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Abstract: Under high-fat feeding, the hypothalamus atypically undergoes pro-inflammatory signal-
ing activation. Recent data from transcriptomic analysis of microglia from rodents and humans has
allowed the identification of several microglial subpopulations throughout the brain. Numerous
studies have clarified the roles of these cells in hypothalamic inflammation, but how each microglial
subset plays its functions upon inflammatory stimuli remains unexplored. Fortunately, these data
unveiling microglial heterogeneity have triggered the development of novel experimental models for
studying the roles and characteristics of each microglial subtype. In this review, we explore microglial
heterogeneity in the hypothalamus and their crosstalk with astrocytes under high fat diet–induced
inflammation. We present novel currently available ex vivo and in vivo experimental models that
can be useful when designing a new research project in this field of study. Last, we examine the
transcriptomic data already published to identify how the hypothalamic microglial signature changes
upon short-term and prolonged high-fat feeding.
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1. Introduction

Hypothalamic inflammation is a condition frequently observed in experimental mod-
els of diet-induced obesity (DIO) [1–3] and obese humans [4–6]. This inflammatory re-
sponse is mainly triggered by excessive saturated fatty acids (SFAs) from the diet [7–9],
which reach the neural tissue mainly through the median eminence (ME), where fenes-
trated vascular endothelium lacks a blood–brain barrier (BBB) [10,11]. Brain perivascular
macrophages (PVMs) also react to excessive free fatty acids (FFAs) circulating in the
blood vessels, with a consequent increase in BBB permeability [12,13]. Glial cells, such
as astrocytes and microglia, quickly sense and react to the presence of those SFAs in the
hypothalamic parenchyma, releasing pro-inflammatory cytokines, chemokines, and re-
active oxygen species (ROS) [14,15]. If the stimulus persists, the hypothalamic neuronal
network may be damaged, resulting in neuro-inflammation, which eventually leads to
energy balance disruption [16,17], and finally, to neuronal dysfunction/apoptosis [18].

Researchers have shown that hypothalamic inflammation initiates just a few hours/
days upon high-fat feeding [5,15,19]. After the onset of the inflammatory response, bone
marrow–derived cells (BMDC) and other peripheral immune cells, such as neutrophils,
lymphocytes, and regulatory T (Treg) cells can arise into the hypothalamic parenchyma
in a time-dependent manner, directly affecting glial functions [12,20,21]. To avoid further
metabolic complications, hypothalamic neuronal and non-neuronal cells, along with pe-
ripheral immune cells, should act together in an orchestrated mode beginning with the
earliest phase of the inflammatory response.
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The molecular mechanisms underlying microglial immune and metabolic interactions
with other cell types under high-fat diet (HFD)-induced hypothalamic inflammation still
require a more detailed exploration [22]. Recent data unveiling microglial diversity and
signatures throughout the brain have contributed to the development of novel state-of-
the-art approaches in experimental studies, which can be valuable for this field in the
coming years.

In this review, we explore novel findings of hypothalamic microglial diversity from
rodents and humans. We examine the subtypes of microglia that may be involved in
HFD-induced hypothalamic inflammation and investigate how these cells interact with
astrocytes upon high-fat feeding. Beyond that, we discuss which models can be useful
to get the most reliable data when studying distinct subsets of microglia, myeloid cells,
and border-associated macrophages (BAMs). Last, we investigate novel transcriptomic
data already published to clarify how the hypothalamic microglia signature changes under
saturated fat consumption.

2. Microglial Heterogeneity in the Hypothalamus

Microglia were identified by Pío del Río-Hortega in 1919, but only in the last two
decades has the interest in these cells grown exponentially, with the discovery of their
unique origin in the yolk sac and motile capacity [23,24]. Since their identification, mi-
croglia have been studied as a unique macrophage-like cell type in the central nervous
system (CNS), able to quickly react to a wide range of stimuli by switching their phe-
notype activation between M1 and M2 subtypes [25,26]. According to this past view,
microglia represent a naïve cell type that could equally react to any stimuli by acquiring a
predetermined phenotype.

Most recently, advances in genetic tools have been developed and extensively em-
ployed in experimental research, enabling a deeper understanding of microglial diversity.
Stratoulias et al. [27] recently proposed a new classification, in which microglia constitute
a heterogeneous cell group, and each subtype has distinct properties and physiological
functions, reacting differently to stimuli. This new view is based on the regional steady-
state heterogeneity of microglia and their broad gene marker diversity. Curiously, from
six putative microglial subtypes with unique specializations presented by these authors,
the only one found in the hypothalamic area is dark microglia (DM). Despite their clas-
sification in subtypes, it is important to highlight the existence of many other types of
microglia showing distinct features and functions in the hypothalamic area, which were
not considered, or at least did not show up, in their categorization.

DM are also found in the hippocampus, cerebral cortex, and amygdala [28]. These cells
can only be visualized through high-spatial-resolution transmission electron microscopy
and display markers of oxidative stress, such as a condensed, electron-dense cytoplasm and
nucleoplasm, dilatation of the Golgi apparatus and endoplasmic reticulum, mitochondrial
alteration, and a partial to complete loss of the heterochromatin pattern. Functionally, DM
are very active and show extremely thin processes, which allow them to make contact with
synaptic elements [28]. Despite being rarely observed in healthy young adult mice, DM are
widespread upon chronic stress, ageing, in CX3C chemokine receptor 1 (CX3CR1)-knockout
(KO) mice, and in Alzheimer’s disease pathology (APP/PS1 model) [27].

It remains unknown through which mechanisms DM are involved in the central
inflammatory response, but it is reasonable to speculate that DM functions, similarly to
other microglial subtypes, are influenced by peripheral signals. Savage et al. [29] showed
that 24 h after an acute systemic injection of lipopolysaccharide (LPS), there are alterations
in the inflammatory profile and in the microglial ultrastructure in the hippocampus, with
no direct impact on DM. Curiously, DM are largely found in C-C chemokine receptor
type 2 (CCR2-KO) mice, which present impaired recruitment of peripheral monocytes
to the brain [30]. This finding is particularly interesting because upon prolonged HFD
consumption, these peripheral cells are recruited to the hypothalamic parenchyma, as
previously mentioned, similarly to what happens in many types of acute CNS injury [21].
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Since their first description in 2016 [28], studies have described several DM features
in rodents [31–36] and humans [37]. However, none of these studies have focused on DM
roles specifically in the hypothalamus. Advances in this subject remain necessary to clarify
how DM crosstalk with other microglia under hypothalamic inflammation, whether DM
are involved in this recruitment of immune cells to the brain, and which peripheral stimuli
can affect hypothalamic DM functions.

Microglia simultaneously express several hallmarks, such as Iba1, Cx3cr1, P2ry12,
Tmem119, Trem2, Cd11b, Hexb, Csf1r, Itgam, and Siglec, among others [38–43]. However,
there is no unique expression pattern of these transcripts in these cells, that is, it varies
according to the pathological condition, age, sex, species, and brain area [27]. Particularly
in mice, Valdearcos et al. [20] recently showed through immunofluorescence assays that
the microglial signature varies according to hypothalamic nuclei and the dietary fat con-
tent. Thus, at least in mice, some CX3CR1+ cells in the arcuate nucleus (ARC) overlap
with Tmem119+ or P2ry12+ cells, while other CX3CR1+ cells do not. When gliosis occurs
upon consuming a HFD, ionized calcium binding adaptor molecule 1 (Iba1+) cells become
widespread in the ME, ARC, and ventromedial nucleus (VMH), while Tmem119+ and
P2ry12+ cells remain more restricted to the VMH when compared with the brain slices
obtained from mice fed on chow diet. Some studies involving DM also show this hetero-
geneity, because these cells barely express Iba1, Cx3cr1, and P2ry12, but robustly express
cluster of differentiation molecule 11B (Cd11b), which is involved in their synaptic pruning
role [44,45].

These data indicate that some hypothalamic microglial subsets may have anti-
inflammatory functions, depending on the transcriptomic profile of each subtype and
their status (steady-state or reactive). It is plausible to consider that it may also happen
with other hallmarks, which explains why using only one surface marker for microglial
staining, choosing a single cell line for ex vivo experiments, or even examining a single
transgenic mouse model for manipulating microglia implicates a methodology bias.

Disease-associated microglia (DAM) are another subset of CNS resident macrophages
that have been recently identified in experimental models of neurodegeneration and de-
myelination [46]. These cells are characterized by the expression of several genes, such
as Apoe, Clec7a, Cst7, and Spp1. They are mainly found at sites of neurodegeneration
and might play a protective role [47]. Interestingly, DAM hallmarks are also observed in
human Alzheimer’s disease post-mortem brains [46,48]. Triggering receptor expressed on
myeloid cells-2 (TREM2) is also highly expressed by DAM; the activation of its intracellular
signaling is essential for the transition of homeostatic microglia to the DAM state [49]. Both
Toll-like receptor 4 (TLR4) and TREM2 can recognize different pathogen-associated molec-
ular patterns [50,51] and other ligands, such as gram-negative bacteria [52], lipids [53],
apolipoproteins (ApoE, ApoJ, and ApoA) [54–56], and nucleic acids released by apoptotic
cells [57]. Because TREM2 and TLR4 share some ligands, it is not easy to identify which
signaling pathway is activated through each receptor by these stimuli. However, exper-
iments regarding TREM2 inhibition in combination with TLR4 stimulation by LPS have
started to clarify the involvement of each receptor in neuro-inflammation [58].

An important characteristic observed in HFD-induced hypothalamic inflammation
is the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-
κB) [14,59–62]. Conversely, inhibition of IKKβ/NF-κB signaling in microglia expressing
CX3CR1 ameliorates DIO and hypothalamic inflammation [20]. In the CNS, TREM2 is
widely expressed in microglia [63,64], where it acts by negatively regulating the activation
of NF-κB [65]. In BV2 cell culture, TREM2 overexpression inhibits PI3K/AKT and NF-κB
signaling pathways [66,67]. Interestingly, LPS reduces the expression of TREM2 in these
cells through the activation of JNK and NF-κB, resulting in a vicious cycle [66]. Recently,
Zhang et al. [68] treated BV2 cells with curcumin, a bioactive compound isolated from
Curcuma longa with anti-inflammatory and antioxidant activities, and LPS; they observed
reduced microglial activation via TLR4/NF-κB when compared with microglial cells treated
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only with LPS, which occurred in parallel to the increased TREM2 expression, reinforcing
the potential anti-inflammatory role of this receptor.

Microglial dynamics and density vary between brain areas and LPS doses during
infection-induced inflammation [69]. In addition, considering that both LPS and SFAs can
activate TLR4 and TREM2 intracellular signaling pathways, it is reasonable to speculate
that a HFD could also have some effect on these microglial characteristics, especially in the
hypothalamus. Yet, whether continued activation of TREM2+ cells under prolonged HFD-
induced inflammation is implicated in the development of neurodegenerative diseases
remains unexplored. The broad diversity of hypothalamic microglia at steady state and
during the HFD-induced inflammatory response is shown in Figure 1.
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Figure 1. Microglial heterogeneity in the hypothalamus of rodents fed on chow or a high-fat diet 
(HFD). At steady state, microglia can be targeted by several hallmarks and are widely distributed 
in the hypothalamic parenchyma. Dark microglia (DM) are only visualized by transmission elec-
tron microscopy and are close to blood vessels and neuronal synapses. Hallmarks of DM are well 
known in hippocampus, but remains barely explored in the hypothalamus. In HFD-induced hypo-
thalamic inflammation, reactive gliosis is observed and microglia change their spatial distribution 
and molecular signature. Microglia cells react by increasing the release of pro-inflammatory cyto-
kines, reactive oxygen species (ROS), and growth factors. In the ARC, ME, VMH, there is a huge 
increase in Iba1+ cells (wide arrow) and a decrease in P2ry12+ and Tmem119+ cells, which become 
more restricted to the VMH (thinner arrows when compared to their arrows in the ARC). How 
other microglial hallmarks (e.g., Trem2, Cd11b, Hexb, Csfr1, among others) behave under HFD have 
not been studied yet in this inflammatory process. The role of DM and changes in their hallmarks 
in this specific inflammatory response have still not been explored. A leaky blood–brain barrier 

Figure 1. Microglial heterogeneity in the hypothalamus of rodents fed on chow or a high-fat diet (HFD). At steady state, mi-
croglia can be targeted by several hallmarks and are widely distributed in the hypothalamic parenchyma. Dark microglia (DM)
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are only visualized by transmission electron microscopy and are close to blood vessels and neuronal synapses. Hallmarks of
DM are well known in hippocampus, but remains barely explored in the hypothalamus. In HFD-induced hypothalamic
inflammation, reactive gliosis is observed and microglia change their spatial distribution and molecular signature. Microglia
cells react by increasing the release of pro-inflammatory cytokines, reactive oxygen species (ROS), and growth factors. In
the ARC, ME, VMH, there is a huge increase in Iba1+ cells (wide arrow) and a decrease in P2ry12+ and Tmem119+ cells,
which become more restricted to the VMH (thinner arrows when compared to their arrows in the ARC). How other
microglial hallmarks (e.g., Trem2, Cd11b, Hexb, Csfr1, among others) behave under HFD have not been studied yet in this
inflammatory process. The role of DM and changes in their hallmarks in this specific inflammatory response have still
not been explored. A leaky blood–brain barrier (BBB) allows free fatty acids (FFAs) accumulation in the hypothalamic
parenchyma, boosting inflammation. If HFD persists for some weeks, peripheral myeloid cells, such as CD169+ and CCR2+
cells, are chemoattracted and infiltrate the hypothalamic parenchyma, but their functions in the HFD-induced inflammation
need to be further studied. Abbreviations: ARC, arcuate nucleus of the hypothalamus; VMH, ventromedial nucleus of the
hypothalamus; ME, median eminence.

Most transcriptomic data currently available about microglia heterogeneity is from
studies with rodents [39,70–72]. By contrast, human microglial diversity has only begun
to be comprehended in the last few years. Masuda et al. [39] recently identified several
clusters of microglia in healthy human brains and in the brains of patients with multi-
ple sclerosis, but these authors evaluated only the cortex and temporal lobe. Similarly,
Sankowski et al. [73] identified several microglial subsets in the human brain during home-
ostasis and some diseases through the combination of two high-dimensional technologies,
single-cell RNA sequencing (scRNA-seq) and multiplexed mass cytometry (CyTOF), al-
though the hypothalamus was not included in the analysis. Likewise, Böttcher et al. [74]
applied multiplexed CyTOF to detect microglia regional heterogeneity in human post-
mortem samples from the subventricular zone, thalamus, cerebellum, temporal lobe, and
frontal lobe.

Unfortunately, there is still a lack of data from hypothalamic human microglia in the
hypothalamus because there are several methodological difficulties in collecting human
brain samples and keeping them cryopreserved without damage. These issues have limited
large-scale studies. In addition, while recent advances in transcriptomics, multiplex protein
expression analysis, and methods to detect chromatin structure have revealed many facets
and details about microglia in rodents and humans, the correlation between the genome-
related information and their features remains to be explored.

3. Hypothalamic Microglia–Astrocyte Crosstalk

CNS homeostasis, development, injury, and repair are precisely controlled by appro-
priate cell–cell communication. Nevertheless, studies investigating microglial functions
have been focused on microglia isolation, neglecting that physiological actions of these cells
are part of a complex network involving other cell types. Therefore, new tools have been
widely applied in experimental studies, allowing the determination of an infinite number
of intercellular interactions by connecting ligands to target genes across cell types and
tissues [75–77]. Unsurprisingly, the inflammatory process in the hypothalamus, observed
in obesity, drives multiple harmful outcomes that can affect the interactions between mi-
croglia and other cell types [78,79]. As astrocytes and microglia play active roles from the
onset of the hypothalamic inflammatory response, here we focus on their crosstalk under
this process.

While microglia comprise only 5% to 10% of the total number of CNS cells in humans
and rodents [80], astrocytes are the largest cell component of the brain, comprising at least
50% of all CNS cells [81]. Astrocytes make intimate contacts with synapses, blood vessels,
and other glial cells, thus controlling synaptic transmission, BBB structure and function,
and sensing nutrients and hormones in the blood [82,83]. They are also involved in the
regulation of lipid metabolism and storage [84] and some studies have been indicating that
astrocytes can also express some hormone receptors, such as leptin, insulin, ghrelin, and
glucocorticoid receptors [85–88].
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Coordinated crosstalk between glial cells is a determinant in homeostatic and patholog-
ical conditions [89]. Microglia and astrocytes interact via contact-dependent and secreted
factors, such as growth factors, neurotransmitters, cytokines, chemokines, innate-immunity
mediators, mitogenic factors, ROS, and metabolic mediators such as glutamate, which
can be used for cell metabolism and may also mediate tissue changes [90]. These glial
cells play a crucial role in synapse development and function in the healthy CNS, forming
the ‘quad-partite’ synapse [91], which is essential for neuro-immune communication [90],
critically contributing to brain homeostasis [92].

Both microglia and astrocytes quickly become activated upon an injury or any in-
flammatory stimulus [93]. Reactive microglia release several pro-inflammatory cytokines
that induce astrocytic activation [75,93]. Likewise, HFD-induced microglial activation
results in astrocytic proliferation, morphological changes, and increased production of
cytokines and growth factors [61,84,94–96]. Classically, these morphologic and functional
adaptations by glial cells under inflammation are known as gliosis [5,97] and are usually
described in rodents fed on HFD for weeks [20,98], or even after very short periods of
high-fat feeding [15].

In the hypothalamus, all these astrocytic characteristics are essential for controlling
energy homeostasis. NF-κB signaling inhibition by IKKβ deletion in astrocytes (GFAP-Cre
mice) reduces HFD-induced hypothalamic inflammation and reactive astrogliosis and
attenuates DIO and glucose intolerance [14].

Similarly, knockdown of TGF-β1—which is predominantly synthesized by astrocytes,
specifically in the ARC of HFD-fed mice—reduces TGF-β/SMAD and NF-κB signaling
pathways and, consequently, also attenuates the inflammation [99]. Interestingly, this ap-
proach of hypothalamic TGF-β1 knockdown presents many metabolic benefits, preventing
obesity development even under HFD. Countless microglial functions depend on TGF-β1,
including their maturation and activation, both in homeostatic conditions and in response
to any inflammatory stimuli [100,101]. In addition, the accurate functioning of the TGF-β1
signaling pathway is crucial to prevent excessive microglia activation [102,103].

In astrocyte cell culture, treatment with palmitic acid, an SFA largely found in HFD,
evokes lipid droplet accumulation [95], culminating in an inflammatory response, charac-
terized by an increased production of chemokines, such as chemokine C-C motif ligand-2
(CCL2), also called monocyte chemoattractant protein-1 (MCP-1). Curiously, the main
chemotactic mechanism described in the hypothalamic inflammation is mediated by
fractalkine (CX3CL1), a chemokine produced by hypothalamic neurons that acts through
the fractalkine receptor (CX3CR1) [104]. However, another possible chemokine involved in
the peripheral recruitment of immune cells to the hypothalamus is MCP-1 [105]. Peripheral
immune CCR2+ and CD169+ cells arise in the hypothalamic parenchyma upon chronic
periods of HFD [12,20]. CCR2+ cells of obese mice can enter into their white adipose tissue,
and this chemo-attraction is mediated by the MCP-1/CCR2 axis [106].

In the CNS, the MCP-1/CCR2 axis has also been presented as an important chemotac-
tic mechanism involved in the recruitment of peripheral immune cells to the paraventricu-
lar nucleus of the hypothalamus (PVH) upon inflammatory stimuli [107]. These authors
showed that blockage of this recruitment by the peripheral administration of a CCR2 an-
tagonist results in a reduction in local inflammation, suggesting that the MCP-1/CCR2 axis
may also be involved in the chemotaxis of peripheral myeloid cells seen in HFD-induced
hypothalamic inflammation. Curiously, according to the scRNA-seq data from ARC and
ME published by Campbell et al. [108], MCP-1 expression in these areas is mainly observed
in microglia. Hence, upon high-fat feeding, neurons could be the main cells involved in
fractalkine production, while astrocytes and microglia are responsible for CCL2 (MCP-1)
release. Based on these data, activated astrocytes not only directly modulate microglial
activity, through the increased synthesis of pro-inflammatory cytokines and growth fac-
tors, but also mediate and stimulate the recruitment of peripheral macrophages to the
hypothalamus, thus contributing to sustained microglial activation.
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A leaky BBB in the hypothalamic area has been observed in the HFD-induced inflam-
matory response [109]. The mechanism underlying this BBB disruption may be due to
various factors, such as altered function/structure of non-fenestrated brain endothelial
cells, tanycytes, pericytes, neurons, or glia [11]. These cells constitute the neurovascular
unit and confer integrity to the BBB under physiological conditions [110]. However, in
response to some inflammatory stimuli, astrocytes and tanycytes increase the secretion
of vascular endothelial growth factor (VEGF), increasing BBB permeability [110,111]. It
is not well established whether this mechanism is crucial for the entrance of FFAs and
peripheral cells into the hypothalamic parenchyma upon chronic HFD intake. Therefore,
Lee et al. [12] showed that PVMs in the hypothalamic area produce inducible nitric oxide
synthase (iNOS) abundantly under high-fat feeding, resulting in disruption of BBB integrity
and in the spread of monocyte-derived macrophages in the ARC. As expected, specific
hypothalamic macrophage iNOS inhibition completely abrogates astrocytic lipid droplets
and macrophage accumulation and activation in the ARC of obese mice.

Another possible mechanism by which microglia and astrocytes contribute to the leaky
BBB – observed in several inflammatory diseases – is the downregulation of tight-junction
proteins, namely claudin-5 (CLDN5), occludin, and zonula occludens-1, in activated glial
cells [112,113]. Interestingly, under systemic inflammation, vessel-associated microglia
are able to phagocytize astrocytic end-feet, an action that damages BBB function [114].
However, how hypothalamic microglial and astrocytic crosstalk impairs BBB integrity
under HFD-induced inflammation has been minimally explored.

Unsurprising, upon hypothalamic inflammation, microglial activity can also modulate
astrocytic functions. Studies using co-culture of microglia and astrocytes have shown that
microglial production of pro-inflammatory cytokines increases astrocytic glucose uptake,
thus reducing intercellular glucose trafficking [115] and inhibiting astrocytic gap junc-
tions [116,117]. Phenotypic alterations observed both in microglia and astrocytes at the
onset of the inflammatory response are mediated by metabolic changes, switching from
mitochondrial oxidative phosphorylation to glycolysis [118]. An important mechanism
involved in HFD-induced hypothalamic inflammation in rodents comprises the increased
levels of microglial UCP2 levels after HFD consumption, which drives a disruption in
microglial mitochondrial dynamics [119]. These authors found that UCP2 deletion specif-
ically in microglia reduced the number of GFAP+ cells in the ARC of mice fed a HFD,
suggesting that mitochondrial dynamics in microglia regulate astrogliosis in HFD-induced
hypothalamic inflammation.

The schematic representation of the crosstalk between microglia and astrocytes under
homeostasis and HFD-induced hypothalamic inflammation is shown in Figure 2.

Over the past decade, accumulating evidence has demonstrated that astrocytes also
display high heterogeneity. These cells present many subpopulations spread through-
out the CNS, which can vary depending on age, species, and sex, and astrocytic state
(surveillance or reactive) [120–122]. Given their complexity, a consensus statement about
reactive astrocytes [123] recently recommended that astrocyte phenotypes should be de-
fined by a combination of molecular markers and functional readouts. There is evidence
that heterogeneity of astrocytes and microglial hallmarks expression can be bi-directionally
controlled [124]. Although understanding how different glial subpopulations regulate their
local niche under HFD-induced hypothalamic inflammation still need to be investigated.
Future studies regarding single-cell transcriptomic heterogeneity of hypothalamic astro-
cytes and microglia will elucidate which of their sub-populations are paired, their features,
and how their hallmarks change upon HFD-induced reactivity.
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Figure 2. Microglia and astrocyte crosstalk in the hypothalamus. In homeostatic conditions: (1) 
microglia and astrocytes sense nutrients (amino acids, glucose, and free fatty acids [FFAs], among 
others) and hormones (e.g., leptin) that enter the hypothalamic parenchyma and react to those 
environmental changes. Astrocytes regulate lipid metabolism and storage and trigger metabolic 
changes due to hormone binding to their surface receptors (e.g., leptin and glucose receptors). (2) 
UCP2 expression in microglia is tightly controlled preserving their mitochondrial function while 
PVMs release normal levels of iNOS in response to FFAs concentration in blood vessels. (3) Micro-
glia and astrocytes interact via contact-dependent and secreted factors and (4) control synapse 
development and function. Under high-fat feeding: (5) Glial cells quickly sense environmental 
changes and become reactive, releasing several pro-inflammatory cytokines and growth factors 
(e.g., VEGF and TGF-β1), and increasing reactive oxygen species (ROS) production. Astrocytes 
store the excessive FFAs in lipid droplets while microglial UCP2 increases, promoting astrogliosis 
and mitochondrial dysfunction in microglia. (6) PVMs surrounding blood vessels increase the 
release of iNOS promoting leaking BBB and facilitating the entrance of FFAs into the hypotha-
lamic parenchyma, (7) which can stimulate IKKβ/NF-κB signaling by activating TLR4 and TREM2 
in microglial cells. (8) Glial cells and neurons increase the synthesis of chemokines (e.g., MCP-1 
and fractalkine), leading to the recruitment of peripheral myeloid cells to the central nervous sys-
tem. If the inflammatory stimulus persists, the astrocytic control of synaptic functions become 
impaired, resulting in neuronal dysfunction. Abbreviations: 3V, third ventricle; MBH, mediobasal 
hypothalamus. 

4. Advances in Experimental Manipulation of Microglia 
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specific subtypes of microglia. The hypothalamus has many microglial subpopulations 
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Figure 2. Microglia and astrocyte crosstalk in the hypothalamus. In homeostatic conditions: (1) microglia and astrocytes
sense nutrients (amino acids, glucose, and free fatty acids [FFAs], among others) and hormones (e.g., leptin) that enter the
hypothalamic parenchyma and react to those environmental changes. Astrocytes regulate lipid metabolism and storage and
trigger metabolic changes due to hormone binding to their surface receptors (e.g., leptin and glucose receptors). (2) UCP2
expression in microglia is tightly controlled preserving their mitochondrial function while PVMs release normal levels of
iNOS in response to FFAs concentration in blood vessels. (3) Microglia and astrocytes interact via contact-dependent and
secreted factors and (4) control synapse development and function. Under high-fat feeding: (5) Glial cells quickly sense
environmental changes and become reactive, releasing several pro-inflammatory cytokines and growth factors (e.g., VEGF
and TGF-β1), and increasing reactive oxygen species (ROS) production. Astrocytes store the excessive FFAs in lipid droplets
while microglial UCP2 increases, promoting astrogliosis and mitochondrial dysfunction in microglia. (6) PVMs surrounding
blood vessels increase the release of iNOS promoting leaking BBB and facilitating the entrance of FFAs into the hypothalamic
parenchyma, (7) which can stimulate IKKβ/NF-κB signaling by activating TLR4 and TREM2 in microglial cells. (8) Glial
cells and neurons increase the synthesis of chemokines (e.g., MCP-1 and fractalkine), leading to the recruitment of peripheral
myeloid cells to the central nervous system. If the inflammatory stimulus persists, the astrocytic control of synaptic functions
become impaired, resulting in neuronal dysfunction. Abbreviations: 3V, third ventricle; MBH, mediobasal hypothalamus.

4. Advances in Experimental Manipulation of Microglia

The identification of the microglial transcriptomic signature and heterogeneity has
given rise to the development of new experimental models for manipulating or labelling
specific subtypes of microglia. The hypothalamus has many microglial subpopulations
that distinctly react to hormones and nutrients from the diet. Thus, the availability of
these new models can provide a significant advance to comprehend the involvement
of each microglial subtype in the HFD-induced hypothalamic inflammation and other
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inflammatory or neurodegenerative diseases. To achieve that, researchers should be able
to choose the best model to answer their specific questions. In this topic, we discuss the
newest approaches that have been developed.

4.1. Ex Vivo Models

To understand how microglia react to different stimuli, most studies conducted in the
past decades have employed ex vivo strategies. A large variety of mouse microglia cell
lines have been generated over the years, but the most used has been the murine microglial
BV2 cell line. These cells were originally obtained and immortalized from the cerebral
cortex of neonatal mice [125]. Other similar cell lines have been obtained from the whole
brain, cerebellum, or cortex of adult/embryo rodents and have been less applied in basic
research and barely cited in the literature compared with BV2 [126].

Most studies investigating microglial hypothalamic features using ex vivo methods
have been conducted with BV2 cells [127–129]. It is well known that there are many
phenotypic and genomic differences between microglia from the cortex and from the
hypothalamus or microglia from a neonatal mouse compared to an adult or embryo – not
to mention the fact that these cells were immortalized 30 years ago, and have very likely
already suffered several transcriptomic modifications since that time. Another concern that
must be considered when interpreting data is whether these cells are at the surveillance
or reactive state when cultivated with no other neuronal or glial cells. Many questions
and worries emerged when microglia stopped being seen as a simple macrophage of
the CNS. Hence, to reduce any possible bias, published data and ongoing experiments
with BV2 cells should be carefully planned, analyzed, and always accompanied by other
in vivo strategies.

The development of new transgenic mouse models that express a fluorescent protein
driven by microglial hallmarks promises an appealing alternative for researchers interested
in cultured microglia. Magnetic-activated cell sorting (MACS) [130] and fluorescence-
activated cell sorting (FACS) [131,132] using these fluorescent reporter mice or even
microglia-specific surface markers allow the physical isolation of various subsets of mi-
croglia, which can be obtained from primary cultures or co-cultures with other cells. Using
these approaches, the brain area of interest can be precisely harvested after a specific
dietary or treatment protocol, and the researcher can freely choose the age and the sex
of the rodents used in the experiments. These strategies render the collected data much
more reliable when compared to studies using only BV2 cells. Although, when choosing
cell sorter techniques researchers should keep in mind that any steps of protocols can
trigger some reaction in microglia morphology or gene expression and even impair the cell
viability (Figure 3).

Grassivaro et al. [133] recently applied FACS to isolate CNS resident microglia and
peripheral myeloid cells from some models of neuroinflammation, such as experimental
autoimmune encephalomyelitis (EAE). These authors collected samples during embryonic
and postnatal periods and subsequently targeted cells from the brain and liver through
labelling microglia and peripheral myeloid cells with fluorescent antibodies. By this
approach, they observed extraordinary differences and transcriptomic details between
those cells. Unfortunately, there is still a lack of data obtained through FACS or MACS for
isolating microglia from the hypothalamus of experimental models of obesity.
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4.2. In Vivo Models

Most studies need to evaluate microglial functions in vivo. Conveniently, at least in
rodents, functional contributions of specific cell populations can be explored using Cre
recombinase–mediated mutagenesis. The identification and cloning of CX3CR1 triggered
the development of new tools for studying microglia in vivo [134–136]. Studies regarding
the mechanisms through microglia-mediated HFD-induced hypothalamic inflammation
have been mostly conducted with a transgenic mouse known as CX3CR1-Cre, which
expresses Cre recombinase under the direction of the Cx3cr1 promoter in the mononuclear
phagocyte system, and CX3CR1EGFP knock-in/knock-out reporter mice, which expresses
a green fluorescent protein (EGFP) in monocytes, dendritic cells, natural killer cells, and
brain microglia under the control of the same locus [20,137]. Consequently, all mechanisms
regarding microglial reactivity and gliosis in those research articles can only be interpreted
as adaptations and features of CX3CR1+ microglia. Thus, when researchers activate/inhibit
microglia in CX3CR1-Cre mice through DREADD, optogenetic, or other Cre recombinase-
targeted manipulation, they can only interpret the obtained data in the context of the
manipulation of CX3CR1+ microglial, and not to other cells.

CX3XR1-CreERT2 is another Cx3xr1-driven model widely used in experimental re-
search since it expresses Cre recombinase in a tamoxifen-inducible manner [138–140]. This
tamoxifen-inducible model allows the temporal manipulation of microglia. Therefore, Van
Hove et al. [141] have recently warned that the use of this strain is not indicated for all
types of microglia-related investigations, such as fate-mapping studies, once it exhibits
considerable leakiness in the absence of tamoxifen.

For many years, Cx3cr1-driven lines were largely employed in basic research – and
they still are. However, they are haploinsufficient for Cx3cr1, which means that EGFP or Cre
coding regions have been designed to replace the endogenous Cx3cr1 locus. Some studies
suggest that this haploinsufficiency could affect microglial functions, such as synaptic
plasticity [142–144]. Given this background, all Cx3cr1-drive lines should be used with
this limitation in mind. It is fortunate that new transgenic mouse models for genetic
labelling and manipulating other microglial subtypes, myeloid cells and border-associated
macrophages (BAMs) found in the hypothalamus and in other brain areas have been
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generated in recent years, allowing a deep investigation of new microglial phenotypes and
functions (Table 1).

Table 1. Novel in vivo experimental models for studying various subtypes of microglia, myeloid cells, and BAMS.

Manipulating
Microglia

Labeling
Microglia

Depleting
Microglia

Targeting
Myeloid Cells

Targeting
Microglia and PVMs

CX3CR1-Cre CX3CR1EGFP Csf1r-FIRE∆/∆ [145] LysMEGFP Sall1ncre:Cx3cr1ccre [146]
CX3CR1-CreERT2 Tmem119EGFP [147] LysM-Cre Lyve1ncre: Cx3cr1ccre [146]

P2ry12-CreERT2 [148] Tmem119TdTomato [149]
Tmem119-CreERT2 [147] HexbTdTomato [150]

Hexb-CreERT2 [150]

Masuda et al. [150] recently developed another of these new microglia gene-targeting
models. For this endeavor, the authors initially analyzed microglia and CNS-associated
macrophage (CAM) signatures obtained from scRNA-seq, during homeostasis and disease,
and identified beta-hexosaminidase subunit beta (Hexb) as a stably expressed microglia
core gene. Based on that, they generated HexbTdTomato and Hexb-CreERT2 mouse strains,
which express a red fluorescent protein (TdTomato) or Cre recombinase protein under
the control of the Hexb locus upon tamoxifen administration, respectively. Although this
research article was published a few months ago, there is no data available in the literature
about the participation of microglial cells Hexb+ in hypothalamic inflammation. Curiously,
Hexb is highly expressed in the ARC and ME [108], but in these areas, it is not tightly
restricted to microglial when compared with other markers that can also be manipulated
through transgenic mouse strains (Cx3cr1, P2ry12, or Tmem119) (Figure 4). Nevertheless,
future studies should evaluate whether these Hexb+ microglia are important in some stage
of HFD-induced hypothalamic inflammation and characterize their interactions with other
glial and non-glial cells in the hypothalamus.

Transmembrane protein 119 (Tmem119) and purinergic receptor P2Y12 (P2ry12) loci
have also been targets for the development of new mouse models (Table 1). Kaiser and
Feng [147] generated Tmem119EGFP mice and Tmem119-CreERT2 mice, which express EGFP
or CreERT2 under the control of the Tmem119 coding region, respectively. More recently,
Ruan et al. [149] generated another reporter mouse, Tmem119TdTomato, which expresses
TdTomato rather than EGFP in microglia. All these Tmem119-driven lines have been
validated and are now valuable tools to study specifically the role of Tmem119+ microglia
in health and disease. McKinsey et al. [148] recently published the new P2ry12-CreERT2

mouse line. As stated by the authors, they chose P2ry12 because it appeared to be the
most restricted to brain myeloid cells compared with other markers. Following the pattern,
this model expresses Cre protein recombinase under the control of the P2ry12 locus. They
also suggested that this model could be useful for studies about middle cerebral artery
occlusion–induced ischemic stroke as well as EAE.

As previously mentioned, Valdearcos et al. [20] identified that both Tmem119+ and
P2ry12+ cells react differently to Cx3cr1+ or Iba1+ cells in the ARC and the VMH under
prolonged HFD intake. Thus, these novel Tmem119- and P2ry12-driven strains can also
be promising to comprehend the mechanisms through which these specific microglial
subtypes react to SFAs from the diet in this specific inflammatory condition.
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Beyond Cre-driven and fluorescent reporter mouse lines, many researchers have
chosen to deplete microglia to evaluate their role in some pathologic condition. There are
many microglial depletion strategies, which were recently remarkably reviewed by Miron
and Priller [151], including the use of liposomes, global knockout of genes required for
microglial development or survival, or even transgenic or pharmacological induction of
microglial death. Unfortunately, all these methods have some bias and do not allow the
depletion of only microglial cells, because BAMs and monocytes may also be targeted. The
use of some knockout mice, such as the knockout for colony stimulating factor 1 receptor
(Csfr1-KO), is also not a good choice, because these mice lack all CNS macrophages; they
show serious brain abnormalities and usually die within weeks after birth [152].

Due this dilemma, a novel model has been developed in which microglia are depleted,
but BAMs are widely preserved after the genomic deletion of a super enhancer in the colony
stimulating factor 1 receptor (Csf1r) coding region (fms-intronic regulatory element; Csf1r-
FIRE∆/∆) [145]. A few studies have employed microglial depletion to study microglial
immune and metabolic functions in the hypothalamus [137,153], because depletion disrupts
immune balance and energy homeostasis [154]. Fortunately, Csf1r is also expressed by
microglia from the ARC and ME [108] (Figure 4). CSF1R inhibition through a pharmacologic
inhibitor (PLX5622) can improve metabolic outcomes in middle-aged female mice [155].
Thus, investigating the role of Csfr1+ microglial cells in the hypothalamic inflammation,
through this Csf1r-FIRE∆/∆ mouse model, could also provide new, important information
regarding this subtype of microglia.

As previously described, PVMs are also involved in HFD-induced hypothalamic
inflammation [12]. This study was conducted with transgenic mouse models targeting
lysozyme M (LysM)-expressing myeloid cells. Although many experimental models have
been developed in the past years, there are still some methodological challenges with
regard to manipulating specifically microglia or other CAMs/BAMs, such as PVMs. Even
the above-mentioned transgenic lines used to study several microglial subsets (Table 1)
have the mutation driven by a locus common to microglia and PVMs, at least in the ARC
and ME [108] (Figure 4).

Some studies using scRNA-seq have already analyzed these cells separately [71],
through dissection of leptomeninges, the perivascular space and parenchyma, and the
choroid plexus; however, experimental manipulation of microglia and other CAMs/BAMs
independently remains a challenge. Fortunately, Kim et al. [146] have just developed a
binary transgenic system involving complementation-competent NCre and CCre fragments.
Their expression is driven by two distinct promoters: Sall1ncre:Cx3cr1ccre, which specifically
targets parenchymal microglia, and Lyve1ncre: Cx3cr1ccre, which allows the ability to target
various CAMs throughout the brain. These new models are very promising and were
developed using CRISPR/Cas9 technology. According to the authors, a CCre cassette was
inserted after the Cx3cr1 gene, and Ncre partner transgenes were inserted into Sall1 and
Lyve1 loci, respectively. In fact, Lyve1 is scarcely expressed by microglia, at least in the
ARC and ME [108] (Figure 4). Hence, both models may be useful to study separately the
functions of microglia and CAMs in HFD-induced inflammation, because the knowledge
about the role of each glial cell type in this specific condition still need to be better clarified.

5. Microglial Signature Changes Upon HFD-Induced Hypothalamic Inflammation

There are sufficient clues indicating that microglia present distinct activated signatures
under inflammatory conditions. Sousa et al. [72] performed scRNA-seq to investigate the
microglial profile in the brain of LPS-injected mice. They found that microglia isolated
from these mice exhibit a downregulation of their homeostatic signature together with an
upregulation of inflammatory genes. They obtained this data by excluding other CNS-
resident immune cells and peripheral cells in the analysis.

To explore deeply how HFD-induced inflammation affects microglial transcriptomics,
we have searched for transcriptomic data published from HFD-fed rodents at a single-cell
resolution. As already mentioned, Campbell et al. [108] performed Drop-seq profiling on
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the ARC and ME from mice across different feeding conditions, including 1-week HFD
(60% calories from fat). They found that microglia present high P2ry12 and low Mrc1 while
PVMs show low P2ry12 and high Mcr1. However, when comparing low fat diet–fed mice
with HFD-fed mice, they found the transcripts from these clusters downregulated, but they
did not describe which HFD-sensitive genes were modulated.

On the other hand, in an experimental model of prolonged high-fat feeding, C57BL/6J
male mice were fed a HFD (45% calories from fat) for 10 weeks, and their ARC was collected
for single-nucleus RNA-seq (snRNA-seq) [156]. After consuming a HFD for 10-weeks,
some genes were upregulated in the cluster of microglia (Nudt5, Gsk3a, Oxt, Lars2, and
Il17ra) while other genes (Sun1, Tmem173 and Anxa3) were downregulated (Figure 5).
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Figure 5. Transcriptomic signature changes in microglia (ramified cells) and perivascular
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Blue arrow indicates upregulation while red arrow indicates downregulation.

Some of them have also been described in obesity-related studies. Methylation in
Lars2, which is a mitochondrial gene, has been reported in an epigenome-wide association
study as a gene associated with increased body mass index and waist circumference [157].
The receptor for interleukin-17 (IL-17), known as Il17ra, is found in pro-opiomelanocortin
(POMC) and agouti-related peptide (AgRP) neurons in the hypothalamus and modulates
food intake after IL-17 binding, without affecting whole-body energy expenditure [158].

Although the ARC is the main nucleus involved in energy metabolism and food intake
control, functional impairments in neurons and glial cells from other hypothalamic nuclei
are also involved in DIO establishment [159,160]. Recently, Rossi et al. [161] identified in
the lateral hypothalamic area (LHA) thousands of genes altered upon prolonged HFD
intake. This research article highlighted only dynamic transcriptomic details in neurons;
thus, the authors did not deeply explore the transcription differences in microglia and other
myeloid cell lineages upon. However, the authors distinctively represent these cells by
using Cx3cr1 hallmark for microglia and Lys2 for myeloid cells, which was not considered
in data from ARC published by Deng et al. [156].

Interestingly, from all transcriptomic data obtained from the ARC–ME or LHA, re-
searchers can apply a bioinformatic analysis to better investigate how microglia and other



Int. J. Mol. Sci. 2021, 22, 2256 15 of 23

myeloid cells changes upon prolonged HFD. In the face of the recent and continuous devel-
opment of novel transcriptomic tools, such as scRNA-seq, snRNA-seq, and CyTOF, among
others, future studies should be conducted to better clarify the main changes in microglial
signature throughout the hypothalamus under different stages of high-fat feeding. For
accurate data interpretation, microglia and other CNS-associated macrophages should be
clustered and analyzed separately. The detailed identification of those cells will be valuable
to answer more precisely several outstanding questions.

6. Conclusions

Microglia were first recognized as macrophage-like cells from the CNS a century
ago, but for a long time their complexity was unknown. Luckily, the development of
assorted transcriptomic tools has boosted the knowledge about these cells in recent years.
Currently, it is well known that the hypothalamus presents several microglial subsets that
can be identified by their hallmarks: Iba1, Cx3Cr1, Tmem119, P2ry12, Trem2, Hexb, and
Csfr1, among many other. DM are also found in the hypothalamic area, but their roles
in HFD-induced inflammation has been poorly investigated. In fact, microglia play a
pivotal role in different stages of the hypothalamic inflammatory process, but how each
microglial subtype reacts to SFAs from the diet, communicates with other cells, or even
leads to the recruitment of peripheral myeloid cells remains to be explored. Beyond
microglia, astrocytes also display high heterogeneity throughout the CNS, and in the
hypothalamus, its diversity and its crosstalk with microglia require to be better elucidated.
Novel experimental models for manipulating or labelling microglia have been developed
and will be useful to answer that question in forthcoming research. On the other hand, the
hypothalamic microglial signature under HFD-induced hypothalamic inflammation should
still be further studied using different transcriptomic approaches. Together, these advances
will allow researchers to take full advantage of crucial insights we have gained about
microglial heterogeneity (provided by transcriptomic data) and to exploit this knowledge
to determine the mechanisms by which microglia are involved in the inflammatory process
observed in obesity.
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ARC Arcuate nucleus of the hypothalamus
BAMs Border-associated macrophages
BBB Blood–brain barrier
BMDC Bone-marrow-derived cells
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CAMs CNS-associated macrophages
CCL2 Chemokine C-C motif ligand-2
CCR2 C-C chemokine receptor type 2
CD11b Cluster of differentiation molecule 11B
CD169 Sialoadhesin
CNS Central nervous system
CSF1R Colony stimulating factor 1 receptor
CX3CR1 CX3C chemokine receptor 1
CyTOF Mass cytometry
DAM Disease-associated microglia
DIO Diet-induced obesity
DM Dark microglia
EAE Experimental autoimmune encephalomyelitis
FACS Fluorescence-activated cell sorting
FFAs Free fatty acids
GFAP Glial fibrillary acidic protein
Hexb Beta-hexosaminidase subunit beta
HFD High-fat diet
IBA1 Ionized calcium binding adaptor molecule 1
iNOS Inducible nitric oxide synthase
ITGAM Integrin subunit alpha M
LHA Lateral hypothalamic area
LPS Lipopolysaccharide
MACS Magnetic-activated cell sorting
MCP-1 Monocyte chemoattractant protein-1
ME Median eminence
P2ry12 Purinergic receptor P2Y12
PVH Paraventricular nucleus of the hypothalamus
PVMs Perivascular macrophages
ROS Reactive oxygen species
scRNA-seq Single-cell RNA sequencing
SFAs Saturated fatty acids
Siglec Sialic acid-binding immunoglobulin super-family lectin
snRNA-seq Single-nucleus RNA sequencing
TGF-β Transforming growth factor beta
TLR4 Toll-like receptor 4
Tmem119 Transmembrane protein 119
TREM2 Triggering receptor expressed on myeloid cells-2
VEGF Vascular endothelial growth factor
VMH Ventromedial nucleus of the hypothalamus
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