visualized using 1–2% agarose gels 
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stained with ethidium bromide solution (Sigma). Gels were visualized under UV light 
using the BioDoc-It Imaging System (UVP). Amplicons and restriction digest products 
were purified using the Wizard® SV Gel and PCR Clean-Up System (Promega). Amplicons 
were initially ligated into the Dual promoter pCRII vector using the TA Cloning Kit (Invi-
trogen, Paisley, UK). The amplicon was then subcloned into the SacI and NheI sites of the 
reporter gene vector pGL3-Promoter (pGL3-P) (Promega), which encodes Firefly lucifer-
ase (FLuc). Ligations were completed using T4 DNA ligase (NEB). All cloning was prop-
agated using Subcloning efficiency DH5α competent cells (Invitrogen), grown in LB me-
dium supplemented with 100 µg/mL ampicillin. Plasmid DNA used for transfection was 
purified using the Plasmid Maxi Kit (QIAGEN, Manchester, UK).  

4.4. Luciferase Reporter Gene Assays 
To evaluate the potential regulatory transcriptional activity of the SVA and ECR se-

quences, HEK293 cells were co-transfected with the relevant reporter gene plasmids and 
pRL-TK which encodes Renilla luciferase (RLuc) to enable normalization for transfection 
efficiency, using TurboFect Transfection Reagent (Thermo Fisher Scientific). pGL3-Basic 
(pGL3-B), which contains no promoter and should not express luciferase, was used as a 
negative control in transfection experiments. Transfections were repeated in four separate 
biological controls. Media was replaced 4 h post transfection and cells were assayed 48 h 
post transfection. FLuc and RLuc activity was measured in cell lysates using the Dual-Glo 
Luciferase Assay System (Promega). Relative light units (RLU) were detected using the 
GloMax 96 Microplate Luminometer. RLUs for each transfected culture were normalized 
against negative controls. The adjusted ratio of FLuc/RLuc was calculated for each condi-
tion and expressed as normalized Firefly luciferase activity (averaged across four repeats). 

4.5. CRISPR/Cas9 Nuclease-Mediated Genome Editing 
sgRNA sequences flanking the 5′ and 3′ end of the SVA were identified using 

http://crispr.mit.edu/ (accessed 17/05/18) based on the S. pyogenes Cas9 5′-NGG-3′ PAM 
recognition sequence. Target sequences are given in supplementary file 3. Suitable oligo-
nucleotides 20 bases in length were modified by removing the PAM sequence at the 3′ end 
of the sense oligonucleotide, followed by addition of CACC at the 5′ end of the sense oli-
gonucleotide, and addition of AAAC at the 5′ end of the antisense oligonucleotide to gen-
erate BbsI overhangs. Complimentary oligonucleotides were annealed together to create 
a double stranded insert which was then ligated into the BbsI-linearized pSpCas9(BB)-2A-
GFP plasmid, as described by Ran et al. 2012. After ligation, bacterial transformation and 
isolation of plasmid DNA using the Wizard Plus SV Miniprep DNA Purification System 
(Promega), desired sgRNA inserts were confirmed using Sanger sequencing. To enable 
excision of the SVA, two recombinant plasmids containing the desired sgRNA inserts to 
target the 5′ and 3′ end of the SVA were co-transfected into HEK293 cells using TurboFect 
(Thermo Fisher Scientific). Untransfected unmodified HEK293 were used as a negative 
control. Cells transfected with non-target gRNA Cas9 constructs (ntgRNAs) were used as 
an additional control to assess for potential confounding effects of transfecting cells with 
Cas9 machinery on gene expression. 72 h post transfection, gDNA was purified using the 
GenElute Mammalian Genomic DNA Miniprep Kit (Sigma). PCR was used to verify the 
presence or absence of the SVA within the transfected cultures. Cultures showing evi-
dence of an excised SVA were plated at a density of 1000 cells per 10 cm dish, to allow 
growth of single cells into colonies. When colonies were visible, they were selected and 
grown in duplicate until 70% confluent. Cell lysates from one duplicate culture were pre-
pared for use as a direct template using DirectPCR Lysis Reagent (Viagen, California, CA, 
USA) and screened for modifications using PCR genotyping. Primer sequences and ther-
mal cycles are given in supplementary file 3. Successful excision of the SVA was deter-
mined using gel electrophoresis. Complete deletions were sequence verified using the for-
ward PCR primer used in PCR genotyping. Sequencing was conducted externally by 
Source Bioscience (UK). 
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4.6. qPCR 
Total RNA was extracted from HEK293 cell cultures using the Monarch Total RNA 

Miniprep Kit (NEB) and treated with DNaseI (Thermo Fisher Scientific). cDNA was syn-
thesised using GoScript Reverse Transcriptase Kit (Promega). Quantitative PCR (qPCR) 
was performed on the Stratagene Mx3005P Real-Time PCR System (Agilent, Crawley, UK) 
using the GoTaq qPCR Master Mix (Promega). Reactions were set up in triplicate. ACTB 
was used as a reference gene. Target genes were TRPV1 and TRPV3. Relative quantifica-
tion of target genes was calculated against the reference gene using the delta-delta Ct (2-
ΔΔCt) method. Statistical analysis was performed using the 2-sample t-test in Minitab 
version 19. 

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-
0067/22/4/1911/s1. Supplementary file 1. Figure S1. UCSC screenshots showing overview of SVA 
insertions at chr17p13.2 with respect to the nearest protein coding genes. Supplementary file 2. DNA 
sequences of cloned fragments used in reporter gene assays. Supplementary file 3. Table S1. Oligo-
nucleotide sequences and PCR thermal cycling conditions. Supplementary file 4. Figure S2. Valida-
tion of RT-PCR used to quantify gene expression. Supplementary file 5. Sequence reads across pre-
dicted double strand breakpoints in remaining SVA alleles following CRISPR modification. Supple-
mentary file 6. Figure S3. Sequence alignment of double strand breakpoints in remaining SVA alleles 
against the reference human genome in UCSC browser. 
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Abbreviations 
Cas9 CRISPR associated protein 9 
CRE cis-regulatory element 
CRISPR clustered regularly interspaced short palindromic repeats 
DSB double strand break 
ECR evolutionary conserved region 
gDNA genomic DNA 
gRNA guide RNA 
HUSH 
iPSCs 

human silencing hub 
induced pluripotent stem cells 

LINE-1 long interspersed nuclear element 1 
LTR long terminal repeat 
MIR mammalian interspersed repeat 
NHEJ non-homologous end joining 
ntgRNA non-target guide RNA 
PAM protospacer adjacent motif 
PCR polymerase chain reaction 
qPCR quantitative polymerase chain reaction 
RLU relative light unit 
sgRNA short guide RNA 
SINE short interspersed nuclear element 
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SVA SINE-VNTR-Alu 
TE transposable element 
TFBS transcription factor binding site 
TSS transcriptional start site 
UTR untranslated region 
UV ultraviolet 
VNTR variable number tandem repeat 
XDP  X-linked dystonia parkinsonism 
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