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Abstract: Energy homeostasis is regulated in coordinate fashion by the brain-gut axis, the homeostatic
energy balance circuitry in the hypothalamus and the hedonic energy balance circuitry comprising
the mesolimbcortical A10 dopamine pathway. Collectively, these systems convey and integrate
information regarding nutrient status and the rewarding properties of ingested food, and formulate
it into a behavioral response that attempts to balance fluctuations in consumption and food-seeking
behavior. In this review we start with a functional overview of the homeostatic and hedonic energy
balance circuitries; identifying the salient neural, hormonal and humoral components involved.
We then delve into how the function of these circuits differs in males and females. Finally, we
turn our attention to the ever-emerging roles of nociceptin/orphanin FQ (N/OFQ) and pituitary
adenylate cyclase-activating polypeptide (PACAP)—two neuropeptides that have garnered increased
recognition for their regulatory impact in energy homeostasis—to further probe how the imposed
regulation of energy balance circuitry by these peptides is affected by sex and altered under positive
(e.g., obesity) and negative (e.g., fasting) energy balance states. It is hoped that this work will impart
a newfound appreciation for the intricate regulatory processes that govern energy homeostasis, as
well as how recent insights into the N/OFQ and PACAP systems can be leveraged in the treatment
of conditions ranging from obesity to anorexia.

Keywords: sex difference; estradiol; nociceptin/orphanin FQ; pituitary adenylate cyclase-activating
polypeptide; obesity; fasting

1. The Hypothalamic Energy Balance Circuit in Homeostatic Feeding

Energy homeostasis, the intricate balance between energy intake and expenditure, is
regulated in coordinate fashion by homeostatic and hedonic neural circuits [1]. Aberrations
in these circuits are implicated in the pathophysiology of conditions such as obesity, type-II
diabetes, and food addiction [2–5]. Homeostatic control of energy balance is attributed to
the hypothalamic energy balance neural circuitry, which integrates information relayed
from the brainstem regarding the energy/nutritional status of the organism, based on
chemical and mechanical cues from the gastrointestinal (GI) tract [6,7]. These commu-
nications are ultimately encoded by various hypothalamic nuclei and their associated
neuronal populations, including those in the arcuate nucleus (ARC), ventromedial nucleus
(VMN), lateral hypothalamus (LH), dorsomedial nucleus (DMN), and the paraventricular
nucleus (PVN); producing orexigenic and anorexigenic signals to, respectively, stimulate
and suppress energy intake as well as altering energy expenditure [1,8].
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Excitatory input from steroidogenic factor (SF-1) neurons, located in the VMN, imping-
ing on proopiomelanocortin (POMC) neurons in the ARC represent a critical anorexigenic
synapse in homeostatic energy balance that, when activated, suppresses energy intake and
enhances energy expenditure [5,8–12]. SF-1 is a transcription factor encoded by the NR5A1
gene, and activation of these neurons in the VMN leads to glutamatergic stimulation of
POMC neurons [2,5,8–11]. Activation of POMC expressing neurons within the hypothala-
mic melanocortin system ultimately leads to formation of POMC posttranslational cleavage
products such as α-melanocortin stimulating hormone (α-MSH), which following release
from axon terminals go on to bind downstream effectors like melanocortin 4 receptors
(MC4R) expressed on corticotropin-releasing hormone (CRH) neurons in the PVN [13–17].
In line with α-MSH functioning as a satiety mediator, the percentage of α-MSH neurons
colocalizing with c-Fos in the ARC is greatest at the end of a meal, compared to the be-
ginning of or hours after consumption [18]. In addition to α-MSH, POMC neurons also
release β-endorphin (following posttranslational modification), and co-express cocaine-
and amphetamine- regulated transcript (CART) [19,20]. Overall, POMC signaling reduces
food intake, increases energy expenditure, and regulates glucose metabolism [16,17,19,21].
Prevailing glucose concentrations play a key role in relaying nutrition/energy state cues to
the homeostatic energy balance circuity, where anorexigenic and orexigenic ARC neurons
have glucose sensing abilities. ARC POMC/CART neurons are categorized as glucose-
responsive neurons and take up glucose via a glucose transporter (GLUT2) where it then
metabolizes, producing ATP and thereby promoting the closure of ATP-dependent potas-
sium (KATP) channels to reduce the outflow of K+, ultimately leading to the depolarization
of the cell [22,23]. This aligns POMC cellular excitability and firing rate in direct proportion
to glucose concentrations, with satiety signaling accentuated as glucose levels rise (e.g.,
during or shortly following a meal) [22,23]. It should therefore not be surprising that
perturbations in signaling at this VMN SF-1/ARC POMC synapse can pose detrimental
consequences for energy balance, where null mutations in POMC, its cleavage enzymes or
downstream receptors, as well as lesioning in the VMN, ultimately leads to hyperphagia
and obese phenotypes in rodents and humans [16,17,24].

At the opposing end of hypothalamic energy balance control are neuronal popula-
tions that promote orexigenic or appetite-stimulating effects. Alongside POMC neurons,
the ARC houses neuropeptide Y (NPY) and agouti-related peptide (AgRP) co-expressing
neurons, as well as ghrelin-containing somata [25–27]. Activation of this subset of neurons
pleiotropically dampens the aforementioned anorexigenic signaling. For example, follow-
ing NYP/AgRP neuronal activation, direct inhibition of neighboring POMC neurons is
achieved via synaptic release of the inhibitory amino acid neurotransmitter γ-aminobutyric
acid (GABA) on POMC soma [28]. Further downstream modulation of POMC signaling
is mediated by AgRP antagonism on MC4R or via NPY acting on various receptor sub-
types, ultimately impeding the anorexigenic signaling of α-MSH to induce feeding and
reduce energy expenditure [15,23]. Additionally, NPY/AgRP neurons in the ARC are
glucose-sensitive neurons and their activity/firing rate is inversely proportional to ambient
glucose levels [23]. Neurons found within the LH also relay orexigenic signals, which are
mediated by neurotransmission of melanin-concentrating hormone (MCH) neurons and
orexin neurons [29,30]. Indeed, orexin has been shown to electrically silence POMC neu-
rons by enhancing GABAergic and diminishing glutamatergic inputs onto these cells [31].
In addition, endocannabinoids elicit their orexigenic effects in part through retrograde
inhibition of GABAergic inputs onto MCH neurons [32].

In addition to the ascending inputs from the brainstem, the neurons comprising the
hypothalamic energy balance circuit are also susceptible to the influence of circulating
peripheral hormones—leptin, ghrelin, insulin and sex hormones. Sensitivity to these tran-
sient peripheral hormones (and other periphery signaling molecules) is especially true
for ARC neuronal populations, as this region lies in close proximity to the third ventricle
(3V) and median eminence; a circumventricular organ with an incomplete blood–brain
barrier [33,34]. Therefore, the ARC is in direct contact with systemic circulating hormones,
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permitting critical communication about the energy/nutritional status of the body to ARC
neurons that promotes energy homeostasis. Leptin is synthesized by white adipose tissue
(WAT), with levels fluctuating in proportion to fat mass. Leptin acts as a potent sup-
pressor of food intake, while also stimulating metabolism and reducing excessive stored
energy [35]. POMC and SF-1 neurons are depolarized by leptin receptor (LEPR) activation
via JAK/signal-transducer-and-activator-of-transcription (STAT) and phosphatidylinositol-
4,5-bisphosphate 3-kinase (PI3K) pathway signaling [36–39], while LEPR activity on AgRP
neurons activates ATP-gated K+ (KATP) channels leading to potassium outflow, hyperpo-
larization and decreases in firing [40–42]. The anorexigenic effect of leptin also involves a
reduction in hypothalamic endocannabinoid levels [43]. Conversely, hypothalamic levels
of endocannabinoids are increased in leptin receptor-deficient fa/fa rats and leptin-deficient
ob/ob mice [43]. Similar to leptin, insulin signaling in the hypothalamus promotes an anorex-
igenic tone and elicits transient receptor potential (TRP)C5 channel-induced excitation of
POMC neurons following receptor activation [44]. While for insulin, several prior studies
reported inhibitory responses in POMC neurons due to activation of KATP channels, it
is now known that the proportion of excitatory vs. inhibitory insulin-induced responses
is dependent on ambient levels of protein tyrosine phosphatase 1B (PTP1B) and T-cell
protein tyrosine phosphatase (TCPTP) activity [45–47]. Both enzymes are expressed in
ARC neurons integral to the regulation of energy balance. PTP1B and TCPTP are key
regulators of cell metabolism, as PTP1B decreases leptin activity and TCPTP attenuates
insulin signaling via dephosphorylation of JAK2 tyrosine kinase and the insulin receptor,
respectively, in POMC neurons, whereas in NPY/AgRP neurons TCPTP attenuates insulin
but not leptin signaling [48–50]. Deletion of both enzymes in POMC neurons, or of TCPTP
in NPY/AgRP neurons, from obese mice results in promoted weight loss due to decreased
food consumption and increased WAT browning along with elevated uncoupling protein
(UCP)-1 expression due to enhanced leptin and insulin signaling [48,49].

Conversely, levels of the orexigenic gut-derived peptide ghrelin increase in response
to negative energy balance. As a result, the peptide binds to receptors on ARC NPY/AgRP
neurons to stimulate these neurons, and thereby promote feeding behavior and energy
storage [35]. The orexigenic effect of ghrelin also depends on enhanced hypothalamic
production of endocannabinoids and activation of the energy-sensing signaling molecule
AMP-dependent protein kinase (AMPK) that, in turn, elicits retrograde inhibition of exci-
tatory input impinging on parvocellular neurons in the PVN [51]. These actions require
functionally intact cannabinoid CB1 and ghrelin receptor systems [51,52]. AMPK functions
as an important signaling molecule within the hypothalamic energy balance circuitry, and
exists as a heterotrimeric complex comprising α-, β-, and γ-subunits [53–56]. The α subunit
is the catalytic subunit, while the β and γ subunits are involved in glycogen and AMP/ATP
binding, respectively [53–56]. AMPK activity is stimulated by phosphorylation via two
upstream kinases, human tumor suppressor LKB1 or Ca2+/calmodulin-dependent protein
kinase kinase-β (CaMKKβ) that is triggered by cellular stress, cytokines, hormones like
those mentioned above, as well as by increases in AMP/ATP ratio [53–56]. This in turn
inhibits anabolic pathways and activates catabolic pathways to generate ATP [53–56]. Lep-
tin, insulin, α-MSH, high plasma glucose concentrations and refeeding all inhibit AMPK
whereas AgRP increases it [57]. On the other hand, AMPK activation is necessary for leptin
to inhibit fatty acid synthesis and thereby promote fatty acid oxidation in skeletal muscle
via phosphorylation of acetyl coenzyme A carboxylase [58]. This is consistent with other
examples of opposing cannabinoid- and ghrelin-induced effects on AMPK activity in the
central nervous system (CNS) versus the periphery [59]. When the effects of AMPK are
constitutively manifest in transgenic mice bearing a gain-of-function mutation in the γ2
subunit, this brings about ghrelin-dependent hyperphagia that leads to obesity, glucose
intolerance and hyperinsulinemia [60]. The dynamic interplay between the aforementioned
peripheral hormones and the homeostatic energy balance circuitry is graphically depicted
in Figure 1.
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neurons and, paradoxically, SF-1/PACAP neurons as well. Insulin’s effects on POMC neurons are 
dependent upon prevailing levels of tyrosine protein phosphatases. On the other hand, ghrelin’s 
appetite-promoting effects are due to its excitatory effects on NPY/AgRP and orexin neurons. 
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Figure 1. Schematic diagram illustrating the interplay between peripheral hormones and the homeostatic energy bal-
ance circuitry. Hormones like leptin and insulin released from adipose tissue and the endocrine pancreas, respectively,
exert anorexigenic effects, whereas ghrelin released from the gastric mucosa exerts orexigenic effects. Leptin’s appetite-
suppressing actions are mediated via excitatory effects on anorexigenic POMC and SF-1/PACAP neurons, as well as
inhibitory effects on orexigenic NPY/AgRP and N/OFQ neurons. Insulin also inhibits NPY/AgRP neurons and, paradoxi-
cally, SF-1/PACAP neurons as well. Insulin’s effects on POMC neurons are dependent upon prevailing levels of tyrosine
protein phosphatases. On the other hand, ghrelin’s appetite-promoting effects are due to its excitatory effects on NPY/AgRP
and orexin neurons.

2. The Mesolimbic Dopamine Network and Hedonic Feeding Behavior

Alongside the homeostatic-hypothalamic circuitry, energy balance is also modulated
by hedonic aspects of feeding behavior pertaining to reward-based food intake, or eat-
ing for pleasure. Amounting evidence in rodents and humans now support the theory
that both drugs of abuse and the consumption of highly palatable foods converge on a
shared pathway within the limbic system to mediate motivated behaviors [61–63]. There-
fore, the hedonic consumption of palatable foods involves the mesolimbic dopamine
(A10) neurons that emanate from the ventral tegmental area (VTA) and project onto struc-
tures such as the nucleus accumbens (NAc), prefrontal cortex (PFC), hippocampus, and
amygdala [64–66]. The VTA is comprised of three main neuronal phenotypes including
dopaminergic, GABAergic, and glutamatergic neurons. The rate limiting enzyme for cate-
cholamine synthesis is tyrosine hydroxylase (TH), which catalyzes the hydroxylation of
tyrosine to 3,4-dihydroxyphenylalanine that is then rapidly decarboxylated to produce
dopamine and, in some neuronal populations, norepinephrine and epinephrine [67]. Opto-
genetic studies have shown that local activation of A10 dopamine neurons or their terminals
within the NAc promotes responses of increased reward-seeking behavior [68–71]. On the
other hand, activation of VTA GABAergic neurons promotes aversive responses, while
their inhibition promotes reward, by dampening or promoting A10 dopamine signaling,
respectively [72,73]. Photoactivation studies, following an intracranial self-stimulation
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operant paradigm protocol [74], further support the role of VTA A10 dopamine neurons
in reward-seeking. This reward-seeking role is exemplified through data showing that
photoactivation of VTA glutamatergic neurons expressing cation channel rhodopsin-2
(ChR2) under a vesicular glutamate transporter-2 (VGlut2) promoter caused conditioned
place preference to a photostimulation-paired chamber and motivated operant responding
to earn optical intracranial self-stimulation in mice [75]. These rewarding effects are at-
tributed to local excitatory input onto the VTA A10 dopamine neurons [75]. A10 dopamine
neurons thereby encode reward processing for natural and drug-induced rewards and
are implicated in increasing incentive salience for palatable foods, food-seeking behavior
and impulsivity that could, under the right circumstances, lead to binge-feeding behav-
ior [4,64,66,76–78].

To fully grasp the distinct role A10 dopamine neurons play in hedonic feeding pat-
terns, it is imperative to delineate the multifaceted aspects of global reward processing.
The influential theories proposed by Berridge and colleagues make the case that when
examining the role of food reward in feeding behavior, distinctions must be made between
what he coined as reward ‘liking’ and reward ‘wanting’ [79,80]. ‘Liking’ is associated
with the hedonic impact, or the brain reaction underlying sensory pleasure triggered by
a rewarding stimulus, such as a highly palatable food [79,80]. Hedonic pleasure (‘liking’)
has been reliably measured through observation of facial affective reactions prompted by
exposure to a natural taste stimulus, where sweet tastes elicit positive ‘liking’ patterns
of distinct orofacial expressions (e.g., rhythmic or lateral tongue protrusions) and bitter
tastes alternatively evoke “disliking’ expressions (e.g., gapes) [81]. These varying patterns
of orofacial reactions are homologous to those observed in human infants, orangutan,
chimpanzees, monkeys, rats, and mice, insinuating evolutionary conservation of the under-
lying brain circuits involved [80–83]. Data collected from taste reactivity studies allowed
further insights into the neural underpinning of hedonic impact reactions, illuminating
involvement of hedonic hotspots in the rostrodorsal quadrant of the medial shell of the
NAc, ventral pallidum, and brainstem regions such as the parabrachial nucleus in the
pons [80,84,85].

Conversely, hedonic impact (‘liking’) is distinguishable from ‘wanting’, which is re-
lated to incentive salience or motivation in reward-seeking [79,80]. Further, incentive
salience (in the form of cue-triggered ‘wanting’) is mediated by separate neural networks,
like those originating from A10 dopamine neurons in the VTA, though integration of sig-
nals from both components is mechanistically crucial to produce the full phenomenon we
typically think of as reward [79,80]. As previously mentioned, VTA dopamine signaling
is indicated in incentive salience, a notion vastly supported by evidence wherein reward-
ing stimuli leads to enhanced dopamine transmission, while suppression of dopamine
signaling lessens the motivation for rewards including food, sex, and drugs [65,76,86–88].
However, taste reactivity studies utilizing mutant mice with genetically abolished neural
dopamine, or impaired ventral striatal dopamine caused by neurochemical 6-OHDA le-
sions, have reiterated this point, showing no detectable effects on ability to register the
pleasurability/hedonic impact of tastes in the absence of dopamine [80,89]. Recognition
of these separate neuronal networks encompassing overall reward is key to be able to
discern the contributing neural pathways, and perturbations of these pathways, that lead
to pathological reward-seeking behaviors (e.g., in food and drug addiction). In regard
our recent study described below in Section 4, we mainly focus on ‘wanting’ behaviors in
hedonic feeding and modulations of A10 dopamine signaling in the context of food reward
and binge feeding.

It should be noted that A10 dopamine neurons also play a critical role in aversion
processing in ways that are related to their firing pattern as well as the topographical
pattern of dopaminergic innervation of the NAc. In vivo photometry studies have revealed
that responses to aversive stimuli are mediated by A10 dopamine neurons terminating
in the ventromedial shell of the NAc [90]. Aversive responses are induced by excitation
of these neurons that occurs, at least in part, via glutamatergic input from the lateral
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hypothalamus [91]. Optogenetic studies indicate that prolonged stimulation of these A10
dopamine neurons activates dopamine D1 and D2 receptor-bearing medium spiny neurons
that, in turn, increases the firing rate of GABAergic neurons in the ventral pallidum,
decreases the excitability of A10 dopamine neurons and reduces cocaine reward [92].

As with the hypothalamic energy balance circuit, the neurons comprising the hedonic
reward circuitry, namely the A10 dopamine neurons, are also sensitive to circulating leptin,
insulin, and ghrelin levels, relaying signals to regulate food-seeking behavior and ultimately
changes in body mass [93]. Leptin binding to and activating LEPRs expressed on VTA A10
dopamine neurons leads to phosphorylation of STAT3, membrane hyperpolarization and
reduced firing in these neurons [94,95]. Moreover, site-specific ablation of LEPRs in the
VTA heightens the sensitivity of mice to the rewarding aspect of highly palatable foods (e.g.,
sucrose), while microinjection of leptin into the VTA reduces food intake [95]. Secondary
regulation of VTA dopamine neurons by leptin is mediated via direct leptin action on LH
LEPR expressing neurons which in turn relay signals onto the A10 dopamine population,
via synaptic contact, to promote decreases in food intake and concomitant decreases in
body weight [96]. Interestingly, LH LEPR neurons have been shown to represent a unique
neuronal population distinct from the previously mentioned orexin or MCH neurons
also found in the LH [96]. Anterograde tract- and retrograde tracing further confirmed
that LH LEPR neurons project caudally to densely innervate the VTA, with few to no
projections seen in hypothalamic regions (including the ARC) or in the striatum (including
the NAc). Therefore, LH LEPR neurons may play a unique role in A10 dopamine regulation
compared to other LEPR expressing neurons in the hypothalamus [96]. This interaction
of LH signaling to control VTA neurons importantly highlights how homeostatic and
hedonic neural circuits may dynamically and coordinately interact with one another to
promote global energy balance. Insulin receptors are also present on VTA (and substantia
nigra) dopamine neurons and can induce expression of the dopamine transporter (DAT)
in these neuronal populations, as was demonstrated following intracerebroventricular
(i.c.v.) insulin treatment [93]. Increased DAT results in quicker dopamine reuptake from the
synaptic cleft back into presynaptic neurons, thereby halting stimulation of postsynaptic
neurons and ultimately working to decrease the rewarding effect of food [93]. Furthermore,
ghrelin binding to and activating ghrelin receptors expressed on A10 dopamine neurons has
been shown to elevate the frequency of action potentials in these neurons, as well as induce
increased dopamine turnover in the NAc, promoting appetite [97]. Interestingly, the ghrelin-
induced increase in locomotor activity and dopamine release in the NAc is negated by CB1
receptor antagonism with rimonabant [98]. Thus, the abundant presence of communication
between the brains reward circuitry and fluctuating hormones and neuromodulators,
that typically relay nutritional/energy state cues, underscores the important role of A10
dopamine signaling in energy balance and potential links to feeding pathologies.

The intrinsic separation of the neural systems encoding hedonic impact from pleasure
and the incentive salience or motivation for a reward, can give way to possible explanations
for aberrant feeding behaviors that may underlie feeding pathologies [80]. Individuals
with substance abuse disorders seem to take drugs compulsively even when they no longer
derive pleasure from them (‘liking’), and their motivation to take the drug (‘wanting’) may
persist due to long-lasting sensitization of their brain mesolimbic systems, brought on by
repeated binges [76,80,88]. Food is a natural reward with reinforcing properties, similar
to rewards such as sex and drugs, and activates the dopaminergic mesolimbic system
by elevating extracellular dopamine concentrations in the NAc [99–101]. In particular,
highly palatable, calorie rich foods can critically effect A10 dopamine neurotransmis-
sion [102,103], analogous to modulations caused by other potent reinforcing stimuli, e.g.,
cocaine, amphetamines, opiate-like drugs, cannabinoids, alcohol, and nicotine [104–108].
Some evidence suggests that similar sensitization-like changes can be induced by exposure
to certain regimens of food and restriction, modelling oscillations between dieting and
binging on palatable foods [109–113]. Wherein, rats exposed to brief, intermittent bouts
of sucrose access (sucrose binges), express sensitization-like changes, especially when
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binges are cycled with food-restriction. Observed changes include: increasing propensity
to over-consume when allowed, an enduring enhanced neural response to the presentation
of food reward and cues, and an over-response to the psychostimulant effects of drugs such
as amphetamine (a typical behavioral marker of drug-induced neural sensitization, which
suggests a common underlying mechanism) [110,113–115]. Indeed, dopamine release into
the NAc and c-fos expression in A10 dopamine neurons is increased during binge-feeding
episodes [77,116], lending further credence to this notion. Additionally, obesity is asso-
ciated with dysfunction of dopaminergic systems. Obese patients present with reduced
striatal dopamine D2 receptor, as measured by positron emission tomography [117]. This
similarity between food reward and drug reward gives rise to the notion that feeding
disorders and drug abuse and/or dependence share common mechanisms, as neuropsy-
chological diseases involving negative alterations of the neural networks associated with
the reinforcing properties of rewards [118–120].

3. Influences of Sex and Diet on Central Energy Balance Circuits

Sex differences are abundantly present in the context of energy homeostasis and
although the prevalence of obesity is similar between men and women, women seem to
have a greater risk of developing eating disorders and extreme obesity [121,122]. Indeed,
sex is thought to represent one of the main risk factors for food-related disorders, including
binge eating disorder [123]. Other lines of evidence illustrating sex differences in food-
based reward processing include women having a reduced ability to control food desire,
higher cortical and limbic activation when presented with visual, gustatory and olfactory
cues, as well as increased susceptibility to episodes of food-craving and lack of control
for sugary foods, compared to men [124–128]. The role of sex hormones, particularly the
fluctuating estrogen levels in females throughout the estrous cycle, is of interest in these
disparities seen between males and females for reward-based consumption.

Estrogens elicit inhibitory effects on food intake, attributable to activation of estrogen
receptors in key brain regions responsible for food intake control and body weight, such as
the hypothalamus and nucleus tractus solitarius [5,129–132]. In regard to sex hormones,
studies on the cannabinoid system have elucidated activation effects of gonadal steroid
hormones on hypothalamic energy balance neural circuitry. Estradiol (E2) in females has
been shown to attenuate cannabinoid-induced hyperphagia and hypothermia, as well
the decrease in glutamatergic input onto POMC neurons [133]. These estrogenic actions
occur through activation of estrogen receptor (ER) and the Gq-coupled membrane ER (Gq-
mER), which triggers a signaling pathway involving PI3K, protein kinase C (PKC), protein
kinase A (PKA) and neuronal nitric oxide synthase (nNOS) [131,132,134]. This, in turn,
diminishes endocannabinoid tone at VMN SF-1/ARC POMC synapses, thereby relieving
the retrograde inhibition of the glutamatergic input [10,11]. Regarding nNOS, while
multiple isoforms with differing efficacies in eliciting downstream nitric oxide signaling
have been characterized in brain [135], it is currently unknown which isoform mediates
the estrogenic diminution in endocannabinoid tone at these synapses. Therefore, it will be
necessary for future studies to elucidate the isoform responsible.

Interestingly, functional glutamatergic synapses at these VMN SF-1/ARC POMC
synapses are largely silenced in obese females [11]. Indeed, studies of both POMC and
NPY/AgRP neurons from ob/ob mice reveal that they undergo extensive synaptic plasticity
under conditions of obesity; with the former receiving significantly more inhibitory inputs
concomitant with a reduction in excitatory inputs, and the latter having appreciably more
excitatory inputs and fewer inhibitory ones impinging upon them [136]. Obesity also
correlates with chronic inflammation and resistance to leptin and insulin not only in the
CNS but also peripherally [137–140]. However, the inflammation, reactive gliosis and
subsequent neuronal injury observed in the mediobasal hypothalamus develops more
rapidly than for similar maladaptations occurring in peripheral organs [141].

By contrast, testosterone in males rapidly increases energy intake and is reversed
by the CB1 receptor antagonist AM251 and the diacylglycerol lipase (DAGL) inhibitor
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Orlistat, and potentiates the cannabinoid-induced decrease in glutamatergic input onto
POMC neurons [10,142]. This androgen-induced increase in endocannabinoid tone is due
to activation of AMPK, which augments retrograde inhibition of glutamate release at VMN
SF-1/ARC POMC synapses [10,142]. These effects are further magnified in obese males
due to reduced PI3K signaling in the ARC [11,143]. Lastly, the development of central
insulin resistance brought on by diet-induced obesity is sexually differentiated. Males are
more susceptible to the attenuated activation of both TRPC5 channels in POMC neurons
and KATP channels in NPY/AgRP neurons than are females under the protection of E2,
which prevents the respective increase in suppressor of cytokine signaling-3 and decrease
in PI3K signaling that drives central insulin resistance [143,144].

Estrogen receptors are also expressed within the VTA. Evidence indicates that estrogens
increase self-administration of rewards like psychomotor stimulants and alcohol [145–147].
In animal studies, female rats have been more motivated to work for cocaine during
the estrus phase, compared to other phases of the estrous cycle [148,149], and E2-treated
ovariectomized (OVX) female rats exhibited increased motivation to self-administer co-
caine [150]. The effects of estrogen on reward neural circuitry are also evident in motivation
for food rewards. In opposition of the findings from self-administration of drug rewards,
intra-VTA injections of E2 significantly reduced the motivation to work for sucrose rewards
in a progressive ratio operant conditioning task within 1 h after injection, while overall
food intake was not altered by this treatment [151]. Additionally, a study comparing the
self-administration of chocolate-flavored beverage (CFB) and concomitant changes in extra-
cellular dopamine in the dialysate obtained from the NAc, between male as well as intact
and OVX female rats, showed that female rats in the proestrus and estrus phases of the
cycle had reduced lever responding for, and amount of self-administered CFB, paired with
lowered extracellular dopamine in the dialysate from the NAc shell [152]. These variable
findings between food versus drug rewards raise questions about the role estrogens play
in food reward processing and how they may potentially explain the disparate prevalence
rates between males and females in feeding behavior pathologies.

4. Nociceptin/Orphanin FQ Regulation of Homeostatic and Hedonic Energy Balance
Circuits

The neuropeptide nociceptin/Orphanin FQ (N/OFQ) is an endogenous opioid hep-
adecapeptide that is encoded by the prepronociceptin gene [153–155]. N/OFQ binds with
high affinity to its cognate Gi/o-coupled nociceptin opioid peptide (NOP) receptor, and
despite high structure homology, has minimal affinity for classic opioid receptors (mu,
kappa, or delta opioid receptors), nor do classical opioid receptor ligands (e.g., naloxone,
endorphin, dynorphin) have high affinity binding for NOP [155,156]. Initial studies on
N/OFQ indicated the peptide attenuates locomotor activity, increases sensitivity to pain,
while blocking the antinociceptive activity of mu, delta, and kappa analgesics following
i.c.v. injections; thus garnering the name nociceptin [154,155,157]. The NOP receptor
is expressed extensively throughout the central nervous system (CNS) [153,156,158,159],
subserving a role in an array of central processes including pain, learning and memory,
emotional states, neuroendocrine control, food intake, and motor control (see [160] for
thorough review).

The actions of N/OFQ in these disparate neuronal systems is accredited to peptide
binding and subsequent activation of its NOP receptor. In line with agonist activation in
all GPCRs, following NOP activation by N/OFQ the Gα and Gβγ subunits dissociate to
then promote the various effector pathways [155,158]. Therein, NOP receptor activation
inhibits adenylate cyclase (AC) activity and couples to pertussis-toxin-sensitive G-proteins
resulting in decreased cyclic adenosine monophosphate (cAMP) production [154,155,160,
161]. Further, NOP receptors canonically couple to G protein-gated inwardly rectifying
potassium (GIRK)3 and both N-type as well as P/Q type voltage-gated Ca2+ channels.
Upon NOP receptor activation, Ca2+ currents are reduced and GIRK channels activated,
causing K+ efflux, cellular hyperpolarization and attenuated neural activity [162–164].
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Additionally, NOP receptor signaling has been shown to promote activation of PKC as well
as phospholipase A2 and C [165–167].

As mentioned, the N/OFQ/NOP receptor system is expressed widely throughout
the brain in mice, rats, and humans, and importantly is expressed densely in the ARC
and VTA [153,156,159,168,169]. The abundant expression of N/OFQ and NOP in these
key regions supports a role in both homeostatic and hedonic energy balance regulation.
Indeed, i.c.v. injections into the lateral ventricle (LV), 3V, and intranuclear injections into
the ARC of N/OFQ or NOP agonists have been shown to produce a dose-dependent
increase in feeding behavior even in satiated animals; intra-ARC injections proving to be
the most efficacious to induce hyperphagia [170–174]. Additionally, chronic i.c.v. infusions
of the neuropeptide have been associated with increased body weight via modifications
in feeding and metabolism in mice [175]. In addition, we have found that the rebound
hyperphagia seen upon refeeding in fasted NOP receptor null mice is significantly blunted
compared to their wildtype littermate controls [176]. The appetite-stimulating properties
of N/OFQ can be attributed, at least in part, to the NOP receptor-mediated inhibition
of POMC neurons via activation of GIRK channels, as seen with either exogenous bath
application of the neuropeptide or high-frequency optogenetic stimulation of ARC N/OFQ
neurons [5,176–179]. The observed effects of N/OFQ are not limited to anorexigenic
pathways, however, and have been observed to also influence orexigenic circuitry. NOP
receptors are expressed in NPY/AgRP neurons, and N/OFQ increases AgRP release from
mediobasal hypothalamic explants [180]. Interestingly, these ARC N/OFQ neurons co-
release GABA upon low-frequency optogenetic stimulation, which can provide additional
inhibitory input onto POMC neurons [181]. They are also regulated by ambient levels of ex-
tracellular glucose, and inhibited by leptin [181]. On the other hand, N/OFQ administered
into the perifornical/lateral hypothalamic area exerts a hypophagic effect attributed to a
NOP receptor-mediated inhibition of orexin neurons via activation of KATP channels [182].
Nevertheless, the prevailing sentiment based on the totality of the available evidence
clearly indicates that N/OFQ is profoundly hyperphagic via its collective actions within
the homeostatic energy balance circuitry.

Moreover, several lines of in vivo and in vitro evidence illustrate the effects of N/OFQ
on the A10 dopamine system, providing credence to the notion that N/OFQ may be
inherently linked to reward system processing, and thus to hedonic feeding behavior.
Data obtained from in vivo studies have shown that N/OFQ decreases the outflow of
dopamine in the NAc following intracerebral injections, dampens the morphine-induced
dopamine release in the NAc, and blocks the acquisition of morphine-dependent place
preference [183–186]. Further, bath application of N/OFQ during intracellular electrophys-
iology recordings in rat midbrain slices caused membrane hyperpolarization and reduced
firing under current-clamp, which was associated with an outward current under voltage
clamp [187]. These inhibitory effects of N/OFQ in the VTA were reduced by the NOP
receptor antagonist [Phe11jCH2-NH)Gly2]NC(1 ± 13)NH2 (1 µM) but were unaltered by
presence of tetrodotoxin or the opioid receptor antagonist naloxone [187]. Additionally, acti-
vation of NOP receptors expressed in the NAc and dorsal striatum work to pre-synaptically
inhibit dopamine synthesis and tyrosine hydroxylase (TH, the rate-limiting enzyme in
dopamine production) phosphorylation and act post-synaptically on dopamine responsive
neurons by decreasing dopamine D1 receptor signaling via suppression of cAMP/PKA
activity [188]. Lastly, microdialysis studies have revealed that N/OFQ significantly reduces
extracellular DA levels in both the VTA and NAc [184].

The preceding section on sex differences in energy balance control is particularly
relevant when it comes to NOP receptor-mediated regulation. In homeostatic energy bal-
ance, males are significantly more sensitive to the inhibitory effects of exogenous N/OFQ
on excitatory neurotransmission at VMN SF-1/ARC POMC synapses than are females
during E2-dominated phases of the estrous cycle in two ways: (1) the direct hyperpolar-
ization/cessation of firing of both VMN SF-1 and ARC POMC neurons, as well as the
underlying outward current, due to the activation of GIRK channels is greater in males than
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in females and (2) the presynaptic inhibition of glutamate released of VMN SF-1 neurons at
these synapses is more substantive in males than in females [5,189,190]. Additionally, E2 ex-
erts powerful activational effects by diminishing the inhibitory effects of exogenous N/OFQ
at VMN SF-1/ARC POMC synapses, as well as the decreased excitability of POMC neurons
caused by optogenetic stimulation of ARC N/OFQ neurons, and protecting against the
aberrant hyperphagia and reduction in energy expenditure caused by exogenous N/OFQ
administered directly into the ARC of obese OVX females [5,178,179,191]. E2 also attenu-
ates the pleiotropic actions of N/OFQ on POMC neurons by binding to either ERα or the
Gq-mER, which leads to a signaling cascade that includes phospholipase C (PLC), PI3K,
PKC, PKA and nNOS [191]. Furthermore, progesterone administered to OVX, estrogen-
primed females restores the sensitivity of POMC neurons to these pre- and postsynaptic
actions of N/OFQ [192]. The precise actions of N/OFQ and NOP receptor activation in
the aforementioned neural circuitry, its effects on feeding-behavior, and potential role in
feeding-related pathologies will be discussed in further detail below.

In addition to sex differences, diet modifications resulting lean or obese phenotypes
alter the signaling effects of N/OFQ in homeostatic and hedonic neural circuits, and
increases the risk for aberrant feeding-behavioral patterns to form. Diet-induced obesity
increases the intrinsic excitability of ARC N/OFQ neurons, which augments the inhibitory
GABAergic tone received by POMC neurons [181]. Conversely, ablation of ARC N/OFQ
neurons hinders the development of obesity caused by a four-week exposure to a HFD [181].
Moreover, diet-induced obesity renders VMN SF-1/ARC POMC synapses more susceptible
to the inhibitory effects of exogenous N/OFQ in males and hypoestrogenic OVX females [5].
This greatly curtails anorexigenic signaling at these synapses; causing exaggerated N/OFQ-
induced increases in energy intake and decreases in energy expenditure, and is entirely in
keeping with our recent demonstration that N/OFQ administered directly into the ARC
significantly enhances binge-feeding behavior caused by short-term intermittent exposure
to a HFD [179].

Endogenous N/OFQ signaling may also be intrinsically associated with or escalate
aberrant feeding patterns associated with diet-induced obesity and/or binge-feeding. In
one instance, Sprague Dawley rats that had previously been determined as “fat-preferring”,
were particularly susceptible to N/OFQ-induced acute hyperphagia following i.c.v. in-
jection [173]. Additionally, NOP receptor knockout mice displayed significantly reduced
levels of HFD food consumption, compared to their wildtype littermate controls [193].
Additionally, administration of the novel NOP antagonist LY2940094, effectively increases
lipid utilization metabolism and reduces fasting-induced hyperphagia of chow in wildtype
129S6 mice, but not in those with genetic deletion of the NOP receptor [194,195]. Further,
LY2940094 reduces HFD consumption measured over a 5-h exposure period and also
hindered weight gain over 3 days of HFD exposure [195]. Providing further support for
the intrinsic contribution of endogenous N/OFQ/NOP signaling in the pathogenesis of
obesity and eating disorders, systemic administration of LY2940094 reduced intake of
HFD in diet-induced obese rats and mice, and also improved metabolic parameters by
reducing the respiratory quotient in mice with access to HFD in their metabolic feeding
chamber [195]. In relation to N/OFQ and binge-feeding, systemic treatment with the
selective NOP antagonist SB 612111 produced a dose-dependent decrease in intermittent
HFD binge eating, but not a change in the total 24-h food intake of mice who were either
on an intermittent-HFD or continuous-HFD feeding regimen [196].

While the last few studies mentioned regarding altered feeding behavior certainly
provide evidence that the N/OFQ-NOP system is involved in the neuropathology of obe-
sity and related eating disorders, they were not designed to offer insight into the specific
neuronal populations acted upon that leads to such pathogeneses. In addition, the exact
mechanisms through which sex and diet interact to modulate NOP receptor-mediated inhi-
bition of reward encoding A10 dopamine neurons and hedonic feeding remained a mystery
until very recently. We have discovered that the endogenous release of N/OFQ caused
by high-frequency optogenetic stimulation of VTA neurons in mesencephalic slices from
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N/OFQ-cre mice powerfully inhibits neighboring VTA neurons; an effect that is faithfully
recapitulated by exogenous bath application of N/OFQ during recordings of A10 dopamine
neurons in slices from TH-cre mice [179]. The membrane hyperpolarizations and underly-
ing outward currents were attenuated by E2 in females, and accentuated by diet-induced
obesity in males [179]. These N/OFQ-induced inhibitory effects on A10 dopamine neurons
functionally translated into sex- and diet-dependent changes in binge-eating behavior, as
N/OFQ delivered into the VTA decreased the rampant consumption seen during the binge
episodes in obese but not lean males, and in both lean and obese females [179]. Just as we
saw with the inhibitory effects of N/OFQ in A10 dopamine neurons from female mice, E2
counteracted the inhibitory effect of intra-VTA N/OFQ on binge feeding [179]. Thus, it is
clear that N/OFQ exerts multifaceted effects on energy balance via NOP receptor-mediated
regulation of homeostatic and hedonic circuits that are site-specific as well as sex hormone-
and diet-dependent. The site specificity underscores the fact that despite the inhibitory
effect of N/OFQ on A10 dopamine neurons and the associated dampening of binge-feeding
behavior, there is clearly a net hyperphagic response caused by the peptide that is due
largely, if not exclusively, to its effects within the homeostatic energy balance circuitry.

5. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Regulation of
Homeostatic and Hedonic Energy Balance Circuits

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a hypophysiotropic
neurohormone belonging to the largest family of developmental and regulatory peptides
that includes vasoactive intestinal polypeptide (VIP)-secretin-growth hormone-releasing
hormone (GHRH)-glucagon superfamily, along with secretin, glucagon, human growth
hormone-releasing factor (hGRF), and VIP [197]. Containing the most conserved sequence
throughout evolution in its family, PACAP is encoded by the ADCYAP1 gene as a 38-amino
acid C-terminally α-amidated polypeptide [197]. It is transcribed in hypothalamic neurons
and peripheral organs, such as the GI tract, pancreas, and gonads; exerting pleiotropic
physiological effects such as the regulation of neurotransmitter release and secretion,
vasodilation, energy balance, as well as stimulation and inhibition of cell proliferation
and/or differentiation [198–200]. The PACAP precursor yields two different forms of
PACAP, PACAP1–38 and PACAP1–27, as well as PACAP-related peptide (PRP) [200]. Given
its widespread distribution in the CNS and periphery, PACAP is well-equipped to act as a
hormone, a neurotransmitter, and a trophic factor in various tissue types [200].

The effects of PACAP are mediated through two classes of PACAP receptors: the
pituitary adenylate cyclase-activating polypeptide-specific 1 receptor (PAC1) and two
subtypes of VIP/PACAP-receptors termed VPAC1 and VPAC2 [197,200]. PAC1 receptor
exhibits almost a twofold higher affinity for PACAP than for VIP, while the VPAC1 and
VPAC2 receptors recognize both PACAP and VIP with equally high affinity [197]. PAC1, a
metabotropic receptor, is found in various hypothalamic structures including the supraop-
tic nucleus (SON), PVN, ARC, LH, VMN, as well as extrahypothalamic regions of the brain
like the cerebral cortex, Broca’s area, the hippocampus, among others [197,200]. VPAC1 and
VPAC2 receptors are appreciably expressed in peripheral organs including the lung, duo-
denum, and thymus, although with less abundance than PAC1 receptors [201,202]. There
is considerable evidence demonstrating that the PAC1 receptor signals through Gq and Gs.
For example, physiological studies have determined that PACAP acts on PAC1 receptor
in mouse neural stem cells, and upon receptor activation the signal generated is carried
via a Gq-mediated PLC/diacylglycerol/inositol 1,4,5-trisphosphate (IP3)-dependent sig-
naling pathway [203]. In the hypothalamus, PACAP binds to PAC1 receptors that induce
Gq-coupled stimulation of PLC, PI3K, and PKC to ultimately activate TRPC5 channels [12].
In the neurohypophysis, activation of PAC1 receptors by PACAP can lead to signaling via
the Gs pathway [204] that increases firing and depolarizes the membrane potential of mag-
nocellular neurons in rat brain slices via the activation of adenylate cyclase/cAMP/PKA
signaling [204–206]. In doing so, PACAP stimulates the release of oxytocin and vasopressin
from the posterior pituitary [204,207]. Activation of PAC1 receptors has also been shown
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to elevate intracellular Ca2+ concentrations in dissociated magnocellular neurons from rat
SON, and stimulate a quinine- sensitive K+ outward current in murine microglia [207,208].

In the immune system, PACAP decreases chemotaxis of thymocytes and lymphocytes
both via the activation of the PKA pathway [209,210]. Additionally, PACAP inhibits tumor
necrosis factor-α and both interleukin-6 and interleukin-12 release, while enhancing the
production of the cytokine interleukin-10 in lipopolysaccharide-activated macrophages;
suggesting it acts as a protective agent that regulates the release of proinflammatory and
anti-inflammatory cytokines [211–214]. The effects of PACAP on cell proliferation/survival
are dependent on the downstream channel targeted as well as transcriptional cues. In vitro
experiments have demonstrated that the effect of PACAP on cell survival is regulated via
the activation of the Gs pathway, contributing to the phosphorylation of the extracellular
signal-regulated (ERK)-type of mitogen-activated protein (MAP) kinase and enhanced
c-fos gene expression [215–217]. On the other hand, PACAP dose-dependently inhibits
concanavalin A-induced cell proliferation in murine splenocytes [218]. Moreover, PACAP
stimulates Ca2+ mobilization and blocks K+ currents in a variety of neuronal cell types
(e.g., magnocellular neurons, cerebellar granule cells), two processes intimately linked to
PACAP-induced enhancements in cell excitability [206,219–221]. Furthermore, PACAP
stimulates postprandial glucagon-like peptide, leptin and insulin secretion, and also has
been shown to promote insulin secretion from pancreatic β-cells via Ca2+ influx through
L-type Ca2+ channels [222–226]. This latter effect may be dependent on ambient glucose
concentration and its ability to enhance ATP production and thereby negatively gate ATP-
sensitive potassium (K+

ATP) channels [227,228]. This indicates that endogenous PACAP
acts as a physiological regulator of pancreatic β-cell activity linked to K+

ATP channels
in a manner similar to that described for the vasodilatory and neuroprotective effects
of the peptide. [229,230]. Thus, it is clear that PACAP regulates a wide array of bodily
functions including hypophysiotropic neurosecretion, glial function, immunomodulation,
cell proliferation/survival, glucose homeostasis, vasodilation, neuroprotection and energy
homeostasis via Gs- and Gq-mediated signaling. Moreover, given the inexorable link
between obesity and inflammation [137–139,141], it is entirely conceivable that the overall
anti-inflammatory effect of PACAP contributes significantly to lean phenotypes promoted
by this peptide [226,231].

PACAP exerts myriad effects on energy balance at all levels of the brain-gut axis. For
example, intravenous injection of PACAP on rats causes secretion of saliva from the sub-
mandibular and parotid glands, whereas in the stomach, PACAP decreases histamine- and
pentagastrin-activated gastric acid secretion; the latter suggesting that PACAP acts indi-
rectly to regulate gastric acid release [232–234]. In addition, intravenous injection of PACAP
increases bicarbonate secretion and chloride secretion in the duodenum and in the distal
colon, respectively [235,236]. Moreover, while PACAP administered centrally increases gas-
tric motility, peripherally it evokes a dose-dependent relaxation of the gastric smooth mus-
cles, decreases gastric motility and therefore delays stomach clearing [237–239]. Likewise,
PACAP stimulates intestinal smooth muscles to relax in rats and other species [240–243].

Concerning peripheral glucose and lipid homeostasis, PACAP exerts a more potent
action in stimulating glucose output from a perfused rat liver as compared to VIP [244].
While PACAP can clearly act centrally to regulate glucose homeostasis, the hyperglycemic
role of PACAP in vivo can also be attributed to both an indirect action via increase in plasma
glucagon and/or catecholamines, which increase glycogenolysis and gluconeogenesis [245].
Finally, in regard to energy metabolism, PACAP is known to accelerate lipolysis via the
sympathetic nervous system (SNS). This suggests that hypothalamic PACAP signaling may
promote the use of catabolized lipids as a viable energy source [197,231].

The hypothalamic regions that play a role in the regulation of thermogenesis, energy
expenditure, and energy intake such as the PVN, VMN, and ARC abundantly express
PACAP and the PAC1 receptor, suggesting that PACAP plays a vital role in the control of
these processes [200,201,246]. There are two major populations of hypothalamic PACAP
neurons—one with cell bodies residing in the PVN and the other with somata in the
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VMN [9,12,247]. The PVN PACAP neurons are thought to promote appetite through synap-
tic connections with, and excitation of, NPY/AgRP neurons [9]. It is the loss of signaling
via this population of PACAP neurons that may explain reports of hypoinsulinemia, de-
creased adiposity, lower body weight and increased insulin sensitivity seen in transgenic
PACAP-null mice [248]. The VMN PACAP neurons exhibit extensive colocalization with
SF-1, which along with leptin drives PACAP expression [12,247,249]. These neurons are
reported to be glucose inhibited, and their selective activation reduces circulating insulin
concentrations and glucose tolerance [250,251]. VMN PACAP neurons make synaptic con-
tact with POMC neurons, and like POMC neurons, are excited by leptin [9,12,36,37,252]. As
such, this VMN population of PACAP neurons is poised to suppress appetite and enhance
energy expenditure. In accordance, studies show that PACAP injected into the VMN causes
an increase in body temperature via adaptive thermogenesis and increased levels of UCP-
1 [197,247,253,254]. The adaptive thermogenesis brought on in part by increasing WAT
browning in rodents increases energy expenditure and suppresses diet-induced obesity
and glucose intolerance [49,50]. PACAP also controls activity, as an injection of PACAP
given i.c.v. or into the VMN increases locomotion in rodents concomitant with an increase
in O2 consumption [247,253,254]. A systemic injection of PACAP into wild type (WT) mice
dose-dependently lowers cumulative energy intake and decreases various indices of meal
pattern like meal-size and rate of consumption, which correlates with reduced ghrelin
secretion [226]. PACAP delivered directly into the VMN or PVN also reduces energy
intake; however, these effects are coupled with somewhat disparate effects on meal pattern.
PACAP injected directly into the PVN decreases meal size, rate of consumption, duration,
total time spent eating and increased latency to meal initiation, whereas PACAP injected
into the VMN only evokes an increase in the latency to meal initiation and a decrease in the
rate of eating [254]. Thus, PACAP signaling throughout the homeostatic energy balance
circuitry exerts far-reaching effects on energy intake, meal pattern and energy expenditure.

Additional studies investigating the homeostatic energy balance circuitry have demon-
strated that PAC1 receptors are expressed in POMC neurons, and that PACAP administered
to ad libitum-fed animals elevates POMC expression, c-Fos expression in POMC neurons,
and MC4R receptor mRNA expression when injected i.c.v. or into the VMN, as well as
enhancing α-MSH release from hypothalamic explants [250,253,255]. In contrast, PACAP
had no effect on AgRP, CART or NPY mRNA levels [250]. In addition, PAC1 receptor block-
ade with PACAP6–38 or PACAP deficiency seen in Adcyap1-/-mice significantly decreases
the leptin-induced hypophagia, hyperthermia, and increase in WAT sympathetic nerve
activity in vivo [231,247]. We have recently shown that the profound influences PACAP
exerts in the homeostatic control of energy balance in ad libitum-fed mice are diet- and
sex-dependent [12]. We observed that PACAP evokes an inward current associated with an
increase in firing in ARC POMC neurons that was abolished by PAC1 receptor antagonism
and TRPC5 channel blockade, and augmented by E2 [12]. The inward current was signifi-
cantly attenuated upon inhibition of PLC, PI3K and PKC, but not PKA; suggesting that the
PACAP-induced activation of POMC neurons was mediated via, PI3K and Gq-mediated
signaling pathways [12]. The stimulation of ARC POMC neurons caused by PACAP admin-
istered directly into the ARC suppresses energy intake and enhances energy metabolism,
and these effects were markedly attenuated under conditions of diet-induced obesity [12].
These effects of exogenously applied PACAP were effectively mirrored by chemogenetic
and optogenetic stimulation of VMN PACAP neurons [12]. Collectively, these data sug-
gest that under ad libitum-fed conditions PACAP functions through a PI3K/PLC/PKC
pathway to activate POMC neurons via TRPC5 channels upon PAC1 receptor stimulation
via Gq-mediated signaling [12]. Thus, VMN PACAP/ARC POMC synapses constitute
a critical anorexigenic component of the homeostatic energy balance circuitry, one that
is accentuated by E2 in females and attenuated by obesity in males. These findings are
consistent with other examples of positive estrogenic modulation of the PACAP/PAC1
receptor system that occur during the response to stress. E2 stimulates PACAP and PAC1
receptor expression in the bed nucleus of the stria terminalis (BTNS) as well as in the
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medial basal hypothalamus (MBH) compared to levels seen in the oil-treated OVX con-
trols [256]. Likewise, PACAP expression in the PVN and anterior pituitary is heightened
during the elevated E2 levels seen during proestrus [256]. Concerning the hedonic energy
balance circuitry and the consumption of palatable food, prior studies have shown that
when PACAP is injected into the NAc it mimics the inhibitory effect of GABA receptor
agonists on binge-like feeding behavior and decreases firing in NAc neurons [257]. This
effectively reduces hedonic drive for palatable food as gauged by decreases in appetitive
orofacial responses to sucrose, as well as by increases in aversive responses when PACAP
is administered into the caudal NAc [258].

Whereas obesity exemplifies a state of positive energy balance, fasting represents
a state of negative energy balance. Food-restricted mice show low levels of POMC and
PACAP mRNA expression coupled with an increase in NPY mRNA expression, and
i.c.v. injections of PACAP decrease energy intake after 30 min of refeeding [247,250].
Surprisingly, in recent experiments we found that during voltage clamp recordings in
POMC neurons from eGFP-POMC mice subjected to an 18-h fast for five consecutive days,
the PACAP response reversed polarity from a predominantly excitatory inward current
seen under ad libitum conditions to an inhibitory outward one (Figure 2A,B,E–H); see
Supplementary Materials for full material and methods The inset I/V plots corresponding
to the representative current traces in Figure 2A,B revealed that the reversal potential
shifted from ~−20 mV under ad libitum conditions (indicative of a mixed cation current)
to ~−90 mV under fasted conditions (indicative of a K+ current). The PACAP-induced
inhibitory outward current and the corresponding increase in conductance seen under
fasting conditions were virtually abolished by the KATP channel blocker tolbutamide and
the PAC1 receptor antagonist PACAP6–38 (Figure 2C,D,G,H; 2G: one-way ANOVA/LSD, F
= 25.71, df = 3, p < 0.0001; 2H: one-way ANOVA/LSD, F = 9.78, df = 3, p < 0.0001).
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A nearly identical switch in polarity of the PACAP response in POMC neurons was
observed during voltage clamp recordings in EtOH vehicle-treated slices from fasted OVX
female eGFP-POMC mice (Figure 3A,C–E). Bath application of E2 in slices from fasted OVX
female eGFP-POMC mice reduced the magnitude of the PACAP-induced outward current
by ~50%, and markedly attenuated the increase in K+ conductance (Figure 3B,D: Student’s
t-test, t = 1.51, p < 0.15; 3E: Student’s t-test, t = 2.664, p < 0.02).
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Figure 3. E2 attenuates the PACAP-induced outward current in POMC neurons observed under fasting conditions. (A,B)
are representative membrane current traces during voltage clamp recordings in EtOH vehicle- (0.01% (v:v); n = 11) and
E2-treated (100 nM; n = 8) slices from OVX females that illustrate the estrogenic diminution of the robust and reversible
PACAP-induced outward current and change in K+ conductance (as seen from the inset I/V plots). (C), Pie chart that
indicates the percentage of POMC neurons from OVX females that are excited by, inhibited by, or unresponsive to PACAP
under fasting conditions. (D,E) show the composite data underscoring the ability of E2 to negatively modulate the PACAP
response. Bars represent means and lines 1 SEM of the PACAP-induced ∆I and ∆G in POMC neurons from OVX females
under fasting conditions. *, p < 0.05 relative to EtOH vehicle, Student’s t-test.

Current clamp recordings in POMC neurons from fasted male eGFP-POMC mice
uncovered a more hyperpolarized resting membrane potential (RMP) than those from
their ad libitum-fed counterparts (Figure 4A: Student’s t-test, t = 2.237, p < 0.04). Once
again, the switch in polarity of the PACAP response was evident, such that the PACAP-
induced depolarization of POMC neurons and the associated increase in firing seen in the
representative trace and composite data from the ad libitum-fed state transformed into a
hyperpolarization and a suppression of firing in the fasted state (Figure 4B–E; 4D: Student’s
t-test, t = 9.501, p < 0.0001; 4E: Kruskal–Wallis/median-notched box-and-whisker analysis,
test statistic = 15.6201, p < 0.002).
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Figure 4. The PACAP-induced outward current observed during fasting conditions is associated 
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and increase in firing under ad libitum-fed conditions (n = 10) and the reversible 
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Figure 4. The PACAP-induced outward current observed during fasting conditions is associated with a hyperpolarization
and a decrease in firing. (A), Composite bar graph that demonstrates the more hyperpolarized RMP of POMC neurons under
fasting conditions. (B,C), Representative current clamp traces from POMC neurons showing the reversible PACAP-induced
depolarization and increase in firing under ad libitum-fed conditions (n = 10) and the reversible hyperpolarization and
suppression of firing seen under fasting conditions (n = 10). Comparable effects are seen during recordings in vehicle
pre-treated slices from OVX females. (D,E), Composite data illustrating the PACAP-induced changes in membrane potential
(∆V) and firing rate under ad libitum-fed and fasting conditions. Bars represent means and lines 1 SEM. * p < 0.05, relative
to ad libitum-fed conditions, Student’s t-test (D); relative to baseline, Kruskal–Wallis/median-notched box-and-whisker
analysis (E). Figure adapted from [12].

We corroborated these findings during optogenetic recordings in POMC neurons
(Figure 5A,C,D) from PACAP-cre/eGFP POMC mice. Selective activation of VMN PACAP
neurons (Figure 5B,E) elicited inward currents that were associated with depolarizations
and increases in firing in the ad libitum-fed state (Figure 5F,H,J,L–N), and outward currents
that were associated with hyperpolarizations and cessation of firing in the fasting state
(Figure 5G,I,K–N; 5L: Student’s t-test, t = 6.444, p < 0.0001; 5M: Student’s t-test, t = 6.97, p
< 0.0001; 5N: Kruskal–Wallis/median-notched box-and-whisker analysis, test statistic =
13.8222, p < 0.004).
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interference contrast image (40×) of a recorded POMC neuron and the corresponding eGFP 
fluorescence signal from the same neuron (D). (E), 40X image showing the eYFP-labeled fibers in 
the immediate vicinity of the recorded neuron. Photostimulation (10-ms pulses delivered at 20 Hz 
for 10 s) of male VMN PACAP neurons produces a reversible inward current linked to membrane 
depolarization and increase in the firing of ARC POMC under ad libitum-fed conditions neurons 
(F,H,J,L–N); n = 7–11), and the exact opposite is seen under fasting conditions (G,I,K–N); n = 11–
13). Bars represent means, and lines 1 SEM of the light-induced change in ΔI (L), ΔV (M) and 
firing rate (N). * p < 0.05, relative to ad libitum-fed conditions, Student’s t-test (L,M); relative to 
baseline, Kruskal–Wallis/median-notched box-and-whisker analysis (N). Figure adapted from [12]. 

Given that the tyrosine phosphatases PTP1B and TCPTP as well as AMPK figure 
prominently in orchestrating the cellular response to a state of negative energy balance, 
we then evaluated the role these signaling molecules play in the reversed polarity of the 
PACAP response in POMC neurons seen during fasting. In slices from fasted male eGFP-
POMC mice we found that pretreatment with the PTP1B/TCPTP inhibitor CX08005 
dramatically switched the PACAP response in POMC neurons from robust and reversible 
outward currents and hyperpolarizations (Figure 6A,C,E–I) to robust and reversible 
inward currents and depolarizations typically seen in the ad libitum-fed state (Figure 
6B,D–I; 6E: Student’s t-test, t = 8.194, p < 0.0001; 6F: Student’s t-test, t = 6.878, p < 0.0001; 

Figure 5. Optogenetic stimulation of VMN PACAP neurons depolarizes POMC neurons and increases their firing under
ad libitum-fed conditions, effects which are flipped under fasting conditions. (A), Low power (4×) image of ARC POMC
neurons taken from a PACAP-Cre/eGFP POMC mouse. (B), Photomicrograph (4×) showing the channel rhodopsin-2
expression in VMN PACAP neurons two weeks after AAV injection as visualized by eYFP. (C), Differential interference
contrast image (40×) of a recorded POMC neuron and the corresponding eGFP fluorescence signal from the same neuron
(D). (E), 40X image showing the eYFP-labeled fibers in the immediate vicinity of the recorded neuron. Photostimulation
(10-ms pulses delivered at 20 Hz for 10 s) of male VMN PACAP neurons produces a reversible inward current linked to
membrane depolarization and increase in the firing of ARC POMC under ad libitum-fed conditions neurons (F,H,J,L–N);
n = 7–11), and the exact opposite is seen under fasting conditions (G,I,K–N); n = 11–13). Bars represent means, and lines
1 SEM of the light-induced change in ∆I (L), ∆V (M) and firing rate (N). * p < 0.05, relative to ad libitum-fed conditions,
Student’s t-test (L,M); relative to baseline, Kruskal–Wallis/median-notched box-and-whisker analysis (N). Figure adapted
from [12].

Given that the tyrosine phosphatases PTP1B and TCPTP as well as AMPK figure
prominently in orchestrating the cellular response to a state of negative energy balance,
we then evaluated the role these signaling molecules play in the reversed polarity of
the PACAP response in POMC neurons seen during fasting. In slices from fasted male
eGFP-POMC mice we found that pretreatment with the PTP1B/TCPTP inhibitor CX08005
dramatically switched the PACAP response in POMC neurons from robust and reversible
outward currents and hyperpolarizations (Figure 6A,C,E–I) to robust and reversible inward
currents and depolarizations typically seen in the ad libitum-fed state (Figure 6B,D–I; 6E:
Student’s t-test, t = 8.194, p < 0.0001; 6F: Student’s t-test, t = 6.878, p < 0.0001; 6G: Kruskal–
Wallis/median-notched box-and-whisker analysis, test statistic = 13.5957, p < 0.004).
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Figure 6. The fasting-induced switch in the polarity of the PACAP response in POMC neurons 
involves the activation of protein tyrosine phosphatases. Representative traces show that the 
PACAP-induced outward current (A; n = 12) and hyperpolarization (C; n = 10) seen under fasting 
conditions reverts back to an inward current (B; n = 9) and depolarization (D; n = 7) in the presence 
of the PTP1B/TCPTP inhibitor CX08005 (20 μM; B). This is further substantiated by the composite 
bar graphs in (E–G) as well as the pie charts in (H,I). Bars represent means, and lines 1 SEM of the 
PACAP-induced change ΔI, ΔV or normalized firing rate under fasted conditions, alone and in 
combination with CX08005, Compound C or metformin. * p < 0.05, relative to PACAP alone, 
Student’s t-test (E,F); relative to baseline, Kruskal–Wallis/median-notched box-and-whisker 
analysis (G). 
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mice that were pre-treated with AMPK inhibitor Compound C (Figure 7A,B,D–F), and 
from ad libitum-fed animals that were pre-treated with the AMPK activator metformin 
(Figure 7C,D,G; 7D: one-way ANOVA/LSD, F = 41.35, df = 2, p < 0.0001). 

 
Figure 7. The fasting-induced reversal of the PACAP response in POMC neurons is also 
dependent upon activation of AMPK. The outward current caused by PACAP under fasting 
conditions in POMC neurons (A; n = 12) is transformed into an inward current in the presence of 
the AMPK inhibitor Compound C (30 μM; B; n = 8) The PACAP-induced outward current in (A) 
was reproduced under ad libitum-fed conditions in the presence of the AMPK activator 
metformin (500 μM; C; n = 10). The data from these representative traces is summarized in 
composite form by the bar graph in (D) and the pie charts in (E–G). Bars represent means and 
lines 1 SEM. *, p < 0.05 relative to PACAP alone, one-way ANOVA/LSD. 

Figure 6. The fasting-induced switch in the polarity of the PACAP response in POMC neurons involves the activation
of protein tyrosine phosphatases. Representative traces show that the PACAP-induced outward current (A; n = 12) and
hyperpolarization (C; n = 10) seen under fasting conditions reverts back to an inward current (B; n = 9) and depolarization
(D; n = 7) in the presence of the PTP1B/TCPTP inhibitor CX08005 (20 µM; B). This is further substantiated by the composite
bar graphs in (E–G) as well as the pie charts in (H,I). Bars represent means, and lines 1 SEM of the PACAP-induced
change ∆I, ∆V or normalized firing rate under fasted conditions, alone and in combination with CX08005, Compound C or
metformin. * p < 0.05, relative to PACAP alone, Student’s t-test (E,F); relative to baseline, Kruskal–Wallis/median-notched
box-and-whisker analysis (G).

An equally dramatic switch in the polarity of the PACAP response in POMC neurons
was observed during voltage clamp recordings in slices from both fasted eGFP-POMC
mice that were pre-treated with AMPK inhibitor Compound C (Figure 7A,B,D–F), and
from ad libitum-fed animals that were pre-treated with the AMPK activator metformin
(Figure 7C,D,G; 7D: one-way ANOVA/LSD, F = 41.35, df = 2, p < 0.0001).
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Figure 7. The fasting-induced reversal of the PACAP response in POMC neurons is also dependent upon activation of
AMPK. The outward current caused by PACAP under fasting conditions in POMC neurons (A; n = 12) is transformed into
an inward current in the presence of the AMPK inhibitor Compound C (30 µM; B; n = 8) The PACAP-induced outward
current in (A) was reproduced under ad libitum-fed conditions in the presence of the AMPK activator metformin (500 µM;
C; n = 10). The data from these representative traces is summarized in composite form by the bar graph in (D) and the pie
charts in (E–G). Bars represent means and lines 1 SEM. *, p < 0.05 relative to PACAP alone, one-way ANOVA/LSD.

Consistent with these changes in cellular signaling, we also observed through im-
munohistofluorescent staining of coronal hypothalamic slices that fasting significantly
increased the number of PTP1B- and pAMPK-positive ARC neurons as compared to that
seen in the ad libitum-fed state (Figure 8; 8C: Student’s t-test, t = 7.748, p < 0.002; 8F:
Student’s t-test, t = 5.598, p < 0.006).
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relative to ad libitum-fed conditions, Student’s t-test. 

Moreover, the flipped PACAP-induced change in the excitability of POMC neurons 
yielded parallel alterations in energy intake. Indeed, the pronounced anorexigenic 
response generated by PACAP administered directly into the ARC of ad libitum-fed 
wildtype male mice (Figure 9A; repeated measures multifactorial ANOVA/LSD, Ftime = 
45.21, df = 1, p < 0.0001; FPACACP = 71.82, df = 1, p < 0.0001; Finteraction = 0.72, df = 1, p < 0.40) 
was completely reversed in fasted animals, such that there was no change in cumulative 
energy intake at three hours post-injection and a significant increase six hours after 
administration (Figure 9B; repeated measures multifactorial ANOVA/LSD, Ftime = 28.18, 
df = 1, p < 0.0001; FPACAP = 4.32, df = 1, p < 0.04; Finteraction = 4.79, df = 1, p < 0.04; one-way 
ANOVA/LSD, F = 12.88, df = 3, p < 0.0001). A similar profile was observed in OVX wildtype 
female mice; with PACAP decreasing cumulative energy intake in ad libitum-fed, sesame 
oil vehicle-treated OVX females, which was significantly potentiated in estradiol benzoate 
(EB)-treated OVX females (Figure 9C; repeated measures multi-factorial ANOVA/LSD: 
Ftime = 417.17, df = 1, p < 0.0001), FPACAP = 9.00, df = 1, p < 0.004, FEB = 20.59, df = 1, p < 0.0001, 
Finteraction = 0.91, df = 1, p < 0.35). Conversely, the decrease in cumulative energy intake 
caused by PACAP in ad libitum-fed, vehicle-treated OVX females was once again 
completely reversed under fasting conditions. Surprisingly, EB per se failed to exert its 
prototypical anorexigenic effect in fasted OVX females, but it did abrogate the PACAP-
induced increase in cumulative energy intake seen at six hours post-administration 
(Figure 9D; repeated measures multi-factorial ANOVA/LSD: Ftime = 74.67, df = 1, p < 
0.0001), FPACAP = 8.64, df = 1, p < 0.004, FEB = 3.18, df = 1, p < 0.08, Finteraction = 14.88, df = 1, p < 
0.0003; one-way ANOVA/LSD, F = 15.53, df = 7, p < 0.0001). 

Figure 8. Fasting augments the activity and expression of PTP1B and AMPK in the ARC. The
four 20× images depict the PTP1B (A,B; 1:100) and pAMPK (D,E; 1:100) immunoreactivity under
ad libitum-fed (A,D) and fasting (B,E) as visualized with AF546 (1:600). The composite data in
the bar graphs summarize the fasting-induced increase in the number of PTP1B- (C) and pAMPK-
immunoreactive (F) cells per capita in the ARC. Bars represent means and lines 1 SEM. * p < 0.05,
relative to ad libitum-fed conditions, Student’s t-test.

Moreover, the flipped PACAP-induced change in the excitability of POMC neurons
yielded parallel alterations in energy intake. Indeed, the pronounced anorexigenic response
generated by PACAP administered directly into the ARC of ad libitum-fed wildtype male
mice (Figure 9A; repeated measures multifactorial ANOVA/LSD, Ftime = 45.21, df = 1,
p < 0.0001; FPACACP = 71.82, df = 1, p < 0.0001; Finteraction = 0.72, df = 1, p < 0.40) was
completely reversed in fasted animals, such that there was no change in cumulative energy
intake at three hours post-injection and a significant increase six hours after administration
(Figure 9B; repeated measures multifactorial ANOVA/LSD, Ftime = 28.18, df = 1, p < 0.0001;
FPACAP = 4.32, df = 1, p < 0.04; Finteraction = 4.79, df = 1, p < 0.04; one-way ANOVA/LSD, F =
12.88, df = 3, p < 0.0001). A similar profile was observed in OVX wildtype female mice; with
PACAP decreasing cumulative energy intake in ad libitum-fed, sesame oil vehicle-treated
OVX females, which was significantly potentiated in estradiol benzoate (EB)-treated OVX
females (Figure 9C; repeated measures multi-factorial ANOVA/LSD: Ftime = 417.17, df =
1, p < 0.0001), FPACAP = 9.00, df = 1, p < 0.004, FEB = 20.59, df = 1, p < 0.0001, Finteraction
= 0.91, df = 1, p < 0.35). Conversely, the decrease in cumulative energy intake caused
by PACAP in ad libitum-fed, vehicle-treated OVX females was once again completely
reversed under fasting conditions. Surprisingly, EB per se failed to exert its prototypical
anorexigenic effect in fasted OVX females, but it did abrogate the PACAP-induced increase
in cumulative energy intake seen at six hours post-administration (Figure 9D; repeated
measures multi-factorial ANOVA/LSD: Ftime = 74.67, df = 1, p < 0.0001), FPACAP = 8.64, df
= 1, p < 0.004, FEB = 3.18, df = 1, p < 0.08, Finteraction = 14.88, df = 1, p < 0.0003; one-way
ANOVA/LSD, F = 15.53, df = 7, p < 0.0001).
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Figure 9. Fasting completely reverses the effect of a direct injection of PACAP into the ARC on 
energy intake, which is attenuated by EB in OVX females. Under ad libitum-fed conditions, 
PACAP (30pmo; n = 6l) significantly decreases cumulative energy intake in wildtype males 
compared to saline-treated controls (0.2 μL; A; n = 6). This PACAP-induced decrease in energy 
intake is no longer apparent in fasted males, and PACAP actually causes an increase in cumulative 
consumption which is evident at six hours post-administration (B; n = 7–9). PACAP also decreases 
energy intake in ad libitum-fed OVX wildtype females, and this effect is potentiated by EB (20 
μg/kg; s.c.; C; n = 6). Again, the effect of PACAP on consummatory behavior in fasted OVX 
females is exactly the opposite of that seen under ad libitum conditions, as is the modulatory effect 
of EB (D; n = 6). Bars represent means and lines 1 S.E.M. of the cumulative energy intake seen in 
ad libitum-fed or fasted mice injected with either PACAP or its saline vehicle. #, p < 0.05 relative to 
cumulative energy intake seen at three hours after PACAP injection, repeated-measures, multi-
factorial ANOVA/LSD; *, p < 0.05 relative to saline vehicle, repeated measures, multi-factorial 
ANOVA/LSD; ^, p < 0.05 relative to sesame oil vehicle, repeated measures, multi-factorial 
ANOVA/LSD. Figure adapted from [12]. 
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PAC1 receptor/effector coupling reverts from TRPC5 channel-induced excitation to KATP 
channel-induced inhibition, which completely reverses the effect of PACAP on energy 
intake. Thus, it is clear that postsynaptic PAC1 receptors at VMN PACAP/ARC POMC 
synapses effectively serve as metabolic switches that provide flexibility in the face of 
dynamic changes in energy status. 
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Figure 9. Fasting completely reverses the effect of a direct injection of PACAP into the ARC on energy
intake, which is attenuated by EB in OVX females. Under ad libitum-fed conditions, PACAP (30pmo;
n = 6l) significantly decreases cumulative energy intake in wildtype males compared to saline-treated
controls (0.2 µL; A; n = 6). This PACAP-induced decrease in energy intake is no longer apparent in
fasted males, and PACAP actually causes an increase in cumulative consumption which is evident at
six hours post-administration (B; n = 7–9). PACAP also decreases energy intake in ad libitum-fed
OVX wildtype females, and this effect is potentiated by EB (20 µg/kg; s.c.; C; n = 6). Again, the effect
of PACAP on consummatory behavior in fasted OVX females is exactly the opposite of that seen
under ad libitum conditions, as is the modulatory effect of EB (D; n = 6). Bars represent means and
lines 1 S.E.M. of the cumulative energy intake seen in ad libitum-fed or fasted mice injected with
either PACAP or its saline vehicle. #, p < 0.05 relative to cumulative energy intake seen at three hours
after PACAP injection, repeated-measures, multi-factorial ANOVA/LSD; *, p < 0.05 relative to saline
vehicle, repeated measures, multi-factorial ANOVA/LSD; ˆ, p < 0.05 relative to sesame oil vehicle,
repeated measures, multi-factorial ANOVA/LSD. Figure adapted from [12].

Taken together, this demonstrates that under conditions of negative energy balance,
PAC1 receptor/effector coupling reverts from TRPC5 channel-induced excitation to KATP
channel-induced inhibition, which completely reverses the effect of PACAP on energy
intake. Thus, it is clear that postsynaptic PAC1 receptors at VMN PACAP/ARC POMC
synapses effectively serve as metabolic switches that provide flexibility in the face of
dynamic changes in energy status.

6. Concluding Remarks

To summarize, the N/OFQ/NOP and PACAP/PAC1 systems exert pleiotropic actions
in the homeostatic and hedonic regulation of energy balance. In short, the N/OFQ/NOP
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system elicits a net orexigenic effect via the homeostatic energy balance circuitry, and
dampens the consumption of palatable food via inhibitory actions within the hedonic
energy balance circuitry. These effects are sexually differentiated, accentuated by diet-
induced obesity in males and hypoestrogenic females, and attenuated by E2 in OVX
females. On the other hand, the PACAP/PAC1 system contributes a net anorexigenic effect
via the homeostatic and hedonic energy balance circuitries. A thorough investigation of
the anorexigenic VMN PACAP/ARC POMC synapse reveals that the neurophysiological
and accompanying behavioral effects described above are diminished by diet-induced
obesity in males, potentiated by E2 in OVX females, and completely reversed under fasting
conditions. The manner in which alterations in energy balance status can influence NOP
and PAC1 receptor-mediated signaling in POMC neurons is summarized schematically in
Figure 10.
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Figure 10. Schematic diagrams illustrating how PAC1 and NOP receptor signaling in POMC neurons is altered under
various energy balance states. (A), In POMC neurons from ad libitum-fed animals, N/OFQ activates the NOP receptor that
initiates Gi/o-mediated signaling and subsequent activation of GIRK channels through positive allosteric modification by
the βγ complex. This in turn promotes K+ efflux and inhibition of POMC neurons, effects which are dampened by E2 acting
through ERα and Gq-mER to stimulate PI3K and nNOS as well as PLC, PKC and PKA signaling pathways, respectively.
(B), In POMC neurons from obese animals, NOP receptor/effector coupling is enhanced; leading to a greater inhibitory
effect of N/OFQ on POMC neurons. This N/OFQ-induced inhibition of POMC neurons is once again abrogated by E2

in POMC neurons from obese females. (C), Under ad libitum conditions, PACAP activates its cognate PAC1 receptor to
elicit Gq-mediated signaling; working through PI3K as well as PLC, IP3, DAG and PKC to promote Ca2+ mobilization from
intracellular stores and the coupling of PAC1 receptors to TRCP5 channels. This leads to cation flux through the channel
pore that depolarizes and thereby excites POMC neurons. In females, E2 can act via ERα and Gq-mER to potentiate PAC1
receptor/TRPC5 channel coupling and PACAP-induced excitation of POMC neurons. (D), Under conditions of diet-induced
obesity, the PAC1 receptor-mediated activation of TRPC5 channels in male POMC neurons is attenuated. However, in obese
females the PACAP-induced excitation of POMC neurons is maintained due to the potentiating effect of E2. (E), Under
conditions of fasting, the expression and activity of AMPK and protein tyrosine phosphatases like PTP1B is elevated in
POMC neurons. This triggers a switch in the coupling of PAC1 receptors, such that they now are no longer linked with
TRPC5 channels and instead inhibit rather than excite POMC neurons via activation of KATP channels. This inhibitory effect
of PACAP in POMC neurons from fasted animals is diminished by E2 in females.
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Over the past few decades, the neuroscience and neuroendocrine communities have
made great strides in advancing our understanding of how the brain coordinates energy
balance regulation via the homeostatic and hedonic energy balance circuitries. With the
plethora of methodological tools currently at our disposal (e.g., optogenetics, chemoge-
netics, proteomics and transcriptomics, to name but a few), it is more than reasonable
to expect that further advances will be readily and rapidly achieved. Just like the case
made for PACAP in this very piece, it will be imperative to systematically evaluate all of
the major players implicated in regulating energy homeostasis (including, but certainly
not limited to, endocannabinoids, N/OFQ, NPY/AgRP neurons, POMC neurons, A10
dopamine neurons) not only under normophysiologic conditions but also under negative
(e.g., fasting) and positive (e.g., obesity) energy balance states. Only in this way will we
develop a comprehensive picture of how all of these functioning components are altered
under these adaptive (e.g., fasting) and maladaptive (e.g., obesity) scenarios. In addition,
it will be equally important to thoroughly dissect the impact of sex on the functioning of
the central energy balance circuitries, and the cross-talk between gonadal hormones, the
neurotransmitter/modulator systems and the signaling molecules involved. One final
critical crowning achievement will be realized once we gain a firmer grasp on how the
output from the homeostatic and hedonic energy balance circuitries functionally translates
into clearly defined changes in the brain-gut axis and autonomic tone, as well as changes
in gustatory and motivated behavior. We currently stand on the shoulders of pioneering
giants who have paved the way by elucidating the mechanisms that provide the basis
of our current understanding involved in the central control of energy homeostasis. In
looking to the future, we welcome the next generation of innovative scientists to carry the
torch and further advance our understanding.
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