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Abstract: Obesity is a major risk factor for a large number of secondary diseases, including cancer.
Specific insights into the role of gender differences and secondary comorbidities, such as type
2 diabetes (T2D) and cancer risk, are yet to be fully identified. The aim of this study is thus to
find a correlation between the transcriptional deregulation present in the subcutaneous adipose
tissue of obese patients and the oncogenic signature present in multiple cancers, in the presence of
T2D, and considering gender differences. The subcutaneous adipose tissue (SAT) of five healthy,
normal-weight women, five obese women, five obese women with T2D and five obese men were
subjected to RNA-sequencing, leading to the identification of deregulated coding and non-coding
RNAs, classified for their oncogenic score. A panel of DE RNAs was validated via Real-Time
PCR and oncogene expression levels correlated the oncogenes with anthropometrical parameters,
highlighting significant trends. For each analyzed condition, we identified the deregulated pathways
associated with cancer, the prediction of possible prognosis for different cancer types and the IncRNAs
involved in oncogenic networks and tissues. Our results provided a comprehensive characterization
of oncogenesis correlation in SAT, providing specific insights into the possible molecular targets
implicated in this process. Indeed, the identification of deregulated oncogenes also in SAT highlights
hypothetical targets implicated in the increased oncogenic risk in highly obese subjects. These results
could shed light on new molecular targets to be specifically modulated in obesity and highlight which
cancers should receive the most attention in terms of better prevention in obesity-affected patients.
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1. Introduction

Obesity is one of the most serious public health problems worldwide, as, according to
the World Health Organization (WHO), obesity has reached epidemic proportions globally,
with at least 2.8 million people dying each year as a result of being overweight or obese [1,2].
Obesity is a major risk factor for a number of chronic diseases, including cardiovascular
diseases, diabetes and musculoskeletal disorders such as osteoarthritis [1,3,4]. Obesity
is also associated with an increased risk of several cancers, such as endometrial, breast,
ovarian, prostate, liver, gallbladder, kidney and colon cancer [5-13]. The emerging link
between obesity and multiple cancer types is gaining more and more relevance in recent
years [14-16]. Specifically, the burden of cancer attributable to obesity, expressed as af-
fected population fraction, is 11.9% in men and 13.1% in women, and indeed obesity can
be considered as one of the principal preventable causes of cancer [14]. The molecular
mechanisms underlying the influence of obesity on the development and progression of
cancer are not yet completely defined, and their identification and characterization could
highlight new mechanisms leading to increased susceptibility to cancer.

The adipogenic microenvironment is fundamental for numerous biological and patho-
genic processes and especially relevant in the context of tumor biology [17]. The survival
of cancer cells is critically dependent on their interactions with neighboring non-malignant
cells of the tumor stroma, and the adipose tissue within the tumor microenvironment has
been shown to actively contribute to tumor growth and metastasis by functioning as an
endocrine organ, through the secretion of signaling molecules, and acting as an energy reser-
voir for embedded cancer cells [18]. The tumor microenvironment itself can also influence
adipogenesis, as it has been shown that human adipose-derived stem cells obtained from
the breast cancer microenvironment present impaired peroxisome proliferator-activated
receptor (PPARY) activation and a subsequent inhibition of differentiation [19,20]. More-
over, hypertrophic expansion of adipose tissue as in the context of obesity shares many
features with solid tumor growth [18]. Even so, the molecular bases of the interactions be-
tween these key mediators, cancer cells and adipocytes, which create the tumor-permissive
microenvironment, are not fully known [21]. To this end, transcriptional characterization
of specific tissues in obese patients, focusing on both coding and non-coding genes, is of
crucial relevance in highlighting new key players.

It is indeed possible to highlight how obesity strictly correlates with cancer risk,
but patient stratification could provide more insights into the specific cancer risk for a
selected class of patients. To this end, it is worth analyzing if the presence of a secondary
comorbidity, such as type 2 diabetes (T2D), or of gender differences, could impact cancer
development. The possible biological links between diabetes mellitus and cancer comprise
hyperinsulinemia, hyperglycemia and fat-induced chronic inflammation, and the strongest
association refers to pancreas and liver, although there are many other organs affected
by carcinogenesis in diabetic patients, including the breast, endometrium, bladder and
kidney [22]. The link between diabetes and cancer has been suggested to lie in the ability
of glucose, when found at elevated concentrations, to change the expression of certain
genes, acting at the epigenomic level [23,24]. Indeed, numerous epidemiological and pre-
clinical studies have shown an implication for the insulin-like growth factor (IGF) in the
development and progression of multiple cancers.

Another important point of view is the consideration of the differences between sexes
observed in cancer, as the study of the biological mechanisms responsible for sex-biased
differences may yield improved cancer management and the development of personalized
therapeutic strategies [25-27]. Until today, clinical trials and studies in animal models
have been gender-unbalanced [25]. Interestingly, one research project conducted in over
410,000 adults highlighted a higher risk of developing cancer in men and women with type
2 diabetes compared to people of their own sex without metabolic problems, and increased
risks were noted for 11 types of cancer in men with T2D and 13 types of cancer in women
with T2D, highlighting specific gender differences [28]. In men, the risk is increased for
prostate cancer (86%), but also for leukemia and lymphomas, thyroid cancer, liver cancer,
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kidney cancer, pancreatic cancer, colorectal cancer and stomach cancer. In women, an
increased risk is found for nasopharyngeal cancer and esophageal cancer, but also liver,
thyroid, lung, pancreas, blood (leukemia’s and lymphomas), uterus, colorectal, breast,
cervix and stomach tumors [28].

Molecular characterization of the underlying basis of obesity is crucially needed, and
a specific focus should be placed on the presence of comorbidities and gender differences.
In order to investigate these aspects, the aim of this pilot study is to highlight the presence
of coding and non-coding oncogenes in subcutaneous adipose tissue, along with a possible
prediction of their implication in multiple cancers, in the presence of a comorbidity, such
as diabetes mellitus, and considering gender differences.

2. Results
2.1. Transcriptional Differences and Substantial Deregulation in Oncogenes in SAT Tissue

Samples from 5 healthy, normal-weight women (CTRL), 5 obese women (OBF), 5 obese
women with T2D (OBT2D) and 5 obese men (OBM) were obtained and transcriptome pro-
filing of the four conditions (OBF vs. CTRL, OBT2D vs. CTRL, OBT2D vs. OBF and OBF vs.
OBM; see Materials and Methods section for details) resulted in different expression pro-
files, as shown by PCA analysis, and the same can be concluded when looking at heatmap
representation of the four categories (Figure 1A). A similar analysis was performed on
non-coding, differentially expressed transcripts (nc-DE RNAs), showing substantial differ-
ences in this subclass (Figure 1B). Specifically, 171 DE RNAs were identified for OBF vs.
CTRL, 259 DE RN As were identified for OBT2D vs. CTRL, 149 DE RNAs were identified
for OBT2D vs. OBF and 51 DE RNAs were identified for OBF vs. OBM (Figure 1C). Inter-
estingly, several DE RNAs are commonly altered in more than one condition, although
none in all four. Specifically, the 35 DE RNAs were commonly deregulated in OBF vs.
CTRL and OBT2D vs. CTRL, suggesting that these are intrinsically deregulated by obesity
and possibly not substantially influenced by the development of the diabetic complica-
tion. Moreover, 48 DE RNAs are shared when OBT2D is compared either to CTRL or
OBF, suggesting that these could be the main driving forces in the development of T2D
(Figure 1C).

The OncoScore library was used to detect which genes, amongst the DE RNAs for
each condition, have been correlated with cancer [29]. To do so, the default 21.09 was set as
the threshold cut-off for classification as “oncogenes” for the DE RNAs, as defined by the
algorithm developers [29], and the full list of the genes and respective scores is reported
in Table S1. Specifically, the percentage of oncogenes in each dataset was 66.7% (114/171)
for OBF vs. CTRL, 48.6% (126/259) for OBT2D vs. CTRL, 33.6% (50/149) for OBT2D vs.
OBF and 31.3 (16/51) for OBM vs. OBF. Figure 1D shows the top 50 oncogenes for OBF
vs. CTRL (blue), for OBT2D vs. CTRL (purple), for OBT2D vs. OBF (greens) and all the
oncogenes emerging for OBM vs. OBF (red). The expression of a panel of genes, with a
relevant OncoScore and FC, was analyzed via Real-Time PCR in an independent cohort of
SAT samples obtained from normal-weight females, females affected by obesity, females
affected by obesity and type 2 diabetes and males affected by obesity in order to support
the validity of the RNA-seq analysis (Figure 1E).
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Figure 1. Transcriptome analysis highlights different expression profiles in SAT (Subcutaneous Adipose Tissue) of obese
patients. Samples from 5 healthy, normal-weight women (CTRL), 5 obese women (OBF), 5 obese women with T2D
(OBT2D) and 5 obese men (OBM) were obtained and four conditions (OBF vs. CTRL, OBT2D vs. CTRL, OBT2D vs.
OBF and OBF vs. OBM) were analyzed. (A) Principal Component Analysis (PCA) of differentially expressed genes
(DE RNAs) in the four conditions. (B) PCA of non-coding DE RNAs. (C) 171 DE RNAs were identified for OBF vs.
CTRL, 259 DE RNAs were identified for OBT2D vs. CTRL, 149 DE RNAs were identified for OBT2D vs. OBF and 51 DE
RNAs were identified for OBF vs. OBM. The Venn diagram displays how many genes are shared amongst conditions
(http:/ /bioinformatics.psb.ugent.be/webtools/Venn/, last accessed on 15 February 2021). (D) The OncoScore library was
used to detect which genes, amongst the DE RNAs for each condition, were correlated with cancer. The y-axis represents
the name of the DE RNAs related to cancer, the x-axis represents the OncoScore, and the color fades as the genes decrease in
ranking. (E) mRNA expression levels were evaluated by Real-Time PCR in the different datasets for CTRL vs. OBE, CTRL
vs. OBT2D, OBF vs. OBT2D and OBF vs. OBM. Data are expressed as mean £ SEM. The number of patients analyzed for
each condition is reported in the figure. * p <0.05, **** p <0.0001 vs. the respective control condition.
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The correlation between the expression of the top five ranking oncogenes and the
anthropometrical parameters (BMI, cholesterol, triglycerides, glycemia, insulinemia, creati-
nine and HDL) of enrolled subjects was then investigated (Figure 2). Specifically, for OBF
vs. CTRL, BMI was significantly correlated with the expression of CD248, CD52, EVI2B
and RUNX3, glycemia with EVI2B and insulinemia with BTG2 (Figure 2A). For OBT2D
vs. CTRL, BRCA2, CDKN2C and PVT1 correlated with BMI, BRCA2, CDKN2C and SHG3
with cholesterol levels, CDKN2C and SHG3 with triglycerides, BRCA2 and PVT2 with
glycemia, PMAIP with insulinemia and BRCA2 with HDL (Figure 2B). For oncogenes
related to OBT2D vs. OBEF, a correlation was found for GPRC5A and LINC00312 with
glycemia and NKX3-1, GPRC5A and LINC00312 with insulinemia, as these are parameters
which are significantly different in diabetes (Figure 2C). Lastly, DE RNAs with the top
five OncoScores for OBM vs. OBF were significantly correlated with glycemia (PHGDH),
creatinine (PHGDH and TTTy15) and HDL (PHGDH, PAX8-AS1 and TTTY15) (Figure 2D).

2.2. Both Coding and Non-Coding DE RNAs Are Associated with Cancer in Obese Subjects

The deregulated transcripts for OBF vs. CTRL with a deregulation >1 in terms of
| Log2FC | were subjected to pathway analysis via the enrichR web tool [30]. The oncogenic-
related pathways found in the KEGG (Figure 3A) and WikiPathways (Figure S1A) analyses
were highlighted and displayed as a dotplot, ranked for their significance. Specifically,
25 out of the 171 KEGG deregulated terms (15%) and 31 out of the 158 WikiPathways
deregulated terms (20%) were correlated with the oncogenesis, suggesting an implication
for the DE RNAs dataset in possible carcinogenesis insurgence. Interesting pathways
concerning KEGG analysis that emerge specifically concern deregulation in cell adhesion
molecules and cytokine—cytokine receptor interactions, transcriptional misregulation in
cancer and microRNAs in cancer (indicating that the DE RNNAs affect gene expression
pertaining to oncogenesis), the p53 signaling pathway and even the general denomination
of pathways in cancer (Figure 3A). The top deregulated pathway from KEGG analysis
was the cell adhesion molecules pathway, widely implicated in cancer for its relevance in
the loss of cell-to-cell adhesion and anchorage-independent growth [31-33]. All the DE
RNAs implicated in this process were upregulated, and the represented genes codify for
the MHC-II, ITGB2, CD22 and SDC proteins (Figure 3A, Figure S1B). Figure 3B reports a
correlation network where the edges are correlated with disease prognosis and, specifically,
for each tumor, the numbers of upregulated genes with an unfavorable prognosis (orange
edges) or downregulated favorable prognosis (blue edges) were associated with an overall
unfavorable prognosis, whereas downregulated genes with an unfavorable prognosis and
upregulated genes with a favorable prognosis were correlated with an overall favorable
prognosis (Table 1). The overall unfavorable or favorable prognosis is summarized in
Figure 3C, which shows how thyroid cancer, testis cancer, glioma, melanoma and lung can-
cer are associated with a fully unfavorable prognosis, pancreatic cancer, liver cancer, renal
cancer, stomach cancer, urothelial cancer with a predominantly unfavorable prognosis, no
relevant difference for ovarian cancer and, lastly, interestingly, a predominantly favorable
prognosis for colorectal cancer, breast cancer, endometrial cancer, head and neck cancer
and cervical cancer (Figure 3C).
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Figure 2. Correlation between the top 5 genes with the highest OncoScore and the subject’s anthropometrical parameters.

The top 5 ranking oncogenes were correlated with Body Mass Index (BMI), cholesterol, triglycerides, glycemia, insulinemia,
creatinine and High-Density Lipoproteins (HDL) (A) for obese women (OBF) vs. healthy controls (CTRL) (* p < 0.05;
** p <0.01 vs. CTRL), (B) for obese women with type 2 diabetes (OBT2D) vs. CTRL (* p < 0.05; ** p < 0.01 vs. CTRL), (C) for
OBT2D vs. OBF (* p < 0.05; ** p < 0.01 vs. OBF) and (D) for obese males (OBM) vs. OBF (* p < 0.05; ** p < 0.01 vs. OBF).
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Figure 3. Cancer and oncogene correlations in OBF vs. CTRL conditions. (A) Dotplot of deregulated oncogenic pathways

from KEGG analysis. The y-axis represents the name of the pathway, the x-axis represents the gene ratio, dot size represents
the number of different genes and the color indicates the adjusted p-value. (B) Relationship between DE RNAs and the
possibility of a cancer diagnosis. Nodes are DE RNAs and are ranked according to fold change whereas edges indicate

disease prognosis and are colored according to favorable (light blue) and unfavorable (orange) prognosis. (C) Pie graph

displays the overall unfavorable or favorable prognosis. (D) Co-interaction network between IncRNAs in OBF vs. CTRL and

the oncogenes highlighted after OncoScore analysis. Light blue nodes are coding genes whereas pink nodes are IncRNAs.
The coding and non-coding RNAs form 4 main networks of interaction, the largest of which includes both COL4A2-AS2
and SMIM25. On the contrary, ITGB2-AS1, LINC0194 (CTEPHA1) and AL121832.2 (RPS21-AS) formed each one separate
interaction network. (E) The GEPIA2 database displays the specific annotated expression of each IncRNA in tumoral and

normal tissues.
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Table 1. Prognosis score associated with each cancer. Unfavorable or favorable prognosis was assessed according to orange
or blue edges, respectively. Upregulated or downregulated genes were described according to their log2FC. A bibliographic
search was performed to assess previous correlations of each cancer type with obesity.

Unfavourable Prognosis Favourable Prognosis
Cancer Upregulated Downregulated Downregulated Upregulated Literatl}re Evidenc'e for
Unfavourable Favourable Unfavourable Unfavourable Obesity Correlation
Prognosis Prognosis Prognosis Prognosis
Stomach Cancer 2 0 0 1 Negatively correlated [34,35]
Ovarian Cancer 2 0 0 2 Positively correlated [36]
Thyroid Cancer 2 0 0 0 Positively correlated [37,38]
Colorectal Cancer 2 1 0 4 Positively correlated [39,40]
Breast Cancer 2 4 0 8 Positively correlated [7,41]
Cervical Cancer 2 1 1 9 Positively correlated [8,42]
Glioma 3 1 0 0 Negatively correlated [43]
Pancreatic Cancer 10 2 1 0 Positively correlated [44,45]
Melanoma 0 0 0 5 Positive correlation
amongst men [46]
Head and Neck 1 3 0 9 Positively correlated [47]
Cancer
Lung Cancer 9 2 0 0 Negatively correlated [48]
Renal Cancer 44 8 4 7 Positively correlated [49]
Liver Cancer 15 6 2 1 Positively correlated [50]
Urothelial Cancer 5 2 1 3 Positively correlated [51]
Endometrial 7 1 1 14 Positively correlated [52]
Cancer

As the non-coding component is becoming increasingly relevant in the context of
both obesity and cancer, closer attention was given to the implication of the six IncRNAs
(SMIM25, ITGB2-AS1, COL4A2-AS2, CTEPHA1, ACER2-AS, RPS21-AS) that were found
deregulated in OBF versus CTRL. Specifically, the IncRNAs’ interaction with the oncogenes
highlighted after OncoScore analysis (Table S1, Figure 1D) was visualized as a WCGNA
co-interaction network, to investigate whether the IncRNAs could specifically target these
oncogenes (Figure 3D). The coding and non-coding RNAs form four main networks of
interaction, the largest of which includes both COL4A2-AS2 and SMIM25 IncRNAs. On
the contrary, ITGB2-AS1, LINC0194 (CTEPHA1) and AL121832.2 (RPS21-AS) each formed
one separate interaction network (Figure 3D). The GEPIA2 database was used to obtain
the specific annotated expression of each IncRNA in tumoral and normal tissues. SMIM25,
followed by CTEPHALI, seems to be the one with the most significant deregulation in tumor
tissues compared to normal ones, whereas COL4A2-AS2 seems to be the least implicated
(Figure 3D). The specific correlation in each sample analyzed (both tumoral and normal) is
reported in Figure S2, and this deregulation is summarized in Table 2 and Figure 3E.

2.3. Correlation of Transcriptional Deregulation with Cancer in Obese Subjects with Type
2 Diabetes

The deregulated transcripts for OBT2D vs. CTRL with a deregulation >1 in terms of
| Log2FC | were subjected to pathway analysis via the enrichR web tool [30]. The oncogenic-
related pathways found in the KEGG (Figure 4A) and WikiPathways (Figure S3A) analyses
were highlighted and displayed as a dotplot, ranked for their significance. Specifically,
26 out of the 170 KEGG deregulated terms (15%) and 42 out of the 183 WikiPathways
deregulated terms (23%) were correlated with oncogenesis phenomenon and diseases.
Moreover, in this case, the KEGG analysis highlights an influence on the regulation of gene
expression, with RNA degradation and microRNAs in cancer being amongst the deregu-
lated processes, along with membrane alteration (cytokine—cytokine receptor interaction,
cell adhesion molecules and ECM-receptor interaction) and implication for specific cancers
(breast cancer, non-small cell lung cancer, melanoma, pancreatic cancer, colorectal cancer)
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(Figure 4A). The top KEGG deregulated pathway was that of cytokine—cytokine receptor
interaction, also widely implicated in oncogenic processes [53,54] (Figure 4A, Figure S3B).
Most of the DE RNAs implicated in this process were found to be upregulated, and they
codify for CCL3L1, CCR7, CCL3, CXCL10, CSF3, LIF, IL10RA, CD30L and INHBB. The
only downregulated gene found was BMP3, though, interestingly, this gene has been found
downregulated in cancers [55,56]. Figure 4B reports a correlation network where the edges
are correlated with disease prognosis. Moreover, in this case, there seems to be a high
number of genes with unfavorable prognosis correlated with renal cancer, whist there
seems to be reduced expression of genes correlating with a favorable prognosis for breast
cancer. A specific analysis was performed for each tumor, and the results are reported
in Table 3. The overall unfavorable or favorable prognosis is summarized in Figure 4C,
which shows how obesity gene profiles are associated with a fully unfavorable prognosis in
stomach cancer, testis cancer, and melanoma, glioma, renal cancer, colorectal cancer, lung
cancer, pancreatic cancer, urothelial cancer, liver cancer and cervical cancer. There was no
relevant difference for ovarian cancer and, lastly, a predominantly favorable prognosis for
breast cancer, thyroid cancer, head and neck cancer and endometrial cancer.

Table 2. Correlation of DE IncRNAs with expression in cancer. Deregulation has been investigated in tumoral versus

healthy tissue using GEPIA2 database and reported as ns (non-significant deregulation), a green + (upregulation in

normal tissue) and a red + (upregulation in tumoral tissue). ACC: Adrenocortical carcinoma; BRCA: Breast invasive

carcinoma; CESC: Cervical squamous cell carcinoma and endocervical adenocarcinoma; COAD: Colon adenocarcinoma;
DLBC: Lymphoid neoplasm diffuse large B-cell lymphoma; GBM: Glioblastoma Multiforme; KIRC: Kidney renal clear cell
carcinoma; KIRP: Kidney renal papillary cell carcinoma; LAML: Acute myeloid leukemia; LGG: Brain lower grade glioma;

LIHC: Liver hepatocellular carcinoma; LUAD: Lung adenocarcinoma; LUSC: Lung squamous cell carcinoma; OV: Ovarian

serous cystadenocarcinoma; PAAD: Pancreatic adenocarcinoma; READ: Rectum adenocarcinoma; SKCM: Skin cutaneous
melanoma; STAD: Stomach adenocarcinoma; TGCT: Testicular germ cell tumors; THYM: Thymoma; UCEC: Uterine corpus
endometrial carcinoma.

Gene Symbol ACER2-AS COL4A2-AS CTEPHA1 ITGB2-AS1 RPS21-AS SMIM25
Tumoral Tissue

ACC ns ns ns ns ns _
BRCA ns ns o+ ns ns ns
CESC ns ns ns ns ns
COAD ns ns ns ns ns

DLBC ns ns ns

GBM ns ns

KIRC ns ns

KIRP ns ns
LAML ns ns

LGG ns ns

LUAD ns ns

LUSC ns ns

oV ns ns

PAAD ns ns

READ ns ns
skeM M s

STAD ns ns

TGCT ns
mv T -

UCEC ns ns
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Figure 4. Cancer pathways and oncogene analysis in OBT2D vs. CTRL condition. (A) Dotplot of deregulated oncogenic
pathways from KEGG analysis. The y-axis represents the name of the pathway, the x-axis represents the gene ratio, dot size
represents the number of different genes and the color indicates the adjusted p-value. (B) Correlation network highlights
the relationship between DE RNAs and the possibility of a cancer diagnosis. Nodes are DE RNAs and are ranked according
to fold change whereas edges indicate disease prognosis and are colored according to favorable (light blue) and unfavorable
(orange) prognosis. (C) Pie graph displays the overall unfavorable or favorable prognosis. (D) Co-interaction network
between IncRNAs on OBT2D vs. CTRL and the oncogenes highlighted after OncoScore analysis. Light blue nodes are
coding genes whereas pink nodes are IncRNAs. (D) The GEPIA2 database displays the specific annotated expression of

each IncRNA in tumoral and normal tissues.
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Table 3. Prognosis score associated with each cancer. Unfavorable or favorable prognosis was assessed according to orange
or blue edges, respectively. Upregulated or downregulated genes were described according to their log2FC. A bibliographic
search was performed to assess previous correlations of each cancer type with T2D.

Unfavourable Prognosis Favourable Prognosis

Upregulated Downregulated Downregulated Upregulated Column Name

Cancer

Unfavourable Favourable Unfavourable Unfavourable Literature Evidence
Prognosis Prognosis Prognosis Prognosis
Stomach Cancer 4 0 0 0 Negatively correlated [57]
Ovarian Cancer 3 2 0 5 Positively correlated [58]
Thyroid Cancer 1 1 2 2 Negatively correlated [59,60]
Colorectal Cancer 5 2 1 1 Positively correlated [61]
Breast Cancer 0 4 1 6 Positively correlated [62,63]
Cervical Cancer 6 2 1 6 Positively correlated [64]
Glioma 4 1 0 1 Negatively correlated [65]
Pancreatic Cancer 9 4 2 3 Positively correlated [46]
Melanoma 0 0 2 2 Positively correlated [66]
Head and Neck 2 1 1 7 Positively correlated [67,68]
Cancer
Lung Cancer 9 5 2 2 Negatively correlated [69]
Renal Cancer 45 13 10 5 Positively correlated [70]
Liver Cancer 5 4 6 1 Positively correlated [71]
Urothelial Cancer 8 1 3 1 POSl’FeVIY correlated
in men [72]
Endometrial .-
Cancer 5 0 6 7 Positively correlated [64]

The IncRNAs found in OBT2D versus CTRL were 13, and their interaction with the
oncogenes (Table S1) was analyzed as a WCGNA co-interaction network, to investigate
whether the IncRNAs could specifically target these oncogenes (Figure 4D). Specifically, two
IncRNAs emerge to interact with the oncogenes highlighted after OncoScore analysis in one
main network of interaction, and these are MIR155HG and RPM11-469M71.1 (Figure 4D).
Moreover, 12 IncRNAs were found after the GEPIA2 database search (Figure 4E, Figure S4).
PVT1, SNHG3 and MIR4435-2HG were amongst the most expressed terms (both in normal
and tumor tissues) and the significant deregulations are reported in Table 4, and the ones
with the most significant alterations were PVT1 and AL139407.1 (Table 4, Figure S4).

2.4. Influence of T2D on Oncogene Expression: Role of Both Coding and Non-Coding RNAs in
OBT2D vs. OBF

The deregulated transcripts for OBT2D vs. OBF with a deregulation >1 in terms of
| Log2FC | were subjected to pathway analysis via the enrichR web tool [30]. The oncogenic-
related pathways found in the KEGG (Figure 5A) and WikiPathways (Figure S5A) analyses
were highlighted and displayed as a dotplot, ranked for their significance. Specifically,
22 out of the 101 KEGG deregulated terms (21.8%) and 31 out of the 120 WikiPathways
deregulated terms (25.8%) were identified as correlated with oncogenesis. KEGG analysis
implicates specific cancers (bladder cancer, colorectal cancer, pancreatic cancer, prostate
cancer and more), along with canonical pathways such as the MAPK signaling pathway;,
Notch p53 signaling pathway, Wnt signaling pathway and, again, transcriptional misregu-
lation in cancer (Figure 5A). Bladder cancer was the most deregulated pathway, previously
reported to be associated with diabetes, although no molecular signature was identified for
this correlation [72,73] and the upregulated genes involved in these pathways were VEGF
and IL-8 (Figure 5A, Figure S5B).
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Table 4. Correlation of IncRNAs with expression in cancer. Deregulation has been investigated in tumoral versus healthy
tissue using GEPIA2 database and reported as ns (non-significant deregulation), a green + (upregulation in normal tissue)
and a red + (upregulation in tumoral tissue). ACC: Adrenocortical carcinoma; BLCA: Bladder urothelial carcinoma; BRCA:
Breast invasive carcinoma; CESC: Cervical squamous cell carcinoma and endocervical adenocarcinoma; COAD: Colon
adenocarcinoma; DLBC: Lymphoid neoplasm diffuse large B-cell lymphoma; ESCA: Esophageal Carcinoma; GBM: Glioblas-
toma Multiforme; HNSC: Head and neck squamous cell carcinoma; KICH: Kidney chromophobe; KIRC: Kidney renal clear
cell carcinoma; KIRP: Kidney renal papillary cell carcinoma; LAML: Acute myeloid leukemia; LIHC: Liver hepatocellular
carcinoma; LUAD: Lung adenocarcinoma; LUSC: Lung squamous cell carcinoma; OV: Ovarian serous cystadenocarcinoma;
PAAD: Pancreatic adenocarcinoma; READ: Rectum adenocarcinoma; SKCM: Skin cutaneous melanoma; STAD: Stomach
adenocarcinoma; TGCT: Testicular germ cell tumors; THCA: Thyroid carcinoma; THYM: Thymoma; UCEC: Uterine corpus
endometrial carcinoma; UCS: Uterine carcinosarcoma.

Gene Symbol - o — — 5!) 7 O ) » @ E 3
- o 2 g & < < R 5 < T 2 z
N =] 3] N = = et T = & Z
= 5 2 2 2 7 > < N i @
Tumoral O S = = E Z S 3 >
, < > < < S = = s 5
Tissue | < EI = S E
= =
ACC ns
BLCA ns
BRCA ns
CESC ns
COAD ns
DLBC ns
ESCA ns
GBM ns
HNSC ns
KICH ns
KIRC ns
KIRP ns
LAML [
LIHC ns
LUAD ns
LUSC ns
oV ns
PAAD ns
READ ns
SKCM ns
STAD ns
TGCT ns
THCA ns
THYM [
UCEC ns
ucs ns

Figure 5B reports a correlation network where the edges are correlated with disease
prognosis. The analysis highlights an increased susceptibility for renal cancer when switch-
ing to a diabetic phenotype, although, overall, a reduced number of genes and tumors was
found in the network. The specific gene—prognosis correlation is reported in Table 5, and
Figure 5C summarizes for which cancers the DE RNAs signature is favorable or unfavor-
able. Indeed, Figure 5C shows how breast cancer and melanoma are associated with a fully
unfavorable prognosis, pancreatic cancer, cervical cancer, endometrial cancer, renal cancer
and lung cancer with a predominantly unfavorable prognosis, no relevant difference for
colorectal and ovarian cancer, a predominantly favorable prognosis for liver cancer and,
remarkably, a fully favorable prognosis for urothelial cancer, thyroid cancer and head and
neck cancer.
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Figure 5. Cancer pathways and oncogene analysis in OBT2D vs. OBF. (A) Dotplot of deregulated oncogenic pathways from

KEGG analysis. The y-axis represents the name of the pathway, the x-axis represents the gene ratio, dot size represents the
number of different genes and the color indicates the adjusted p-value. (B) Nodes are DE RNAs and are ranked according
to fold change whereas edges indicate disease prognosis and are colored according to favorable (light blue) and unfavorable
(orange) prognosis. (C) Pie graph displays the overall unfavorable or favorable prognosis. (D) Co-interaction network
between IncRNAs on OBT2D vs. OBF and the oncogenes highlighted after OncoScore analysis. Four networks were built,
including a total of 8 IncRNAs. (E) The GEPIA2 database displays the specific annotated expression of each IncRNA in

tumoral and normal tissues.
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Table 5. Prognosis score and number of deregulated genes associated with each specific cancer. Unfavorable or favorable

prognosis was assessed according to orange or blue edges, respectively. Upregulated or downregulated genes were

described according to their log2FC. A bibliographic search was performed to assess previous correlations of each cancer

type with obesity and/or T2D.

Unfavourable Prognosis

Favourable Prognosis

Upregulated Downregulated Downregulated Upregulated Li Evi
Cancer Unfavourable Favourable Unfavourable Unfavourable iterature Evidence
Prognosis Prognosis Prognosis Prognosis
. Positively correlated with
Ovarian Cancer 1 2 1 2 obesity and diabetes [36,58]
Positively correlated in
Thyroid Cancer 0 0 2 0 obesity [37,38]; negatively
correlated in diabetes [59,60]
Positively correlated with
Colorectal Cancer 0 1 1 0 obesity and diabetes [39,61]
Positively correlated with
Breast Cancer 0 2 0 0 obesity and diabetes
[7,41,62,63]
. Positively correlated with
Cervical Cancer 3 0 0 1 obesity and diabetes [8,42,64]
. Positively correlated with
Pancreatic Cancer 6 2 0 1 obesity and diabetes [44—46]
Positively correlated with
Melanoma 0 0 1 0 obesity and diabetes [46,60]
Head and Neck 0 0 1 1 Positively correlated with
Cancer obesity and diabetes [47,67,68]
Negatively correlated with
Lung Cancer ! ! ! 0 obesity and diabetes [48,69]
Positively correlated with
Renal Cancer 14 3 12 2 obesity and diabetes [49,70]
. Positively correlated with
Liver Cancer 3 1 6 0 obesity and diabetes [50,71]
Positively correlated in men
Urothelial Cancer 0 0 2 1 both in obesity and diabetes
[51,72]
Endometrial 3 1 1 5 Positively correlated with
Cancer obesity and diabetes [52,64]

The IncRNAs found in OBT2D versus OBF were nine, and a co-interaction network
with the oncogenes was constructed (Figure 5D and Table S1). Four networks were
built, including a total of eight IncRNAs. Specifically, LINC00312, RPM11-469M71.1 and
AC107021.2 interact in the most complex network, AC051619.7 co-interacts with MZF1-
ASI1 in a smaller one, conversely to RP3-461P17.10 and AC016705.2. ZMIZ1-AS1 forms a
separate independent network (Figure 5D). Moreover, seven IncRNAs were found to be
expressed in cancer tissues after the GEPIA2 database search (Figure 5E, Figure S6). In this
case, AC016705.2 and RP3-461P17.10 presented the highest deregulation amongst cancer
tissues (Figure 5E, Table 6, Figure S6).
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Table 6. Correlation of IncRNAs with expression in cancer. Deregulation is investigated in tumoral versus healthy tissue

using GEPIA2 database and reported as ns (non-significant deregulation), a green + (upregulation in normal tissue) and a

red + (upregulation in tumoral tissue). ACC: Adrenocortical carcinoma; COAD: Colon adenocarcinoma; DLBC: Lymphoid

neoplasm diffuse large B-cell lymphoma; KIRC: Kidney renal clear cell carcinoma; LAML: Acute myeloid leukemia; LGG:

Brain lower grade glioma; OV: Ovarian serous cystadenocarcinoma; PRAD: Prostate adenocarcinoma; READ: Rectum

adenocarcinoma; SKCM: Skin cutaneous melanoma; TGCT: Testicular germ cell tumors; THYM: Thymoma.

Gene Symbol —

Tumoral Tissue |

AC016705.2 AC051619.7 AC090181.2 AC107021.2 MZF1-AS1 RP3-461P17.10 ZMIZ1-AS1

ACC ns ns ns ns ns ns
COAD ns ns ns ns ns ns
DLBC ns ns ns ns ns ns
KIRC s ns ns ns ns ns
LAML ns ns ns ns _ ns
LGG _ ns ns ns ns ns ns
ov ns ns ns _ ns ns ns
PRAD ns ns ns ns ns ns
READ ns ns ns ns ns - ns
SKCM ns ns ns ns ns ns
THYM ns ns ns ns _ ns ns

2.5. Gender Differences Lead to Alteration in Oncogene Expression in Relation to Obesity

The deregulated transcripts for OBM vs. OBF with a deregulation >1 in terms of
| Log2FC | were subjected to pathway analysis via the enrichR web tool [30]. The oncogenic-
related pathways found in the KEGG (Figure 6A) and WikiPathways (Figure S7A) analyses
were highlighted and displayed as a dotplot, ranked for their significance. Specifically,
20 out of the 24 KEGG deregulated terms (83.3%) and 35 out of the 43 WikiPathway
deregulated terms (81.3%) were identified as correlated with oncogenesis. KEGG analysis
implicates a high number of pathways correlated with gene expression regulation, such
as spliceosome, ribosome, RNA transport, transcriptional misregulation in cancer and
microRNAs in cancer (Figure 6A). The most significantly deregulated pathway in KEGG
analysis was the Wnt signaling pathway, and the downregulated genes in this case codified
for FRP and ROR1/2 (Figure 6A, Figure S7B). Figure 6B reports a correlation network
where the edges are correlated with disease prognosis. Renal cancer is the one with the
highest number of implicated genes, which mainly seem to be downregulated in this
network. The specific gene—prognosis correlation is reported in Table 7. The overall
unfavorable or favorable prognosis is summarized in Figure 6C, which shows how ovarian,
breast and pancreatic cancer are associated with a fully unfavorable prognosis, while
glioma, urothelial and endometrial cancer present no relevant difference. A predominantly
favorable prognosis in renal cancer was found and a fully favorable prognosis for liver,
head and neck and thyroid cancers, respectively (Figure 6C). The IncRNAs found in OBM
versus OBF were four, and a co-interaction network with the oncogenes (Table S1) was
constructed (Figure 6D). One main network was built, including a total of three IncRNAs:
XIST, PAX8-AS1 and JPX (Figure 6D). Moreover, four IncRNAs were found to be expressed
in cancer tissues after the GEPIA2 database search (Figure 6E, Figure S8). In this case,
JPX and PAX8-AS1 present the highest expression, and, furthermore, XIST and PAX8-AS1
present the highest deregulation amongst cancer tissues (Figure 6E, Table 8, Figure S8).
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Figure 6. Cancer pathways and oncogene analysis concerning gender differences. (A) Dotplot of deregulated oncogenic
pathways from KEGG analysis. The y-axis represents the name of the pathway, the x-axis represents the gene ratio, dot
size represents the number of different genes and the color indicates the adjusted p-value. (B) Nodes are DE RNAs and
are ranked according to fold change whereas edges indicate disease prognosis and are colored according to favorable
(light blue) and unfavorable (orange) prognosis. (C) Pie graph displays the overall unfavorable or favorable prognosis.
(D) Co-interaction network between IncRNAs on OBT2D vs. OBF and the oncogenes highlighted after OncoScore analysis.
One main network was built, including a total of 3 IncRNAs: XIST, PAX8-AS1 and JPX. (E) The GEPIA2 database displays

the specific annotated expression of each IncRNA in tumoral and normal tissues.
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Table 7. Prognosis score associated with each cancer. Unfavorable or favorable prognosis was assessed according to orange
or blue edges, respectively. Upregulated or downregulated genes were described according to their log2FC. A bibliographic
search was performed to assess previous correlations of each cancer type with gender.

Unfavourable Prognosis Favourable Prognosis
Cancer Upregulated Downregulated Downregulated Upregulated Literature Evidence
Unfavourable Favourable Unfavourable Unfavourable
Prognosis Prognosis Prognosis Prognosis
Ovarian Cancer 0 1 0 0 Positively correlated in women [36]
Thyroid Cancer 0 0 1 0 Positively correlated in women [74]
Breast Cancer 0 2 0 0 Positively cprrelated both in men
and in women [75]
Glioma 0 1 1 0 Positively correlated in men [43,76]
Pancreatic Cancer 0 1 0 0 Positively correlated in women [77]
Head and Neck 0 0 0 3 Negatively correlated [78]
Cancer
Renal Cancer 0 2 0 5 Positively correlated in women [70]
Liver Cancer 0 0 1 0 Positively correlated in men [79]
Urothelial Cancer 0 2 2 0 Positively correlated in men [72]
Endometrial 0 1 1 0 Positively correlated in women [52]
Cancer

Table 8. Correlation of IncRNAs with expression in cancer. Deregulation has been investigated in tu-
moral versus healthy tissue using GEPIA2 database and reported as ns (non-significant deregulation),
a green + (upregulation in normal tissue) and a red + (upregulation in tumoral tissue). ACC: Adreno-
cortical carcinoma; BRCA: Breast invasive carcinoma; CESC: Cervical squamous cell carcinoma and
endocervical adenocarcinoma; COAD: Colon adenocarcinoma; DLBC: Lymphoid neoplasm diffuse
large B-cell lymphoma; ESCA: Esophageal Carcinoma; GBM: Glioblastoma Multiforme; KICH: Kid-
ney chromophobe; LUAD: Lung adenocarcinoma; OV: Ovarian serous cystadenocarcinoma; PAAD:
Pancreatic adenocarcinoma; READ: Rectum adenocarcinoma; SKCM: Skin cutaneous melanoma;
STAD: Stomach adenocarcinoma; TGCT: Testicular germ cell tumors; THCA: Thyroid carcinoma.

Gene Symbol —
JPX PAX8-AS1 SNHG25 XIST
Tumoral Tissue |
ACC ns

BRCA ns
CESC ns
COAD ns
DLBC ——

ESCA ns
GBM
KICH
LUAD
ov
PAAD
READ
SKCM
STAD
TGCT
THCA
THYM
UCEC
UcCs
UvM
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3. Discussion

The molecular mechanisms underlying the influence of obesity on the development
and progression of cancer are not yet completely defined, and their characterization could
highlight new mechanisms leading to increased susceptibility to cancer. Transcriptional
characterization of specific tissues in obese patients is of crucial relevance in highlighting
new key players and a relevant focus should be placed on IncRNAs, as emerging evidence
links them to numerous obesity-related disorders and multiple types of cancer [80-89]. In
order to evaluate the role of adipose tissue gene expression in tumor development, we
aimed to evaluate the presence of coding and non-coding oncogenes and cancer-associated
pathways in obesity-affected subjects. To this end, the results hereby presented are a
comprehensive analysis of transcriptional differences occurring in the SAT of a total of
20 subjects: 5 CTRL, 5 OBF, 5 OBT2D and 5 OBM. Four experimental conditions were
analyzed: OBF vs. CTRL, OBT2D vs. CTRL, OBT2D vs. OBF and OBF vs. OBM.

The specific deregulation in each subset was then analyzed. For each dataset, the
presence of genes with a high oncogenic potential was assessed, along with their correlation
with anthropometrical parameters. Oncogenic-associated pathways were identified via
KEGG analysis, along with the specific genes which predicted a favorable or unfavorable
prognosis for a specific cancer. Lastly, specific attention was given to IncRNAs, as this
new class of molecules was found to be highly implicated in both oncogenesis and adipo-
genesis. Indeed, all four conditions highlighted the presence of much cancer-associated
evidence, predicting a plausible function for the adipose tissue in oncogene deregulation.
The condition which showed the highest deregulation was that of OBF vs. CTRL, where
the highest percentage of oncogenes was found (66.7%), along with the highest significance
for cancer-associated pathways. Indeed, the amount of evidence correlating the adipogenic
microenvironment with cancer is rising each year, and some recent studies have even found
that systemic metabolisms can influence the tumor microenvironment [90]. Indeed, Ringel
et al. investigated how obesity shifts the metabolic landscape of the tumor microenviron-
ment to inhibit T cell function and promote tumor growth [90]. Although, in most cases, an
excessive body weight is associated with carcinogenesis development and poor outcome,
some new studies are now highlighting how this might not always be the case [67,91,92]
and this is in line with our evidence highlighting a correlation with both a favorable and
an unfavorable gene expression signature.

Interestingly, the diabetic condition presented a high number of oncogenic-associated
IncRNAs, suggesting that these molecules could be new players in the adipogenic dereg-
ulations concerning both cancer and diabetes. Indeed, this could explain the fact that
the oncogenic pathway analysis, which only considered the coding genes, presented a
reduced significance. T2D pharmacotherapy could also influence this phenomenon, as
recent studies suggest that there is an association between the use of anti-diabetic medica-
tions, such as metformin, a drug of choice in type 2 diabetes mellitus, and reduced cancer
incidence [93]. Indeed, the protective effect of metformin was found in numerous research
studies investigating breast, pancreas, liver, colon, ovaries and prostate tumors [94,95].
Moreover, evidence show how the link between diabetes and cancer seems to lie in the
ability of glucose, when found at elevated concentrations, to change the expression of
certain genes, acting at the epigenomic level [23,24], and this is also appreciable in our
correlation studies, as in OBT2D vs. OBF, the oncogenes were correlated specifically with
glycemia and insulinemia. Lastly, the gender-specific analysis allowed us to identify which
cancers are more associated with a favorable or unfavorable oncogene signature, which
could be sex-specific even in the adipose tissue. Indeed, recent studies highlighted how, in
obese men, the risk is increased for prostate cancer, but also for leukemia and lymphomas,
thyroid, liver, kidney, pancreatic, colorectal and stomach cancer, whereas in women, there
is an increased risk for nasopharyngeal and esophageal cancer, and for liver, thyroid, lung,
pancreas, blood (leukemia’s and lymphomas), uterus, colorectal, breast, cervix and stomach
tumors [28], in line with our results.
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In conclusion, our results are an extensive characterization of gene expression in SAT
tissue and its correlation with cancer, in both obesity and diabetes and when considering
gender differences. Our work is to be considered a pilot study, with the need for further
validation in different adipose depots, wider cohorts and including follow-up studies
in order to correlate the gene expression with cancer risk in obese and diabetic patients,
discriminating between sexes. They could shed light on new coding and non-coding
molecular targets to be specifically modulated in obesity and highlight which cancers
should be given the most attention.

4. Materials and Methods
4.1. Adult Human Adipose Tissue Collection, Isolation and Differentiation

The present study is in accordance with the Declaration of Helsinki and it was ap-
proved by the Ethical Committee of IRCCS Istituto Auxologico Italiano (Ethical Committee
approval code #2020_10_20_04). Signed informed consent was obtained from each enrolled
patient for tissue sampling. Biopsies of SAT were collected from a total of 20 subjects:
5 healthy, normal-weight women (CTRL, age 37 + 6.7 years, BMI 24.3 + 0.9 kg/m?),
5 obese women (OBF, age 41 + 12.5 years, BMI 38.2 + 4.6 kg/m?), 5 obese women with
T2D (OBT2D; age 54.6 4= 14.9 years, BMI 38.1 + 11.8 kg/m?) and 5 obese men (OBM,
age 42.4 + 6.58 years, BMI 36.9 + 3.5 kg/m?). The anthropometrical features of patients
enrolled in the study are reported in Table S2. Surgical biopsies of whole abdominal SAT
were collected pre-operatively from obese patients during bariatric surgery procedures
and from normal-weight patients before aesthetic plastic surgery or abdominal surgery
for non-inflammatory diseases. Each collected biopsy was weighed and stored in 1 mL of
DMEM (Invitrogen Corporation, Jefferson City, MO, USA) supplemented with 2.5% bovine
serum albumin (Sigma, St. Louis, MO, USA) per gram of collected tissue. The biopsy was
immediately transferred to the laboratory and processed. A fragment of the whole adipose
tissue biopsy was immediately frozen in liquid nitrogen for RNA extraction.

4.2. SAT RNA Extraction

Approximately 500 mg of frozen SAT was homogenized in RLT buffer (Qiagen, Hilden,
Germany). RNA from SAT was extracted using the RNeasy Mini Kit (Qiagen, Hilden,
Germany) according to the manufacturer’s protocol and samples were then treated with
the RNase-Free DNase Set (Qiagen, Hilden, Germany). Concentration and quality of the
extracted RNA were determined by the NanoDrop ND-1000 spectrophotometer (NanoDrop
Technologies, Wilmington, DE, USA) and RNA integrity verified by gel electrophoresis.

4.3. Library Preparation for RNA-Seq and Bioinformatic Data Analysis

RNA-seq libraries were prepared with the CORALL Total RNA-Seq Library Prep
Kit (Lexogen, Vienna, Austria) using 150 ng total RNAs from 5 healthy women, 5 obese
women, 5 obese women with T2D and 5 obese men. The RiboCop rRNA Depletion
Kit (Lexogen, Vienna, Austria) was used to remove rRNA. Qualities of sequencing li-
braries were assessed with D1000 ScreenTape Assay using the 4200 TapeStation Sys-
tem (Agilent, Santa Clara, CA, USA) and quantified with Qubit™ dsDNA HS Assay
Kit (Invitrogen, Carlsbad, CA, USA). RNA processing was carried out using Illumina
NextSeq 500 Sequencing. FastQ files were generated via llumina bcl2fastq2 (v. 2.17.1.14;
https:/ /support.illumina.com/downloads/bcl2fastq-conversion-software-v2-20.html, last
accessed on 15 February 2021) starting from raw sequencing reads produced by Illumina
NextSeq sequencer. Quality of individual sequences was evaluated using FastQC software
(see Code Availability 1) after adapter trimming with cutadapt software. Gene and tran-
script intensities were computed using STAR/RSEM software [96], using Gencode Release
h38 (GRCh38) as a reference, using the “-strandness forward” option. Transcript abun-
dance was obtained using the BlueBee® Genomics Platform (Lexogen, Vienna, Austria).
Differential expression analysis for mnRNA was performed using R package DESeq?2 [97].
Genes were considered differentially expressed and retained for further analysis with
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I log2(condition sample/control sample) | > 1 and an False Discovery Rate (FDR) < 0.1.
We imposed minimum [Log2FC| of 1 and an FDR lower than 0.1 as thresholds to differen-
tially expressed genes. The raw data obtained from the RNA-seq analysis are deposited in
the Gene Expression Omnibus repository with the accession number GSE166047.

4.4. RNA Extraction and Real-Time PCR

Real-Time PCR was performed with the StepOnePlus™ Real-Time RT-PCR System
(Thermo Fisher, Waltham, MA, USA) with the SsoAdvancedTM Universal SYBR ® Green
Supermix (Bio-Rad, Hercules, CA, USA) as dye. Primers were designed with NCBI's
Primer-BLAST tool and they are reported in Table S3. Gene expression was calculated
using the 2742 method, and 18S was used as an endogenous control. Data were expressed
as mean £ SEM. The statistical analysis was performed with Student’s t-test. The Prism 7
software (GraphPad Software Inc., La Jolla, CA, USA) was used, assuming a p-value less
than 0.05 as the limit of significance.

4.5. Pathway Analysis and Cancer Correlations

Gene enrichment analysis was performed on coding genes. Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis (http://www.genome.ad.jp/kegg, last
accessed on 15 February 2021) and WikiPathways analysis (https://www.wikipathways.
org/index.php/WikiPathways, last accessed on 15 February 2021) of differentially ex-
pressed coding genes via the enrichR web tool was performed. Moreover, Gene Ontology
(GO) analysis for biological processes, cellular components and molecular function was
executed [30,98]. The R software was used to generate heatmaps (heatmap.2 function from
the R ggplots package), PCA plot (prcomp function from the R ggplots package), volcano
plots [99], dotplot graphs (ggplot2 library) and Pathview graphs (Pathview library [100]).
The NDEx plugin [101] was used to group the differentially expressed genes with their
prognosis in specific cancer types, visually represented using the Cytoscape software [102].
The OncoScore library in R was used to assess the specific cancer risk for the differentially
expressed RNAs, and this score was plotted using the ggplot2 library [29]. The GEPIA2
tool was used to identify IncRNA expression in cancer datasets. GEPIA is a web server
composed of the RNA sequencing expression data of 9736 tumors and 8587 normal samples
from the TCGA and the GTEx projects, and analysis can be performed using a standard
processing pipeline [103,104].

4.6. Correlation Analysis

Correlation analysis was performed on the top five genes for OncoScore ranking. They
were correlated with anthropometrical parameters corresponding to specific patients (Table
S2). For each gene, the raw counts were normalized on the raw counts of EEF2, identified
as stable housekeeping genes from the Housekeeping and Reference Transcript Atlas [105].
The Prism 8 software (GraphPad Software Inc., La Jolla, CA, USA) was used for statistical
analysis, assuming a p-value less than 0.05 as the limit of significance.

4.7. Coding and ncRNA Co-Expression Analysis

Cancer-implicated coding RNAs’ co-expression with non-coding RNAs (ncRNAs) was
performed using Weighted Gene Co-expression Network Analysis (WGCNA) R package
(https:/ /CRAN.R-project.org/package=WGCNA, last accessed on 15 February 2021) [106].
The soft thresholding power was chosen considering the criterion of approximate scale-free
topology. Network nodes represent gene expression profiles, while undirected edge values
are the pairwise correlations between gene expressions. Cytoscape software was used for
network import and visualization.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/1422-006
7/22/4/1989/s1, Figure S1: (A) Dotplot of deregulated oncogenic pathways from WikiPathways
analysis. The y-axis represents the name of the pathway, the x-axis represents the gene ratio, dot size
represents the number of different genes and the color indicates the adjusted p-value. (B) Pathview
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of the top deregulated oncogenic pathway from KEGG analysis (cell adhesion molecules pathway).
Upregulated DE RNAs are shown in red. Figure S2: GEPIA2 database displays for OBF vs. CTRL
how IncRNAs are expressed in different types of cancer with respect to normal tissue. Genes more
expressed in normal tissue are represented in green whereas genes more expressed in cancer tissues
in red. Figure S3: (A) Dotplot of deregulated oncogenic pathways from WikiPathways analysis. The
y-axis represents the name of the pathway, the x-axis represents the gene ratio, dot size represents
the number of different genes and the color indicates the adjusted p-value. (B) Pathview of the
top deregulated oncogenic pathway from KEGG analysis (cytokine—cytokine receptor interaction).
Upregulated DE RNAs are shown in red, downregulated in green. Figure S4: GEPIA2 database
displays for OBT2D vs. CTRL how IncRNAs are expressed in different types of cancer with respect
to normal tissue. Genes more expressed in normal tissue are represented in green whereas genes
more expressed in cancer tissues in red. Figure S5: (A) Dotplot of deregulated oncogenic pathways
from WikiPathways analysis. The y-axis represents the name of the pathway, the x-axis represents
the gene ratio, dot size represents the number of different genes and the color indicates the adjusted
p-value. (B) Pathview of the top deregulated oncogenic pathway from KEGG analysis (bladder
cancer). Upregulated DE RNAs are shown in red. Figure S6: GEPIA2 database displays for OBT2D
vs. OBF how IncRNAs are expressed in different types of cancer with respect to normal tissue. Genes
more expressed in normal tissue are represented in green whereas genes more expressed in cancer
tissues in red. Figure S7: (A) Doplot of deregulated oncogenic pathways from WikiPathways analysis.
The y-axis represents the name of the pathway, the x-axis represents the gene ratio, dot size represents
the number of different genes and the color indicates the adjusted p-value. (B) Pathview of the top
deregulated oncogenic pathway from KEGG analysis (Wnt signaling pathway). Downregulated
DE RNAs are in green. Figure S8: GEPIA2 database displays for OBM vs. OBM how IncRNAs are
expressed in different types of cancer with respect to normal tissue. Genes more expressed in normal
tissue are represented in green whereas genes more expressed in cancer tissues in red. Table S1: The
OncoScore library was used to detect which genes, amongst the DE RNAs for each conditions, were
correlated with cancer [29]. The table reports the full list of the genes and respective score, Table S2:
The anthropometrical features of patients enrolled in the study. Table S3: List of primers used in
this study.
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Abbreviations

ACC Adrenocortical carcinoma

BLCA  Bladder urothelial carcinoma

BRCA  Breast invasive carcinoma

CESC  Cervical squamous cell carcinoma and endocervical adenocarcinoma
CHOL Cholangiocarcinoma

COAD Colon adenocarcinoma

DLBC  Lymphoid neoplasm diffuse large B-cell lymphoma
ESCA  Esophageal Carcinoma

GBM Glioblastoma Multiforme

HNSC  Head and neck squamous cell carcinoma
KICH  Kidney chromophobe

KIRC Kidney renal clear cell carcinoma

KIRP Kidney renal papillary cell carcinoma
LAML  Acute myeloid leukemia

LGG Brain lower grade glioma

LIHC Liver hepatocellular carcinoma

LUAD Lung adenocarcinoma

LUSC  Lung squamous cell carcinoma

MESO  Mesothelioma

ov Ovarian serous cystadenocarcinoma
PAAD  Pancreatic adenocarcinoma

PCPG  Pheochromocytoma and paraganglioma
PRAD  Prostate adenocarcinoma

READ  Rectum adenocarcinoma

SARC  Sarcoma

SKCM  Skin cutaneous melanoma

STAD  Stomach adenocarcinoma

TGCT  Testicular germ cell tumors

THYM  Thymoma

THCA  Thyroid carcinoma

ucCs Uterine carcinosarcoma

UCEC  Uterine corpus endometrial carcinoma
UVM Uveal melanoma
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