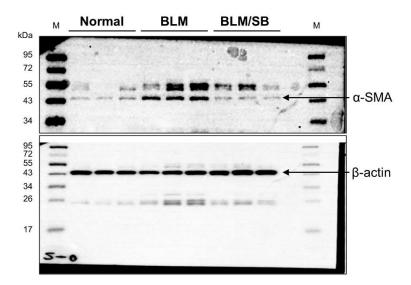

Supplementary Materials


Table S1. Primer sequences f	for quantitativ	e real-time PCR.
-------------------------------------	-----------------	------------------

Species	Gene symbol	Direction	Sequence	
Mouse	Ccl2	Reverse	5'- CCAGCCTACTCATTGGGAT -3'	
		Forward	5'- GGGCCTGCTGTTCACAGTT -3'	
Mouse	Gapdh	Reverse	5'- ACCCAGAAGACTGTGGATGG -3'	
		Forward	5'- ACACATTGGGGGTAGGAACA -3'	
Human	IL6	Reverse	5'- CCTCAGACATCTCCAGTCCT -3'	
		Forward	5'- AATGACGACCTAAGCTGCAC -3'	
Human	IL1b	Reverse	5'- TACCTGTCCTGCGTGTTGAA -3'	
		Forward	5'- TCTTTGGGTAATTTTGGGATCT -3'	
Human	GAPDH	Reverse	5'- AGTCAGCCGCATCTTCTTTT -3'	
		Forward	5'- CCAATACGACCAAATCCGTT -3'	

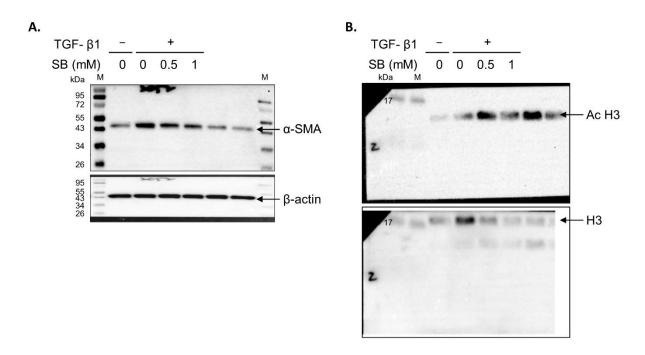


Figure S1. Antifibrotic effect of butyrate in LPS-induced skin fibrosis mouse model. Lipopolysaccharide (LPS) was injected subcutaneously on the back skin of mice five times a week for two weeks (5 μ g/mouse). SB was orally gavaged from two weeks before LPS injection. Skin tissues were then obtained in normal and LPS \pm SB mice to evaluate skin fibrosis. Representative images of Masson's trichrome stain and dermal thickness in skin tissues from normal and LPS \pm SB mice. n = 4-5/group. Scale bars = 100 μ m. *p < 0.05, **p < 0.01.

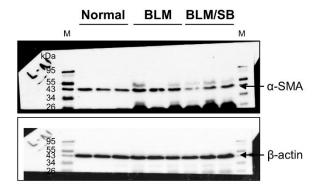

Uncropped images of the western blot analyses are presented in Figure S2–S4.

Figure S2. Western blot analysis of α -SMA in skin tissues. BLM was injected subcutaneously on the back skin of mice five times a week for two weeks. SB was orally gavaged from two weeks before BLM injection. Skin tissues were then obtained in normal and BLM ± SB mice. After extracting proteins from skin tissues, western blot was performed to analyze α -SMA protein expression. β -actin was used as a loading control. M: Size marker.

Figure S3. Western blot analysis of α -SMA and Ac H3 in HDFs. Primary HDFs were stimulated with TGF- β 1 (10 ng/mL) with or without SB (0.5–1 mM) for 48 h. Western blot was performed to analyze α -SMA (A) and Ac-H3 protein expression (B). β -actin and H3 were used as a loading control for α -SMA and Ac-H3, respectively. M: Size marker.

Figure S4. Western blot analysis of α -SMA and β -actin in lung tissues. BLM was injected subcutaneously on the back skin of mice five times a week for two weeks. SB was orally gavaged from two weeks before BLM injection. Lung tissues were then obtained in normal and BLM ± SB mice. After extracting proteins from lung tissues, western blot was performed to analyze α -SMA protein expression. β -actin was used as a loading control. M: Size marker.