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1 An MILP Formulation for Inferring a Target Chemical Graph in
Stage 4

1.1 Constructing Target Chemical Graphs

This section describes how to construct a target chemical graph in Stages 4 and 5.

1.1.1 Formulating an MILP for a prediction function in Stage 4

In Stage 3, we construct a prediction function ηN : RK → R. It is known that the computation
process of ηN (x) from a vector x∗ ∈ RK can be formulated as an MILP with the following property.

Theorem 1. ([1, 2]) Let N be an ANN with a piecewise-linear activation function for an input vector
x ∈ RK , nA denote the number of nodes in the architecture and nB denote the total number of break-
points over all activation functions. Then there is an MILP M(x, y; C1) that consists of variable
vectors x ∈ RK , y ∈ R, and an auxiliary variable vector z ∈ Rp for some integer p = O(nA + nB)
and a set C1 of O(nA+nB) constraints on these variables such that: ηN (x∗) = y∗ if and only if there
is a vector (x∗, y∗) feasible to M(x, y; C1).

Solving this MILP delivers a vector x∗ ∈ RK such that ηN (x∗) = y∗ for a target value yyy∗. However,
the resulting vector x∗ may not admit a chemical graph G∗ such that f(G∗) = x∗. To ensure that
such chemical graph always exists in Stage 4, we further introduce some more constraints for a set
of new variables in the next section.

1.1.2 Formulating an MILP for a feature vector and a target specification in Stage 4

In this section, we show an outline of formulation of an MILP that represents the computation
process of a feature function f(G) from a chemical graph G and a construction of a target chemical
graph G ∈ G(GC, σint, σce). Recall that the number of vertices in a target chemical graph is bounded
by an upper bound n∗ in a specification (GC, σint, σce). However, if we introduce a set of (n∗)2

variables for all pairs of n∗ vertices to present all possible graphs for a target chemical graph, then
the resulting MILP formulation is hard to solve for n∗ > 20 due to a larger number of variables and
constraints. To overcome this, a sparse representation of chemical graphs has been proposed in the
previous applications of the framework for acyclic graphs [3] and ρ-lean graphs [4]. We also define a
similar sparse representation to formulate an MILP for our two-layered model.
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Scheme GraphsWe first regard a given seed graphGC as a digraph and then add some more vertices
and edges to construct a digraph, called a scheme graph SG = (V, E) so that any (σint, σce)-extension
H of GC can be chosen as a subgraph of SG.

For a given target specification (GC, σint, σce), define integers that determine the size of a scheme
graph SG as follows. mC := |EC|, tC := |VC|, tT := nintUB − |VC|, and tF := n∗ − nintLB.
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Figure 1: An illustration of a scheme graph SG: (a) A seed graph GC; (b) A path PT of length tT−1;
(c) A path PF of length tF − 1.

Formally the scheme graph SG = (V, E) is defined with a vertex set V = VC ∪ VT ∪ VF and an
edge set E = EC ∪ET ∪EF ∪ECT ∪ETC ∪ECF ∪ETF that consist of the following sets. See Figure 1
for an illustration of these sets.

Construction of a σint-extension H∗ of GC: Denote the vertex set VC and the edge set EC

in the seed graph GC by VC = {vCi | i ∈ [1, tC]} and EC = {ai | i ∈ [1,mC]}, respectively,
where VC is always included in H∗. For including additional interior-vertices in H∗, introduce a
path PT = (VT = {vT1, v

T
2, . . . , v

T
tT}, ET = {eT2, e

T
3, . . . , e

T
tT}) of length tT − 1 and a set ECT

(resp., ETC) of directed edges eCT
i,j = (vCi, v

T
j) (resp., eTC

i,j = (vTj , v
C
i)) i ∈ [1, tC], j ∈ [1, tT].

In H∗, an edge ak = (vCi, v
C
i′) ∈ E(≥2) ∪ E(≥1) is allowed to be replaced with a pure path Pk

from vertex vCi to vertex vCi′ that visits a set of consecutive vertices vTj , v
T
j+1, . . . , v

T
j+p ∈ VT

and edge eTC
i,j = (vCi, v

T
j) ∈ ECT, then edges eTj+1, e

T
j+2, . . . , e

T
j+p ∈ ET and finally edge

eTC
i′,j+p = (vTj+p, v

C
i′) ∈ ETC. The vertices in VT selected in the path will be vertices in H∗.

Appending leaf paths with additional interior-edges in a (σint, σce)-extension H of GC:
Introduce a path PF = (VF = {vF1, v

F
2, . . . , v

F
tF}, EF = {eF2, e

F
3, . . . , e

F
tF}) of length tF − 1, a

set ECF of directed edges eCF
i,j = (vCi, v

F
j), i ∈ [1, tC], j ∈ [1, tF], and a set ETF of directed edges

eTF
i,j = (vTi, v

F
j), i ∈ [1, tT], j ∈ [1, tF]. In H, a leaf path Q with interior-edges that starts from a

vertex vCi ∈ VC (resp., vTi ∈ VT) visits a set of consecutive vertices vFj , v
F
j+1, . . . , v

F
j+p ∈ VF and

edge eCF
i,j = (vCi, v

F
j) ∈ ECF (resp., eTF

i,j = (vTi, v
F
j) ∈ ETF) and edges eFj+1, e

F
j+2, . . . , e

F
j+p ∈

EF. In H, the edges and the vertices selected in the path Q are regarded as interior-edges and
interior-vertices, respectively.

Construction of ρ-fringe-trees in a (σint, σce)-extension G of GC: In H, the root of a ρ-fringe-
tree can be any vertex in VC ∪ VT ∪ VF. For each vertex v = vCi (resp., v = vTi or v

F
i), we choose a

chemical rooted tree T from the specified set F(v) (resp., FE).
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Recall that the dimension K of a feature vector x = f(G) used in constructing a prediction
function ηN over a set of chemical graphs G is K = 17+ |Λint(Dπ)|+ |Λex(Dπ)|+ |Γint(Dπ)|+ |F(Dπ)|.
For a target specification (GC, σint, σce), let F∗ denote the set of chemical rooted trees ψ in the sets
F(v), v ∈ VC and FE and K∗ := 17+ |Λint(Dπ)|+ |Λex(Dπ)|+ |Γint(Dπ)|+ |F∗|. Based on the scheme
graph SG, we obtain the following MILP formulation M(x, g; C2).

Theorem 2. Let (GC, σint, σce) be a target specification and φ∗ = |Λint(Dπ)|+|Λex(Dπ)|+|Γint(Dπ)|+
|F∗| for sets of chemical elements, edge-configurations and fringe-configurations in σce. Then there
is an MILP M(x, g; C2) that consists of variable vectors x ∈ RK∗

and g ∈ Rq for an integer q =
O(nintUB(|EC| + n∗) + (|EC| + |V|)φ∗) and a set C2 of O([nintUB(|EC| + n∗) + |V|]φ∗) constraints on x
and g such that: (x∗, g∗) is feasible to M(x, g; C2) if and only if g∗ forms a chemical graph G ∈
G(GC, σint, σce) such that f(G) = x∗.

Note that our MILP requires only O(n∗) variables and constraints when the branch-parameter
ρ, integers |EC|, nintUB and φ∗ are constant. We explain the basic idea of our MILP that satisfies
Theorem 2. The MILP mainly consists of the following three types of constraints.

C1. Constraints for selecting an underlying graph H of a chemical graph G ∈ G(GC, σint, σce) as a
subgraph of the scheme graph SG;

C2. Constraints for assigning chemical elements to interior-vertices and multiplicity to interior-edges
to determine a chemical graph G = (H,α, β); and

C3. Constraints for computing descriptors in the feature vector f(G) of the selected chemical
graph G.

In the constraints of C1, more formally we prepare the following.

Variables:

- a binary variable vX(i) ∈ {0, 1} for each vertex vXi ∈ VX, X ∈ {C,T,F} so that vX(i) = 1 ⇔
vertex vXi is used in a graph H selected from SG;

- a binary variable eX(i) ∈ {0, 1} (resp., eC(i) ∈ {0, 1}) for each edge eXi ∈ ET ∪ EF (resp.,
eCi = ai ∈ E(≥2) ∪ E(≥1) ∪ E(0/1)) so that eX(i) = 1 ⇔ edge eXi is used in a graph H selected
from SG. To save the number of variables in our MILP formulation, we do not prepare a binary
variable eX(i, j) ∈ {0, 1} for any edge eXi,j ∈ ECT ∪ ETC ∪ ECF ∪ ETC, where we represent a
choice of edges in these sets by a set of O(n∗|EC|) variables (see Supplementary Materials for
the details);

- binary variables δCfr(i, ψ) ∈ {0, 1}, i ∈ [1, tC], ψ ∈ F(v), v = vCi ∈ VC and δTfr(i, ψ) ∈ {0, 1}, i ∈
[1, tT], δ

F
fr(i, ψ) ∈ {0, 1}, i ∈ [1, tF], ψ ∈ FE , where δXfr (i, ψ) = 1 (X ∈ {C,T,F}) if and only if

the ρ-fringe-tree rooted at vertex vXi is r-isomorphic to ψ.

Constraints:

- linear constraints so that each ρ-fringe-tree rooted at a vertex vXi in a graph H from SG is
selected from the given set F(vCi) for X=C (or FE for X ∈ {T,F});

- linear constraints such that each edge eCi = ai ∈ E(=1) is always used as an edge in H and

each edge eCi = ai ∈ E(0/1) is used as an edge in H if necessary;
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- linear constraints such that for each edge ak = (vCi, v
C
i′) ∈ E(≥2), vertex v

C
i ∈ VC is connected

to vertex vCi′ ∈ VC in H by a pure path Pk that passes through some vertices in VT and edges
eCT

i,j , e
T
j+1, e

T
j+2, . . . , e

T
j+p, e

TC
i′,j+p for some integers j and p;

- linear constraints such that for each edge ak = (vCi, v
C
i′) ∈ E(≥1), either the edge ak is used

as an edge in H or vertex vCi ∈ VC is connected to vertex vCi′ ∈ VC in H by a pure path Pk
as in the case of edges in E(≥2);

- linear constraints for selecting a leaf path Qv rooted at a vertex v = vCi (resp., v = vTi) with
ρ-internal edges eCF

i,j (resp., e
TF

i,j), e
F
j+1, e

F
j+2, . . . , e

F
j+p for some integers j and p.

In the constraints of C2, we prepare an integer variable αX(i) for each vertex vXi ∈ V, X ∈
{C,T,F} in the scheme graph that represents the chemical element α(vXi) ∈ Λ if vXi is in a selected
graph H (or α(vXi) = 0 otherwise); integer variables βC : EC → [0, 3], βT : ET → [0, 3] and
βF : EF → [0, 3] that represent the bond-multiplicity of edges in EC ∪ET ∪EF; and integer variables
β+, β− : E(≥2) ∪ E(≥1) → [0, 3] and βin : VC ∪ VT → [0, 3] that represent the bond-multiplicity of
edges in ECT ∪ETC ∪ECF ∪ETF. This determines a chemical graph G = (H,α, β). Also we include
constraints for a selected chemical graph G to satisfy the valence condition at each interior-vertex v
with the edge-configurations ec(e) of the edges e incident to v and the chemical specification σce.

In the constraints of C3, we introduce a variable for each descriptor and constraints with some
more variables to compute the value of each descriptor in f(G) for a selected chemical graph G.

The details of the MILP can be found in Section 3.

2 A Dynamic Programming Algorithm for Generating Isomers in
Stage 5
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Figure 2: An illustration of a chemical graph G, where for ρ = 2, the exterior-vertices are
w1, w2, . . . , w19 and the interior-vertices are u1, u2, . . . , u28.

This section briefly reviews the method [4] for Stage 5. Let G† be a chemical graph that is a
(σint, σce)-extension of a seed graph GC = (VC, EC), where we denote by E(=0) the set of the edges
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in E(0/1) that are not used in G†. We define a base-graph GB = (VB, EB) to be the seed graph
(VC, EC \ E(=0)) after removing the edges in E(=0). We call a chemical graph G∗ a chemical isomer

of G† if f(G∗) = f(G†) and G∗ is also a (σint, σce)-extension of GB.
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Figure 3: An illustration of generating a chemical isomer G∗ of a chemical graph G† with a base-graph
GB = (VB, EB).

The method generates chemical isomers G∗ of G† in the following way, where Figure 3 illustrates
the whole process in the case of VB = {v1, v2} and EB = {a1, a2}.

1. We first decompose a given chemical graph G† into a collection of chemical rooted or bi-rooted
trees.

- For each vertex v ∈ VB, let T
†
v denote the chemical rooted tree rooted at v in G that is

constructed with a leaf path Qv and fringe-trees attached to Qv. Possibly T
†
v consists of a

single vertex v and we call such a tree trivial.

- For each edge a = uv ∈ E(≥2) ∪ E(≥1), let T
†
a denote the chemical bi-rooted tree rooted

at vertices u and v in G that consists of a pure u, v-path Pa, leaf paths rooted at internal
vertices in Pa and fringe-trees attached to theses leaf paths. Possibly T †

a consists of a
single edge a and we call such a tree trivial.

Figure 4 illustrates the non-trivial chemical trees T †
t , t ∈ V ∗

B ∪ E∗
B of the (σint, σce)-extension

G† = G in Figure 2.

2. Let V ∗
B (resp., E∗

B) denote the set of vertices v ∈ VB (resp., a ∈ EB) such that T †
v (resp., T †

a )

is not trivial. For each vertex or edge t ∈ V ∗
B ∪ E∗

B, compute the feature vector x∗t = f(T †
t )

and then generate a set Tt of all (or a limited number of) chemical acyclic graphs T ∗
t such

that f(T ∗
t ) = x∗t and the structure of T ∗

t satisfies the lower and upper bounds in the interior-
specification σint by using the dynamic programming algorithm for chemical acyclic graphs [3].

3. For each combination of chemical trees T ∗
t ∈ Tt, t ∈ V ∗

B ∪ E∗
B, a chemical graph G∗ such that

f(G∗) = f(G†) is obtained from G† by replacing each tree T †
t with a new tree T ∗

t . The number of
such combinations is

∏
t∈V ∗

B∪E∗
B
|Tt|, where we ignore a possible automorphism of the resulting

graphs G∗.

The above method [4] can be used to generate chemical isomers in Stage 5 in our two-layered
model by making a minor modification to the definition of a feature vector f(G).
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Figure 4: The non-trivial chemical rooted trees T †
v for v ∈ {u5, u12, u23} = V ∗

B and the non-trivial

chemical bi-rooted trees T †
a for a ∈ {a1 = u1u2, a2 = u1u3, a3 = u4u7, a4 = u10u11, a5 = u11u12} = E∗

B

for the (σint, σce)-extension G
† = G in Figure 2, where the gray squares indicate the roots of these

rooted and bi-rooted trees.

3 All Constraints in an MILP Formulation for Chemical Graphs

We define a standard encoding of a finite set A of elements to be a bijection σ : A → [1, |A|], where
we denote by [A] the set [1, |A|] of integers and by [e] the encoded element σ(e). Let ϵ denote null, a
fictitious chemical element that does not belong to any set of chemical elements, chemical symbols,
adjacency-configurations and edge-configurations in the following formulation. Given a finite set A,
let Aϵ denote the set A ∪ {ϵ} and define a standard encoding of Aϵ to be a bijection σ : A→ [0, |A|]
such that σ(ϵ) = 0, where we denote by [Aϵ] the set [0, |A|] of integers and by [e] the encoded element
σ(e), where [ϵ] = 0.

3.1 Selecting a Cyclical-base

Recall that

E(=1) = {e ∈ EC | ℓLB(e) = ℓUB(e) = 1}; E(0/1) = {e ∈ EC | ℓLB(e) = 0, ℓUB(e) = 1};
E(≥1) = {e ∈ EC | ℓLB(e) = 1, ℓUB(e) ≥ 2}; E(≥2) = {e ∈ EC | ℓLB(e) ≥ 2};

- Every edge ai ∈ E(=1) is included in G;

- Each edge ai ∈ E(0/1) is included in G if necessary;

- For each edge ai ∈ E(≥2), edge ai is not included in G and instead a path

Pi = (vCtail(i), v
T
j−1, v

T
j , . . . , v

T
j+t, v

C
head(i))

of length at least 2 from vertex vCtail(i) to vertex v
C
head(i) visiting some vertices in VT is constructed

in G; and

- For each edge ai ∈ E(≥1), either edge ai is directly used in G or the above path Pi of length at
least 2 is constructed in G.
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Let tC ≜ |VC| and denote VC by {vCi | i ∈ [1, tC]}. Regard the seed graph GC as a digraph
such that each edge ai with end-vertices vCj and vCj′ is directed from vCj to vCj′ when j < j′.
For each directed edge ai ∈ EC, let head(i) and tail(i) denote the head and tail of eC(i); i.e.,
ai = (vCtail(i), v

C
head(i)).

Assume that EC = {ai | i ∈ [1,mC]}, E(≥2) = {ak | k ∈ [1, p]}, E(≥1) = {ak | k ∈ [p + 1, q]},
E(0/1) = {ai | i ∈ [q+1, t]} and E(=1) = {ai | i ∈ [t+1,mC]} for integers p, q and t. Let I(=1) denote
the set of indices i of edges ai ∈ E(=1). Similarly for I(0/1), I(≥1) and I(≥2).

Define
kC ≜ |E(≥2) ∪ E(≥1)|, k̃C ≜ |E(≥2)|.

To control the construction of such a path Pi for each edge ak ∈ E(≥2) ∪ E(≥1), we regard the index
k ∈ [1, kC] of each edge ak ∈ E(≥2) ∪ E(≥1) as the “color” of the edge. To introduce necessary linear
constraints that can construct such a path Pk properly in our MILP, we assign the color k to the
vertices vTj−1, v

T
j , . . . , v

T
j+t in VT when the above path Pk is used in G.

For each index s ∈ [1, tC], let IC(s) denote the set of edges e ∈ EC incident to vertex vCs,
and E+

(=1)(s) (resp., E−
(=1)(s)) denote the set of edges ai ∈ E(=1) such that the tail (resp., head)

of ai is vertex vCs. Similarly for E+
(0/1)(s), E

−
(0/1)(s), E

+
(≥1)(s), E

−
(≥1)(s), E

+
(≥2)(s) and E−

(≥2)(s).

Let IC(s) denote the set of indices i of edges ai ∈ IC(s). Similarly for I+(=1)(s), I
−
(=1)(s), I

+
(0/1)(s),

I−(0/1)(s), I
+
(≥1)(s), I

−
(≥1)(s), I

+
(≥2)(s) and I

−
(≥2)(s). Note that [1, kC] = I(≥2) ∪ I(≥1) and [k̃C+1,mC] =

I(≥1) ∪ I(0/1) ∪ I(=1).

constants:

- tC = |VC|, k̃C = |E(≥2)|, kC = |E(≥2) ∪ E(≥1)|, tT = nintUB − |VC|, mC = |EC|. Note that ai ∈
EC \ (E(≥2) ∪ E(≥1)) holds i ∈ [kC + 1,mC];

- ℓLB(k), ℓUB(k) ∈ [1, tT], k ∈ [1, kC]: lower and upper bounds on the length of path Pk;

variables:

- eC(i) ∈ [0, 1], i ∈ [1,mC]: eC(i) represents edge ai ∈ EC, i ∈ [1,mC] (e
C(i) = 1, i ∈ I(=1);

eC(i) = 0, i ∈ I(≥2)) (e
C(i) = 1 ⇔ edge ai is used in G);

- vT(i) ∈ [0, 1], i ∈ [1, tT]: v
T(i) = 1 ⇔ vertex vTi is used in G;

- eT(i) ∈ [0, 1], i ∈ [1, tT +1]: eT(i) represents edge eTi = (vTi−1, v
T
i) ∈ ET, where e

T
1 and eTtT+1

are fictitious edges (eT(i) = 1 ⇔ edge eTi is used in G);

- χT(i) ∈ [0, kC], i ∈ [1, tT]: χ
T(i) represents the color assigned to vertex vTi (χ

T(i) = k > 0 ⇔
vertex vTi is assigned color k; χT(i) = 0 means that vertex vTi is not used in G);

- clrT(k) ∈ [ℓLB(k) − 1, ℓUB(k) − 1], k ∈ [1, kC], clr
T(0) ∈ [0, tT]: the number of vertices vTi ∈ VT

with color c;

- δTχ (k) ∈ [0, 1], k ∈ [0, kC]: δ
T
χ (k) = 1 ⇔ χT(i) = k for some i ∈ [1, tT];

- χT(i, k) ∈ [0, 1], i ∈ [1, tT], k ∈ [0, kC] (χ
T(i, k) = 1 ⇔ χT(i) = k);

- d̃eg
+

C(i) ∈ [0, 4], i ∈ [1, tC]: the out-degree of vertex vCi with the used edges eC in EC;

- d̃eg
−
C(i) ∈ [0, 4], i ∈ [1, tC]: the in-degree of vertex vCi with the used edges eC in EC;
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constraints:

eC(i) = 1, i ∈ I(=1), (1)

eC(i) = 0, clrT(i) ≥ 1, i ∈ I(≥2), (2)

eC(i) + clrT(i) ≥ 1, clrT(i) ≤ tT · (1− eC(i)), i ∈ I(≥1), (3)

∑
c∈I−

(≥1)
(i)∪I−

(0/1)
(i)∪I−

(=1)
(i)

eC(c) = d̃eg
−
C(i),

∑
c∈I+

(≥1)
(i)∪I+

(0/1)
(i)∪I+

(=1)
(i)

eC(c) = d̃eg
+

C(i), i ∈ [1, tC], (4)

χT(i, 0) = 1− vT(i),
∑

k∈[0,kC]

χT(i, k) = 1,
∑

k∈[0,kC]

k · χT(i, k) = χT(i), i ∈ [1, tT], (5)

∑
i∈[1,tT]

χT(i, k) = clrT(k), tT · δTχ (k) ≥
∑

i∈[1,tT]

χT(i, k) ≥ δTχ (k), k ∈ [0, kC], (6)

vT(i− 1) ≥ vT(i),

kC · (vT(i− 1)− eT(i)) ≥ χT(i− 1)− χT(i) ≥ vT(i− 1)− eT(i), i ∈ [2, tT]. (7)

3.2 Constraints for Including Leaf Paths

Let t̃C denote the number of vertices u ∈ VC such that blUB(u) = 1 and assume that VC =
{u1, u2, . . . , up} so that

blUB(ui) = 1, i ∈ [1, t̃C] and blUB(ui) = 0, i ∈ [t̃C + 1, tC].

Define the set of colors for the vertex set {ui | i ∈ [1, t̃C]} ∪ VT to be [1, cF] with

cF ≜ t̃C + tT = |{ui | i ∈ [1, t̃C]} ∪ VT|.

Let each vertex vCi, i ∈ [1, t̃C] (resp., v
T
i ∈ VT) correspond to a color i ∈ [1, cF] (resp., i+t̃C ∈ [1, cF]).

When a path P = (u, vFj , v
F
j+1, . . . , v

F
j+t) from a vertex u ∈ VC ∪ VT is used in G, we assign the

color i ∈ [1, cF] of the vertex u to the vertices vFj , v
F
j+1, . . . , v

F
j+t ∈ VF.

constants:

- cF: the maximum number of different colors assigned to the vertices in VF;

- nintLB, n
int
UB ∈ [2, n∗]: lower and upper bounds on the number of interior-vertices in G;

- blLB(i) ∈ [0, 1], i ∈ [1, t̃C]: a lower bound on the number of leaf ρ-branches in the leaf path rooted
at a vertex vCi;

- blLB(k), blUB(k) ∈ [0, ℓUB(k) − 1], k ∈ [1, kC] = I(≥2) ∪ I(≥1): lower and upper bounds on the
number of leaf ρ-branches in the trees rooted at internal vertices of a pure path Pk for an edge
ak ∈ E(≥1) ∪ E(≥2);

variables:
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- nintG ∈ [nintLB,n
int
UB]: the number of interior-vertices in G;

- vF(i) ∈ [0, 1], i ∈ [1, tF]: v
F(i) = 1 ⇔ vertex vFi is used in G;

- eF(i) ∈ [0, 1], i ∈ [1, tF + 1]: eF(i) represents edge eFi = vFi−1v
F
i, where e

F
1 and eFtF+1 are

fictitious edges (eF(i) = 1 ⇔ edge eFi is used in G);

- χF(i) ∈ [0, cF], i ∈ [1, tF]: χ
F(i) represents the color assigned to vertex vFi (χ

F(i) = c ⇔ vertex
vFi is assigned color c);

- clrF(c) ∈ [0, tF], c ∈ [0, cF]: the number of vertices vFi with color c;

- δFχ(c) ∈ [blLB(c), 1], c ∈ [1, t̃C]: δ
F
χ(c) = 1 ⇔ χF(i) = c for some i ∈ [1, tF];

- δFχ(c) ∈ [0, 1], c ∈ [t̃C + 1, cF]: δ
F
χ(c) = 1 ⇔ χF(i) = c for some i ∈ [1, tF];

- χF(i, c) ∈ [0, 1], i ∈ [1, tF], c ∈ [0, cF]: χ
F(i, c) = 1 ⇔ χF(i) = c;

- bl(k, i) ∈ [0, 1], k ∈ [1, kC] = I(≥2) ∪ I(≥1), i ∈ [1, tT]: bl(k, i) = 1 ⇔ path Pk contains vertex vTi
as an internal vertex and the ρ-fringe-tree rooted at vTi contains a leaf ρ-branch;

constraints:

χF(i, 0) = 1− vF(i),
∑

c∈[0,cF]

χF(i, c) = 1,
∑

c∈[0,cF]

c · χF(i, c) = χF(i), i ∈ [1, tF], (8)

∑
i∈[1,tF]

χF(i, c) = clrF(c), tF · δFχ(c) ≥
∑

i∈[1,tF]

χF(i, c) ≥ δFχ(c), c ∈ [0, cF], (9)

eF(1) = eF(tF + 1) = 0, (10)

vF(i− 1) ≥ vF(i),

cF · (vF(i− 1)− eF(i)) ≥ χF(i− 1)− χF(i) ≥ vF(i− 1)− eF(i), i ∈ [2, tF], (11)

bl(k, i) ≥ δFχ(t̃C + i) + χT(i, k)− 1, k ∈ [1, kC], i ∈ [1, tT], (12)

∑
k∈[1,kC],i∈[1,tT]

bl(k, i) ≤
∑

i∈[1,tT]

δFχ(t̃C + i), (13)

blLB(k) ≤
∑

i∈[1,tT]

bl(k, i) ≤ blUB(k), k ∈ [1, kC], (14)

tC +
∑

i∈[1,tT]

vT(i) +
∑

i∈[1,tF]

vF(i) = nintG . (15)
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3.3 Constraints for Including Fringe-trees

To express the condition that the ρ-fringe-tree is chosen from a rooted tree Ci, Ti or Fi, we introduce
the following set of variables and constraints.

constants:

- nLB, n
∗: lower and upper bounds on n(G), where nLB, n

∗ ≥ nintLB;

- chLB(i), chUB(i) ∈ [0, n∗], i ∈ [1, tT]: lower and upper bounds on ht(Ti) of the tree Ti rooted at a
vertex vCi;

- chLB(k), chUB(k) ∈ [0, n∗], k ∈ [1, kC] = I(≥2) ∪ I(≥1): lower and upper bounds on the maximum
height ht(T ) of the tree T ∈ F(Pk) rooted at an internal vertex of a path Pk for an edge ak ∈
E(≥1) ∪ E(≥2);

- Let FΛ denote the set of chemical rooted trees ψ = ({v}, ∅) with ht(ψ) = 0 and α(v) = a for each
chemical element a ∈ Λ;

- Prepare a coding of the set F(Dπ) and let [ψ] denote the coded integer of an element ψ in F(Dπ);

- Sets F(v) ⊆ F(Dπ), v ∈ VC and FE ⊆ F(Dπ) of chemical rooted trees T with ht(T ) ∈ [1, ρ];

- Define F∗ :=
∪
v∈VC F(v) ∪ FE , FC

i := F(vCi), i ∈ [1, tC], FT
i := FE , i ∈ [1, tT] and FF

i := FE ,
i ∈ [1, tF];

- FX
i [p], p ∈ [1, ρ],X ∈ {C,T,F}: the set of chemical rooted trees T ∈ FX

i with ht(T ) = p;

- n([ψ]) ∈ [0, 3ρ], ψ ∈ F∗: the number of non-root vertices in a chemical rooted tree ψ;

- ht([ψ]) ∈ [0, ρ], ψ ∈ F∗: the height of a chemical rooted tree ψ;

- degr([ψ]) ∈ [0, 4], ψ ∈ F∗: the number of children of the root r of a chemical rooted tree ψ;

variables:

- nG ∈ [nLB, n
∗]: n(G);

- vX(i) ∈ [0, 1], i ∈ [1, tX], X ∈ {T,F}: vX(i) = 1 ⇔ vertex vXi is used in G;

- hX(i) ∈ [0, ρ], i ∈ [1, tX], X ∈ {C,T,F}: the height of the ρ-fringe-tree rooted at vertex vXi in G;

- δXfr (i, [ψ]) ∈ [0, 1], i ∈ [1, tX], ψ ∈ FX
i ∪ FΛ,X ∈ {T,F}: δXfr (i, [ψ]) = 1 ⇔ ψ is the ρ-fringe-tree at

vertex vXi, where ψ ∈ FΛ means that the height of the ρ-fringe-tree is 0;

- degexX (i) ∈ [0, 3], i ∈ [1, tX],X ∈ {C,T,F}: the number of children of the root of the ρ-fringe-tree
rooted at vertex vXi in G;

- σ(k, i) ∈ [0, 1], k ∈ [1, kC] = I(≥2) ∪ I(≥1), i ∈ [1, tT]: σ(k, i) = 1 ⇔ the ρ-fringe-tree Tv rooted at

vertex v = vTi with color k has the largest height among such trees;

constraints:∑
ψ∈FC

i ∪FΛ

δCfr(i, [ψ]) = 1,
∑

ψ∈FC
i ∪FΛ

degr([ψ]) · δCfr(i, [ψ]) = degexC (i), i ∈ [1, tC],

∑
ψ∈FX

i ∪FΛ

δXfr (i, [ψ]) = vX(i),
∑

ψ∈FX
i ∪FΛ

degr([ψ]) · δXfr (i, [ψ]) = degexX (i), i ∈ [1, tX],X ∈ {T,F}, (16)
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∑
ψ∈FF

i [ρ]

δFfr(i, [ψ]) ≥ vF(i)− eF(i+ 1), i ∈ [1, tF] (e
F(tF + 1) = 0), (17)

∑
ψ∈FX

i

ht([ψ]) · δXfr (i, [ψ]) = hX(i), i ∈ [1, tX],X ∈ {C,T,F}, (18)

∑
ψ∈FX

i
i∈[1,tX],X∈{C,T,F}

n([ψ]) · δXfr (i, [ψ]) +
∑

i∈[1,tX],X∈{T,F}

vX(i) + tC = nG, (19)

hC(i) ≥ chLB(i)− n∗δFχ(i), clrF(i) + ρ ≥ chLB(i),

hC(i) ≤ chUB(i), clrF(i) + ρ ≤ chUB(i) + n∗(1− δFχ(i)), i ∈ [1, t̃C], (20)

chLB(i) ≤ hC(i) ≤ chUB(i), i ∈ [t̃C + 1, tC], (21)

hT(i) ≤ chUB(k) + n∗(δFχ(t̃C + i) + 1− χT(i, k)),

clrF(t̃C + i) + ρ ≤ chUB(k) + n∗(2− δFχ(t̃C + i)− χT(i, k)),

k ∈ [1, kC], i ∈ [1, tT], (22)

∑
i∈[1,tT]

σ(k, i) = δTχ (k), k ∈ [1, kC], (23)

χT(i, k) ≥ σ(k, i),

hT(i) ≥ chLB(k)− n∗(δFχ(t̃C + i) + 1− σ(k, i)),

clrF(t̃C + i) + ρ ≥ chLB(k)− n∗(2− δFχ(t̃C + i)− σ(k, i)), k ∈ [1, kC], i ∈ [1, tT]. (24)

3.4 Descriptor for the Number of Specified Degree

We include constraints to compute descriptors dgintd (G), d ∈ [1, 4].

variables:

- degX(i) ∈ [0, 4], i ∈ [1, tX], X ∈ {C,T,F}: the degree degG(v
X
i) of vertex v

X
i in G;

- degCT(i) ∈ [0, 4], i ∈ [1, tC]: the number of edges from vertex vCi to vertices vTj , j ∈ [1, tT];

- degTC(i) ∈ [0, 4], i ∈ [1, tC]: the number of edges from vertices vTj , j ∈ [1, tT] to vertex vCi;
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- δCdg(i, d) ∈ [0, 1], i ∈ [1, tC], d ∈ [1, 4], δXdg(i, d) ∈ [0, 1], i ∈ [1, tX], d ∈ [0, 4], X ∈ {T,F}:
δXdg(i, d) = 1 ⇔ degX(i) = d;

- dg(d) ∈ [dgLB(d), dgUB(d)], d ∈ [1, 4]: the number of interior-vertices v with degG(v) = d;

- degintC (i) ∈ [1, 4], i ∈ [1, tC], degintX (i) ∈ [0, 4], i ∈ [1, tX],X ∈ {T,F}: the interior-degree
deg(V int,Eint)(v

X
i); i.e., the number of interior-edges incident to vertex vXi;

- δintdg,C(i, d) ∈ [0, 1], i ∈ [1, tC], d ∈ [1, 4], δintdg,X(i, d) ∈ [0, 1], i ∈ [1, tX], d ∈ [0, 4], X ∈ {T,F}:
δintdg,X(i, d) = 1 ⇔ degintX (i) = d;

- dgint(d) ∈ [dgLB(d),dgUB(d)], d ∈ [1, 4]: the number of interior-vertices v with the interior-degree
deg(V int,Eint)(v) = d;

constraints:∑
k∈I+

(≥2)
(i)∪I+

(≥1)
(i)

δTχ (k) = degCT(i),
∑

k∈I−
(≥2)

(i)∪I−
(≥1)

(i)

δTχ (k) = degTC(i), i ∈ [1, tC], (25)

d̃eg
−
C(i) + d̃eg

+

C(i) + degCT(i) + degTC(i) + δFχ(i) = degintC (i), i ∈ [1, t̃C], (26)

d̃eg
−
C(i) + d̃eg

+

C(i) + degCT(i) + degTC(i) = degintC (i), i ∈ [t̃C + 1, tC], (27)

degintC (i) + degexC (i) = degC(i), i ∈ [1, tC], (28)

∑
ψ∈FC

i [ρ]

δCfr(i, [ψ]) ≥ 2− degintC (i) i ∈ [1, tC], (29)

2vT(i) + δFχ(t̃C + i) = degintT (i),

degintT (i) + degexT (i) = degT(i), i ∈ [1, tT] (e
T(1) = eT(tT + 1) = 0), (30)

vF(i) + eF(i+ 1) = degintF (i),

degintF (i) + degexF (i) = degF(i), i ∈ [1, tF] (e
F(1) = eF(tF + 1) = 0), (31)

∑
d∈[0,4]

δXdg(i, d) = 1,
∑
d∈[1,4]

d · δXdg(i, d) = degX(i),

∑
d∈[0,4]

δintdg,X(i, d) = 1,
∑
d∈[1,4]

d · δintdg,X(i, d) = degintX (i), i ∈ [1, tX],X ∈ {T,C,F}, (32)

∑
i∈[1,tC]

δCdg(i, d) +
∑

i∈[1,tT]

δTdg(i, d) +
∑

i∈[1,tF]

δFdg(i, d) = dg(d),

∑
i∈[1,tC]

δintdg,C(i, d) +
∑

i∈[1,tT]

δintdg,T(i, d) +
∑

i∈[1,tF]

δintdg,F(i, d) = dgint(d), d ∈ [1, 4]. (33)
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3.5 Assigning Multiplicity

We prepare an integer variable β(e) for each edge e in the scheme graph SG to denote the bond-
multiplicity of e in a selected graph G and include necessary constraints for the variables to satisfy
in G.

constants:

- βr([ψ]): the sum of bond-multiplicities of edges incident to the root of a tree ψ ∈ F∗;

variables:

- βX(i) ∈ [0, 3], i ∈ [2, tX], X ∈ {T,F}: the bond-multiplicity of edge eXi;

- βC(i) ∈ [0, 3], i ∈ [k̃C + 1,mC] = I(≥1) ∪ I(0/1) ∪ I(=1): the bond-multiplicity of edge ai ∈
E(≥1) ∪ E(0/1) ∪ E(=1);

- β+(k), β−(k) ∈ [0, 3], k ∈ [1, kC] = I(≥2) ∪ I(≥1): the bond-multiplicity of the first (resp., last)
edge of the pure path Pk;

- βin(c) ∈ [0, 3], c ∈ [1, cF]: the bond-multiplicity of the first edge of the leaf path Qc rooted at
vertex c;

- βXex(i) ∈ [0, 4], i ∈ [1, tX],X ∈ {C,T,F}: the sum βTv(v) of bond-multiplicities of edges in the
ρ-fringe-tree Tv rooted at interior-vertex v = vXi;

- δXβ (i,m) ∈ [0, 1], i ∈ [2, tX], m ∈ [0, 3], X ∈ {T,F}: δXβ (i,m) = 1 ⇔ βX(i) = m;

- δCβ (i,m) ∈ [0, 1], i ∈ [k̃C,mC] = I(≥1) ∪ I(0/1) ∪ I(=1), m ∈ [0, 3]: δCβ (i,m) = 1 ⇔ βC(i) = m;

- δ+β (k,m), δ−β (k,m) ∈ [0, 1], k ∈ [1, kC] = I(≥2) ∪ I(≥1), m ∈ [0, 3]: δ+β (k,m) = 1 (resp., δ−β (k,m) =

1) ⇔ β+(k) = m (resp., β−(k) = m);

- δinβ (c,m) ∈ [0, 1], c ∈ [1, cF], m ∈ [0, 3]: δinβ (c,m) = 1 ⇔ βin(c) = m;

- bdint(m) ∈ [0, 2nintUB], m ∈ [1, 3]: the number of interior-edges with bond-multiplicity m in G;

- bdX(m) ∈ [0, 2nintUB],X ∈ {C,T,CT,TC}, bdX(m) ∈ [0, 2nintUB],X ∈ {F,CF,TF}, m ∈ [1, 3]: the
number of interior-edges e ∈ EX with bond-multiplicity m in G;

constraints:

eC(i) ≤ βC(i) ≤ 3eC(i), i ∈ [k̃C + 1,mC] = I(≥1) ∪ I(0/1) ∪ I(=1), (34)

eX(i) ≤ βX(i) ≤ 3eX(i), i ∈ [2, tX],X ∈ {T,F}, (35)

δTχ (k) ≤ β+(k) ≤ 3δTχ (k), δTχ (k) ≤ β−(k) ≤ 3δTχ (k), k ∈ [1, kC], (36)

δFχ(c) ≤ βin(c) ≤ 3δFχ(c), c ∈ [1, cF], (37)
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∑
m∈[0,3]

δXβ (i,m) = 1,
∑

m∈[0,3]

m · δXβ (i,m) = βX(i), i ∈ [2, tX],X ∈ {T,F}, (38)

∑
m∈[0,3]

δCβ (i,m) = 1,
∑

m∈[0,3]

m · δCβ (i,m) = βC(i), i ∈ [k̃C + 1,mC], (39)

∑
m∈[0,3]

δ+β (k,m) = 1,
∑

m∈[0,3]

m · δ+β (k,m) = β+(k), k ∈ [1, kC],∑
m∈[0,3]

δ−β (k,m) = 1,
∑

m∈[0,3]

m · δ−β (k,m) = β−(k), k ∈ [1, kC],∑
m∈[0,3]

δinβ (c,m) = 1,
∑

m∈[0,3]

m · δinβ (c,m) = βin(c), c ∈ [1, cF], (40)

∑
ψ∈FX

i

βr([ψ]) · δXfr (i, [ψ]) = βXex(i), i ∈ [1, tX],X ∈ {C,T,F}, (41)

∑
i∈[k̃C+1,mC]

δCβ (i,m) = bdC(m),
∑

i∈[2,tT]

δTβ (i,m) = bdT(m),

∑
k∈[1,kC]

δ+β (k,m) = bdCT(m),
∑

k∈[1,kC]

δ−β (k,m) = bdTC(m),

∑
i∈[2,tF]

δFβ (i,m) = bdF(m),
∑

c∈[1,t̃C]

δinβ (c,m) = bdCF(m),

∑
c∈[t̃C+1,cF]

δinβ (c,m) = bdTF(m),

bdC(m) + bdT(m) + bdF(m) + bdCT(m) + bdTC(m) + bdTF(m) + bdCF(m) = bdint(m),

m ∈ [1, 3]. (42)

3.6 Assigning Chemical Elements and Valence Condition

We include constraints so that each vertex u in a selected graph H satisfies the valence condition; i.e.,∑
uv∈E(H) β(uv) ≤ val(α(u)). With these constraints, a chemical graph G = (H,α, β) on a selected

subgraph H will be constructed.

constants:

- Subsets Λint,Λex ⊆ Λ of chemical elements, where we denote by [e] (resp., [e]int and [e]ex) of a
standard encoding of an element e in the set Λ (resp., Λint

ϵ and Λex
ϵ );

- A valence function: val : Λ → [1, 4];

- A function mass∗ : Λ → Z (we let mass(a) denote the observed mass of a chemical element a ∈ Λ,
and define mass∗(a) ≜ ⌊10 ·mass(a)⌋);
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- Subsets Λ∗(i) ⊆ Λint, i ∈ [1, tC];

- naLB(a),naUB(a) ∈ [0, n∗], a ∈ Λ: lower and upper bounds on the number of vertices v with
α(v) = a;

- naintLB(a),na
int
UB(a) ∈ [0, n∗], a ∈ Λint: lower and upper bounds on the number of interior-vertices v

with α(v) = a;

- αr([ψ]) ∈ [Λex],∈ F∗ ∪ FΛ: the chemical element α(r) of the root r of ψ;

- naexa ([ψ]) ∈ [0, n∗], a ∈ Λex, ψ ∈ F∗: the frequency of chemical element a in the set of non-rooted
vertices in ψ;

- nH([ψ], d) ∈ [0, 3ρ], ψ ∈ F∗ ∪ FΛ, d ∈ [0, 3]: the number of non-root vertices with deghyd(v) = d in
ψ.

variables:

- βCT(i), βTC(i) ∈ [0, 3], i ∈ [1, tT]: the bond-multiplicity of edge eCT
j,i (resp., e

TC
j,i) if one exists;

- βCF(i), βTF(i) ∈ [0, 3], i ∈ [1, tF]: the bond-multiplicity of eCF
j,i (resp., e

TF
j,i) if one exists;

- αX(i) ∈ [Λint
ϵ ], δXα (i, [a]

int) ∈ [0, 1], a ∈ Λint
ϵ , i ∈ [1, tX],X ∈ {C,T,F}: αX(i) = [a]int ≥ 1 (resp.,

αX(i) = 0) ⇔ δXα (i, [a]
int) = 1 (resp., δXα (i, 0) = 0) ⇔ α(vXi) = a ∈ Λ (resp., vertex vXi is not

used in G);

- δXα (i, [a]
int) ∈ [0, 1], i ∈ [1, tX], a ∈ Λint,X ∈ {C,T,F}: δXα (i, [a]t) = 1 ⇔ α(vXi) = a;

- Mass ∈ Z+:
∑

v∈V (H)mass∗(α(v));

- na([a]) ∈ [naLB(a), naUB(a)], a ∈ Λ: the number of vertices v ∈ V (H) with α(v) = a;

- naint([a]int) ∈ [naintLB(a), na
int
UB(a)], a ∈ Λ,X ∈ {C,T,F}: the number of interior-vertices v ∈ V (G)

with α(v) = a;

- naexX ([a]ex), naex([a]ex) ∈ [0, naUB(a)], a ∈ Λ, X ∈ {C,T,F}: the number of exterior-vertices rooted
at vertices v ∈ VX and the number of exterior-vertices v such that α(v) = a;

- δXhyd(i, d) ∈ [0, 1], d ∈ [0, 3],X ∈ {C,T,F}: δXhyd(i, d) ⇔ deghyd(v
X
i) = d;

- hydg(d), d ∈ [0, 3]: the number of vertices v with deghyd(v
X
i) = d;

constraints:

β+(k)− 3(eT(i)− χT(i, k) + 1) ≤ βCT(i) ≤ β+(k) + 3(eT(i)− χT(i, k) + 1), i ∈ [1, tT],

β−(k)− 3(eT(i+ 1)− χT(i, k) + 1) ≤ βTC(i) ≤ β−(k) + 3(eT(i+ 1)− χT(i, k) + 1), i ∈ [1, tT],

k ∈ [1, kC],
(43)

βin(c)− 3(eF(i)− χF(i, c) + 1) ≤ βCF(i) ≤ βin(c) + 3(eF(i)− χF(i, c) + 1), i ∈ [1, tF], c ∈ [1, t̃C],

βin(c)− 3(eF(i)− χF(i, c) + 1) ≤ βTF(i) ≤ βin(c) + 3(eF(i)− χF(i, c) + 1), i ∈ [1, tF], c ∈ [t̃C + 1, cF],

(44)
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∑
a∈Λint

δCα (i, [a]
int) = 1,

∑
a∈Λint

[a]int · δXα (i, [a]int) = αC(i), i ∈ [1, tC],∑
a∈Λint

δXα (i, [a]
int) = vX(i),

∑
a∈Λint

[a]int · δXα (i, [a]int) = αX(i), i ∈ [1, tX],X ∈ {T,F}, (45)

∑
ψ∈FX

i ∪FΛ

αr([ψ]) · δXfr (i, [ψ]) = αX(i), i ∈ [1, tX],X ∈ {C,T,F}, (46)

∑
j∈IC(i)

βC(j) +
∑

k∈I+
(≥2)

(i)∪I+
(≥1)

(i)

β+(k) +
∑

k∈I−
(≥2)

(i)∪I−
(≥1)

(i)

β−(k)

+βin(i) + βCex(i) +
∑
d∈[0,3]

d · δChyd(i, d) =
∑

a∈Λint

val(a)δCα (i, [a]
int), i ∈ [1, t̃C], (47)

∑
j∈IC(i)

βC(j) +
∑

k∈I+
(≥2)

(i)∪I+
(≥1)

(i)

β+(k) +
∑

k∈I−
(≥2)

(i)∪I−
(≥1)

(i)

β−(k)

+βCex(i) +
∑
d∈[0,3]

d · δChyd(i, d) =
∑

a∈Λint

val(a)δCα (i, [a]
int), i ∈ [t̃C + 1, tC], (48)

βT(i) + βT(i+1) + βTex(i) + βCT(i) + βTC(i)

+βin(t̃C + i) +
∑
d∈[0,3]

d · δThyd(i, d) =
∑

a∈Λint

val(a)δTα (i, [a]
int),

i ∈ [1, tT] (β
T(1) = βT(tT + 1) = 0), (49)

βF(i) + βF(i+1) + βCF(i) + βTF(i)

+βFex(i) +
∑
d∈[0,3]

d · δFhyd(i, d) =
∑

a∈Λint

val(a)δFα(i, [a]
int),

i ∈ [1, tF] (β
F(1) = βF(tF + 1) = 0), (50)

∑
i∈[1,tX]

δXα (i, [a]
int) = naX([a]

int), a ∈ Λint,X ∈ {C,T,F}, (51)

∑
ψ∈FX

i

naexa ([ψ]) · δXfr (i, [ψ]) = naexX ([a]ex), a ∈ Λex,X ∈ {C,T,F}, (52)
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naC([a]
int) + naT([a]

int) + naF([a]
int) = naint([a]int), a ∈ Λint,∑

X∈{C,T,F}

naexX ([a]ex) = naex([a]ex), a ∈ Λex,

naint([a]int) + naex([a]ex) = na([a]), a ∈ Λint ∩ Λex,

naint([a]int) = na([a]), a ∈ Λint \ Λex,

naex([a]ex) = na([a]), a ∈ Λex \ Λint, (53)

∑
a∈Λ

mass∗(a) · na([a]) = Mass, (54)

∑
d∈[0,3]

δChyd(i, d) = 1, i ∈ [1, tC],∑
d∈[0,3]

δXhyd(i, d) = vX(i), i ∈ [1, tX],X ∈ {T,F}, (55)

∑
i∈[1,tX],X∈{C,T,F}

δXhyd(i, d) +
∑

ψ∈FX
i ,i∈[1,tX],X∈{C,T,F}

nH([ψ], d) · δXfr (i, [ψ]) = hydg(d), d ∈ [0, 3], (56)

∑
a∈Λ∗(i)

δCα (i, [a]
int) = 1, i ∈ [1, tC]. (57)

3.7 Constraints for Bounds on the Number of Bonds

We include constraints for specification of lower and upper bounds bdLB and bdUB.

constants:

- bdm,LB(i),bdm,UB(i) ∈ [0, nintUB], i ∈ [1,mC], m ∈ [2, 3]: lower and upper bounds on the number of
edges e ∈ E(Pi) with bond-multiplicity β(e) = m in the pure path Pi for edge ei ∈ EC;

variables :

- bdT(k, i,m) ∈ [0, 1], k ∈ [1, kC], i ∈ [2, tT], m ∈ [2, 3]: bdT(k, i,m) = 1 ⇔ the pure path Pk for
edge ek ∈ EC contains edge eTi with β(e

T
i) = m;

constraints:

bdm,LB(i) ≤ δCβ (i,m) ≤ bdm,UB(i), i ∈ I(=1) ∪ I(0/1),m ∈ [2, 3], (58)

bdT(k, i,m) ≥ δTβ (i,m) + χT(i, k)− 1, k ∈ [1, kC], i ∈ [2, tT],m ∈ [2, 3], (59)
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∑
j∈[2,tT]

δTβ (j,m) ≥
∑

k∈[1,kC],i∈[2,tT]

bdT(k, i,m), m ∈ [2, 3], (60)

bdm,LB(k) ≤
∑

i∈[2,tT]

bdT(k, i,m) + δ+β (k,m) + δ−β (k,m) ≤ bdm,UB(k),

k ∈ [1, kC],m ∈ [2, 3]. (61)

3.8 Descriptor for the Number of Adjacency-configurations

We call a tuple (a, b,m) ∈ Λ × Λ × [1, 3] an adjacency-configuration. The adjacency-configuration
of an edge-configuration (µ = ad, µ′ = bd′,m) is defined to be (a, b,m). We include constraints to
compute the frequency of each adjacency-configuration in an inferred chemical graph G.

constants:

- A set Γint of edge-configurations γ = (µ, ξ,m) with µ ≤ ξ;

- Let γ of an edge-configuration γ = (µ, ξ,m) denote the edge-configuration (ξ, µ,m);

- Let Γint
< = {(µ, ξ,m) ∈ Γint | µ < ξ}, Γint

= = {(µ, ξ,m) ∈ Γint | µ = ξ} and Γint
> = {γ | γ ∈ Γint

< };

- Let Γint
ac,<, Γ

int
ac,= and Γint

ac,> denote the sets of the adjacency-configurations of edge-configurations

in the sets Γint
< , Γint

= and Γint
> , respectively;

- Let ν of an adjacency-configuration ν = (a, b,m) denote the adjacency-configuration (b, a,m);

- Prepare a coding of the set Γint
ac ∪ Γint

ac,> and let [ν]int denote the coded integer of an element ν in

Γint
ac ∪ Γint

ac,>;

- Choose subsets Γ̃C
ac, Γ̃

T
ac, Γ̃

CT
ac , Γ̃

TC
ac , Γ̃

F
ac, Γ̃

CF
ac , Γ̃

TF
ac ⊆ Γint

ac ∪ Γint
ac,>; To compute the frequency of

adjacency-configurations exactly, set Γ̃C
ac := Γ̃T

ac := Γ̃CT
ac := Γ̃TC

ac := Γ̃F
ac := Γ̃CF

ac := Γ̃TF
ac :=

Γint
ac ∪ Γint

ac,>;

- acintLB(ν), ac
int
UB(ν) ∈ [0, 2nintUB], ν = (a, b,m) ∈ Γint

ac : lower and upper bounds on the number of
interior-edges e = uv with α(u) = a, α(v) = b and β(e) = m;

variables:

- acint([ν]int) ∈ [acintLB(ν), ac
int
UB(ν)], ν ∈ Γint

ac : the number of interior-edges with adjacency-configuration
ν;

- acC([ν]
int) ∈ [0,mC], ν ∈ Γ̃C

ac, acT([ν]
int) ∈ [0, tT], ν ∈ Γ̃T

ac, acF([ν]
int) ∈ [0, tF], ν ∈ Γ̃F

ac: the number
of edges eC ∈ EC (resp., edges eT ∈ ET and edges eF ∈ EF) with adjacency-configuration ν;

- acCT([ν]
int) ∈ [0,min{kC, tT}], ν ∈ Γ̃CT

ac , acTC([ν]
int) ∈ [0,min{kC, tT}], ν ∈ Γ̃CT

ac , acCF([ν]
int) ∈

[0, t̃C], ν ∈ Γ̃CF
ac , acTF([ν]

int) ∈ [0, tT], ν ∈ Γ̃TF
ac : the number of edges eCT ∈ ECT (resp., edges

eTC ∈ ETC and edges eCF ∈ ECF and eTF ∈ ETF) with adjacency-configuration ν;

- δCac(i, [ν]
int) ∈ [0, 1], i ∈ [k̃C + 1,mC] = I(≥1) ∪ I(0/1) ∪ I(=1), ν ∈ Γ̃C

ac, δ
T
ac(i, [ν]

int) ∈ [0, 1], i ∈
[2, tT], ν ∈ Γ̃T

ac, δ
F
ac(i, [ν]

int) ∈ [0, 1], i ∈ [2, tF], ν ∈ Γ̃F
ac: δ

X
ac(i, [ν]

int) = 1 ⇔ edge eXi has adjacency-
configuration ν;
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- δCT
ac (k, [ν]int), δTC

ac (k, [ν]int) ∈ [0, 1], k ∈ [1, kC] = I(≥2) ∪ I(≥1), ν ∈ Γ̃CT
ac : δCT

ac (k, [ν]int) = 1 (resp.,

δTC
ac (k, [ν]int) = 1) ⇔ edge eCT

tail(k),j (resp., eTC
head(k),j) for some j ∈ [1, tT] has adjacency-

configuration ν;

- δCF
ac (c, [ν]int) ∈ [0, 1], c ∈ [1, t̃C], ν ∈ Γ̃CF

ac : δCF
ac (c, [ν]int) = 1 ⇔ edge eCF

c,i for some i ∈ [1, tF] has
adjacency-configuration ν;

- δTF
ac (i, [ν]int) ∈ [0, 1], i ∈ [1, tT], ν ∈ Γ̃TF

ac : δTF
ac (i, [ν]int) = 1 ⇔ edge eTF

i,j for some j ∈ [1, tF] has
adjacency-configuration ν;

- αCT(k), αTC(k) ∈ [0, |Λint|], k ∈ [1, kC]: α(v) of the edge (v
C
tail(k), v) ∈ ECT (resp., (v, vChead(k)) ∈

ETC) if any;

- αCF(c) ∈ [0, |Λint|], c ∈ [1, t̃C]: α(v) of the edge (vCc, v) ∈ ECF if any;

- αTF(i) ∈ [0, |Λint|], i ∈ [1, tT]: α(v) of the edge (vTi, v) ∈ ETF if any;

- ∆C+
ac (i),∆C−

ac (i),∈ [0, |Λint|], i ∈ [k̃C+1,mC], ∆
T+
ac (i),∆T−

ac (i) ∈ [0, |Λint|], i ∈ [2, tT], ∆
F+
ac (i),∆F−

ac (i) ∈
[0, |Λint|], i ∈ [2, tF]: ∆X+

ac (i) = ∆X−
ac (i) = 0 (resp., ∆X+

ac (i) = α(u) and ∆X−
ac (i) = α(v)) ⇔ edge

eXi = (u, v) ∈ EX is used in G (resp., eXi ̸∈ E(G));

- ∆CT+
ac (k),∆CT−

ac (k) ∈ [0, |Λint|], k ∈ [1, kC] = I(≥2) ∪ I(≥1): ∆CT+
ac (k) = ∆CT−

ac (k) = 0 (resp.,

∆CT+
ac (k) = α(u) and ∆CT−

ac (k) = α(v)) ⇔ edge eCT
tail(k),j = (u, v) ∈ ECT for some j ∈ [1, tT] is

used in G (resp., otherwise);

- ∆TC+
ac (k),∆TC−

ac (k) ∈ [0, |Λint|], k ∈ [1, kC] = I(≥2)∪I(≥1): Analogous with ∆CT+
ac (k) and ∆CT−

ac (k);

- ∆CF+
ac (c) ∈ [0, |Λint|],∆CF−

ac (c) ∈ [0, |Λint|], c ∈ [1, t̃C]: ∆
CF+
ac (c) = ∆CF−

ac (c) = 0 (resp., ∆CF+
ac (c) =

α(u) and ∆CF−
ac (c) = α(v)) ⇔ edge eCF

c,i = (u, v) ∈ ECF for some i ∈ [1, tF] is used in G (resp.,
otherwise);

- ∆TF+
ac (i) ∈ [0, |Λint|],∆TF−

ac (i) ∈ [0, |Λint|], i ∈ [1, tT]: Analogous with ∆CF+
ac (c) and ∆CF−

ac (c);

constraints:

acC([ν]
int) = 0, ν ∈ Γint

ac \ Γ̃C
ac,

acT([ν]
int) = 0, ν ∈ Γint

ac \ Γ̃T
ac,

acF([ν]
int) = 0, ν ∈ Γint

ac \ Γ̃F
ac,

acCT([ν]
int) = 0, ν ∈ Γint

ac \ Γ̃CT
ac ,

acTC([ν]
int) = 0, ν ∈ Γint

ac \ Γ̃TC
ac ,

acCF([ν]
int) = 0, ν ∈ Γint

ac \ Γ̃CF
ac ,

acTF([ν]
int) = 0, ν ∈ Γint

ac \ Γ̃TF
ac ,

(62)
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∑
(a,b,m)=ν∈Γint

ac

acC([ν]
int) =

∑
i∈[k̃C+1,mC]

δCβ (i,m), m ∈ [1, 3],

∑
(a,b,m)=ν∈Γint

ac

acT([ν]
int) =

∑
i∈[2,tT]

δTβ (i,m), m ∈ [1, 3],

∑
(a,b,m)=ν∈Γint

ac

acF([ν]
int) =

∑
i∈[2,tF]

δFβ (i,m), m ∈ [1, 3],

∑
(a,b,m)=ν∈Γint

ac

acCT([ν]
int) =

∑
k∈[1,kC]

δ+β (k,m), m ∈ [1, 3],

∑
(a,b,m)=ν∈Γint

ac

acTC([ν]
int) =

∑
k∈[1,kC]

δ−β (k,m), m ∈ [1, 3],

∑
(a,b,m)=ν∈Γint

ac

acCF([ν]
int) =

∑
c∈[1,t̃C]

δinβ (c,m), m ∈ [1, 3],

∑
(a,b,m)=ν∈Γint

ac

acTF([ν]
int) =

∑
c∈[t̃C+1,cF]

δinβ (c,m), m ∈ [1, 3],

(63)

∑
ν=(a,b,m)∈Γ̃C

ac

m · δCac(i, [ν]int) = βC(i),

∆C+
ac (i) +

∑
ν=(a,b,m)∈Γ̃C

ac

[a]intδCac(i, [ν]
int) = αC(tail(i)),

∆C−
ac (i) +

∑
ν=(a,b,m)∈Γ̃C

ac

[b]intδCac(i, [ν]
int) = αC(head(i)),

∆C+
ac (i) + ∆C−

ac (i) ≤ 2|Λint|(1− eC(i)), i ∈ [k̃C + 1,mC],∑
i∈[k̃C+1,mC]

δCac(i, [ν]
int) = acC([ν]

int), ν ∈ Γ̃C
ac, (64)

∑
ν=(a,b,m)∈Γ̃T

ac

m · δTac(i, [ν]int) = βT(i),

∆T+
ac (i) +

∑
ν=(a,b,m)∈Γ̃T

ac

[a]intδTac(i, [ν]
int) = αT(i− 1),

∆T−
ac (i) +

∑
ν=(a,b,m)∈Γ̃T

ac

[b]intδTac(i, [ν]
int) = αT(i),

∆T+
ac (i) + ∆T−

ac (i) ≤ 2|Λint|(1− eT(i)), i ∈ [2, tT],∑
i∈[2,tT]

δTac(i, [ν]
int) = acT([ν]

int), ν ∈ Γ̃T
ac, (65)
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∑
ν=(a,b,m)∈Γ̃F

ac

m · δFac(i, [ν]int) = βF(i),

∆F+
ac (i) +

∑
ν=(a,b,m)∈Γ̃F

ac

[a]intδFac(i, [ν]
int) = αF(i− 1),

∆F−
ac (i) +

∑
ν=(a,b,m)∈Γ̃F

ac

[b]intδFac(i, [ν]
int) = αF(i),

∆F+
ac (i) + ∆F−

ac (i) ≤ 2|Λex|(1− eF(i)), i ∈ [2, tF],∑
i∈[2,tF]

δFac(i, [ν]
int) = acF([ν]

int), ν ∈ Γ̃F
ac, (66)

αT(i) + |Λint|(1− χT(i, k) + eT(i)) ≥ αCT(k),

αCT(k) ≥ αT(i)− |Λint|(1− χT(i, k) + eT(i)), i ∈ [1, tT],∑
ν=(a,b,m)∈Γ̃CT

ac

m · δCT
ac (k, [ν]int) = β+(k),

∆CT+
ac (k) +

∑
ν=(a,b,m)∈Γ̃CT

ac

[a]intδCT
ac (k, [ν]int) = αC(tail(k)),

∆CT−
ac (k) +

∑
ν=(a,b,m)∈Γ̃CT

ac

[b]intδCT
ac (k, [ν]int) = αCT(k),

∆CT+
ac (k) + ∆CT−

ac (k) ≤ 2|Λint|(1− δTχ (k)), k ∈ [1, kC],∑
k∈[1,kC]

δCT
ac (k, [ν]int) = acCT([ν]

int), ν ∈ Γ̃CT
ac , (67)

αT(i) + |Λint|(1− χT(i, k) + eT(i+ 1)) ≥ αTC(k),

αTC(k) ≥ αT(i)− |Λint|(1− χT(i, k) + eT(i+ 1)), i ∈ [1, tT],∑
ν=(a,b,m)∈Γ̃TC

ac

m · δTC
ac (k, [ν]int) = β−(k),

∆TC+
ac (k) +

∑
ν=(a,b,m)∈Γ̃TC

ac

[a]intδTC
ac (k, [ν]int) = αTC(k),

∆TC−
ac (k) +

∑
ν=(a,b,m)∈Γ̃TC

ac

[b]intδTC
ac (k, [ν]int) = αC(head(k)),

∆TC+
ac (k) + ∆TC−

ac (k) ≤ 2|Λint|(1− δTχ (k)), k ∈ [1, kC],∑
k∈[1,kC]

δTC
ac (k, [ν]int) = acTC([ν]

int), ν ∈ Γ̃TC
ac , (68)
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αF(i) + |Λint|(1− χF(i, c) + eF(i)) ≥ αCF(c),

αCF(c) ≥ αF(i)− |Λint|(1− χF(i, c) + eF(i)), i ∈ [1, tF],∑
ν=(a,b,m)∈Γ̃CF

ac

m · δCF
ac (c, [ν]int) = βin(c),

∆CF+
ac (c) +

∑
ν=(a,b,m)∈Γ̃CF

ac

[a]intδCF
ac (c, [ν]int) = αC(head(c)),

∆CF−
ac (c) +

∑
ν=(a,b,m)∈Γ̃CF

ac

[b]intδCF
ac (c, [ν]int) = αCF(c),

∆CF+
ac (c) + ∆CF−

ac (c) ≤ 2max{|Λint|, |Λint|}(1− δFχ(c)), c ∈ [1, t̃C],∑
c∈[1,t̃C]

δCF
ac (c, [ν]int) = acCF([ν]

int), ν ∈ Γ̃CF
ac , (69)

αF(j) + |Λint|(1− χF(j, i+ t̃C) + eF(j)) ≥ αTF(i),

αTF(i) ≥ αF(j)− |Λint|(1− χF(j, i+ t̃C) + eF(j)), j ∈ [1, tF],∑
ν=(a,b,m)∈Γ̃TF

ac

m · δTF
ac (i, [ν]int) = βin(i+ t̃C),

∆TF+
ac (i) +

∑
ν=(a,b,m)∈Γ̃TF

ac

[a]intδTF
ac (i, [ν]int) = αT(i),

∆TF−
ac (i) +

∑
ν=(a,b,m)∈Γ̃TF

ac

[b]intδTF
ac (i, [ν]int) = αTF(i),

∆TF+
ac (i) + ∆TF−

ac (i) ≤ 2max{|Λint|, |Λint|}(1− δFχ(i+ t̃C)), i ∈ [1, tT],∑
i∈[1,tT]

δTF
ac (i, [ν]int) = acTF([ν]

int), ν ∈ Γ̃TF
ac , (70)

∑
X∈{C,T,F,CT,TC,CF,TF}

(acX([ν]
int) + acX([ν]

int)) = acint([ν]int), ν ∈ Γint
ac,<,∑

X∈{C,T,F,CT,TC,CF,TF}

acX([ν]
int) = acint([ν]int), ν ∈ Γint

ac,=. (71)

3.9 Descriptor for the Number of Chemical Symbols

We include constraints for computing the frequency of each chemical symbol in Λdg. Let cs(v) denote
the chemical symbol of a vertex v in a chemical graph G to be inferred; i.e., cs(v) = µ = ad ∈ Λdg

such that α(v) = a and degG(v) = d.

constants:

- A set Λint
dg of chemical symbols;

- Prepare a coding of each of the two sets Λint
dg and let [µ]int denote the coded integer of an element

µ ∈ Λint
dg ;
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- Choose subsets Λ̃C
dg, Λ̃

T
dg, Λ̃

F
dg ⊆ Λint

dg : To compute the frequency of chemical symbols exactly, set

Λ̃C
dg := Λ̃T

dg := Λ̃F
dg := Λint

dg ;

variables:

- nsint([µ]int) ∈ [0,nintUB], µ ∈ Λint
dg : the number of interior-vertices v with cs(v) = µ;

- δXns(i, [µ]
int) ∈ [0, 1], i ∈ [1, tX], µ ∈ Λint

dg , X ∈ {C,T,F};

constraints: ∑
µ∈Λ̃X

dg∪{ϵ}

δXns(i, [µ]
int) = 1,

∑
µ=ad∈Λ̃X

dg

[a]int · δXns(i, [µ]int) = αX(i),

∑
µ=ad∈Λ̃X

dg

d · δXns(i, [µ]int) = degX(i),

i ∈ [1, tX],X ∈ {C,T,F}, (72)

∑
i∈[1,tC]

δCns(i, [µ]
int) +

∑
i∈[1,tT]

δTns(i, [µ]
int) +

∑
i∈[1,tF]

δFns(i, [µ]
int) = nsint([µ]int), µ ∈ Λint

dg . (73)

3.10 Descriptor for the Number of Edge-configurations

We include constraints to compute the frequency of each edge-configuration in an inferred chemical
graph G.

constants:

- A set Γint of edge-configurations γ = (µ, ξ,m) with µ ≤ ξ;

- Let Γint
< = {(µ, ξ,m) ∈ Γint | µ < ξ}, Γint

= = {(µ, ξ,m) ∈ Γint | µ = ξ} and Γint
> = {(ξ, µ,m) |

(µ, ξ,m) ∈ Γint
< };

- Prepare a coding of the set Γint ∪ Γint
> and let [γ]int denote the coded integer of an element γ in

Γint ∪ Γint
> ;

- Choose subsets Γ̃C
ec, Γ̃

T
ec, Γ̃

CT
ec , Γ̃

TC
ec , Γ̃

F
ec, Γ̃

CF
ec , Γ̃

TF
ec ⊆ Γint ∪ Γint

> ; To compute the frequency of edge-

configurations exactly, set Γ̃C
ec := Γ̃T

ec := Γ̃CT
ec := Γ̃TC

ec := Γ̃F
ec := Γ̃CF

ec := Γ̃TF
ec := Γint ∪ Γint

> ;

- ecintLB(γ), ec
int
UB(γ) ∈ [0, 2nintUB], γ = (µ, ξ,m) ∈ Γint: lower and upper bounds on the number of

interior-edges e = uv with cs(u) = µ, cs(v) = ξ and β(e) = m;

variables:

- ecint([γ]int) ∈ [ecintLB(γ), ec
int
UB(γ)], γ ∈ Γint: the number of interior-edges with edge-configuration γ;

- ecC([γ]
int) ∈ [0,mC], γ ∈ Γ̃C

ec, ecT([γ]
int) ∈ [0, tT], γ ∈ Γ̃T

ec, ecF([γ]
int) ∈ [0, tF], γ ∈ Γ̃F

ec: the number
of edges eC ∈ EC (resp., edges eT ∈ ET and edges eF ∈ EF) with edge-configuration γ;

- ecCT([γ]
int) ∈ [0,min{kC, tT}], γ ∈ Γ̃CT

ec , ecTC([γ]
int) ∈ [0,min{kC, tT}], γ ∈ Γ̃CT

ec , ecCF([γ]
int) ∈

[0, t̃C], γ ∈ Γ̃CF
ec , ecTF([γ]

int) ∈ [0, tT], γ ∈ Γ̃TF
ec : the number of edges eCT ∈ ECT (resp., edges

eTC ∈ ETC and edges eCF ∈ ECF and eTF ∈ ETF) with edge-configuration γ;
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- δCec(i, [γ]
int) ∈ [0, 1], i ∈ [k̃C + 1,mC] = I(≥1) ∪ I(0/1) ∪ I(=1), γ ∈ Γ̃C

ec, δ
T
ec(i, [γ]

int) ∈ [0, 1], i ∈
[2, tT], γ ∈ Γ̃T

ec, δ
F
ec(i, [γ]

int) ∈ [0, 1], i ∈ [2, tF], γ ∈ Γ̃F
ec: δXec(i, [γ]

t) = 1 ⇔ edge eXi has edge-
configuration γ;

- δCT
ec,C(k, [γ]

int), δTC
ec,C(k, [γ]

int) ∈ [0, 1], k ∈ [1, kC] = I(≥2) ∪ I(≥1), γ ∈ Γ̃CT
ec : δCT

ec,C(k, [γ]
int) = 1

(resp., δTC
ec,C(k, [γ]

int) = 1) ⇔ edge eCT
tail(k),j (resp., eTC

head(k),j) for some j ∈ [1, tT] has edge-
configuration γ;

- δCF
ec,C(c, [γ]

int) ∈ [0, 1], c ∈ [1, t̃C], γ ∈ Γ̃CF
ec : δCF

ec,C(c, [γ]
int) = 1 ⇔ edge eCF

c,i for some i ∈ [1, tF] has
edge-configuration γ;

- δTF
ec,T(i, [γ]

int) ∈ [0, 1], i ∈ [1, tT], γ ∈ Γ̃TF
ec : δTF

ec,T(i, [γ]
int) = 1 ⇔ edge eTF

i,j for some j ∈ [1, tF] has
edge-configuration γ;

- degCT
T (k),degTC

T (k) ∈ [0, 4], k ∈ [1, kC]: degG(v) of an end-vertex v ∈ VT of the edge (vCtail(k), v) ∈
ECT (resp., (v, vChead(k)) ∈ ETC) if any;

- degCF
F (c) ∈ [0, 4], c ∈ [1, t̃C]: degG(v) of an end-vertex v ∈ VF of the edge (vCc, v) ∈ ECF if any;

- degTF
F (i) ∈ [0, 4], i ∈ [1, tT]: degG(v) of an end-vertex v ∈ VF of the edge (vTi, v) ∈ ETF if any;

- ∆C+
ec (i),∆C−

ec (i),∈ [0, 4], i ∈ [k̃C + 1,mC], ∆
T+
ec (i),∆T−

ec (i) ∈ [0, 4], i ∈ [2, tT], ∆
F+
ec (i),∆F−

ec (i) ∈
[0, 4], i ∈ [2, tF]: ∆

X+
ec (i) = ∆X−

ec (i) = 0 (resp., ∆X+
ec (i) = degG(u) and ∆X−

ec (i) = degG(v)) ⇔ edge
eXi = (u, v) ∈ EX is used in G (resp., eXi ̸∈ E(G));

- ∆CT+
ec (k),∆CT−

ec (k) ∈ [0, 4], k ∈ [1, kC] = I(≥2)∪I(≥1): ∆
CT+
ec (k) = ∆CT−

ec (k) = 0 (resp., ∆CT+
ec (k) =

degG(u) and ∆CT−
ec (k) = degG(v)) ⇔ edge eCT

tail(k),j = (u, v) ∈ ECT for some j ∈ [1, tT] is used
in G (resp., otherwise);

- ∆TC+
ec (k),∆TC−

ec (k) ∈ [0, 4], k ∈ [1, kC] = I(≥2) ∪ I(≥1): Analogous with ∆CT+
ec (k) and ∆CT−

ec (k);

- ∆CF+
ac (c),∆CF−

ec (c) ∈ [0, 4], c ∈ [1, t̃C]: ∆CF+
ec (c) = ∆CF−

ec (c) = 0 (resp., ∆CF+
ec (c) = degG(u) and

∆CF−
ec (c) = degG(v)) ⇔ edge eCF

c,j = (u, v) ∈ ECF for some j ∈ [1, tF] is used in G (resp.,
otherwise);

- ∆TF+
ec (i),∆TF−

ec (i) ∈ [0, 4], i ∈ [1, tT]: Analogous with ∆CF+
ec (c) and ∆CF−

ec (c);

constraints:

ecC([γ]
int) = 0, γ ∈ Γint \ Γ̃C

ec,

ecT([γ]
int) = 0, γ ∈ Γint \ Γ̃T

ec,

ecF([γ]
int) = 0, γ ∈ Γint \ Γ̃F

ec,

ecCT([γ]
int) = 0, γ ∈ Γint \ Γ̃CT

ec ,

ecTC([γ]
int) = 0, γ ∈ Γint \ Γ̃TC

ec ,

ecCF([γ]
int) = 0, γ ∈ Γint \ Γ̃CF

ec ,

ecTF([γ]
int) = 0, γ ∈ Γint \ Γ̃TF

ec ,

(74)
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∑
(µ,µ′,m)=γ∈Γint

ecC([γ]
int) =

∑
i∈[k̃C+1,mC]

δCβ (i,m), m ∈ [1, 3],

∑
(µ,µ′,m)=γ∈Γint

ecT([γ]
int) =

∑
i∈[2,tT]

δTβ (i,m), m ∈ [1, 3],

∑
(µ,µ′,m)=γ∈Γint

ecF([γ]
int) =

∑
i∈[2,tF]

δFβ (i,m), m ∈ [1, 3],

∑
(µ,µ′,m)=γ∈Γint

ecCT([γ]
int) =

∑
k∈[1,kC]

δ+β (k,m), m ∈ [1, 3],

∑
(µ,µ′,m)=γ∈Γint

ecTC([γ]
int) =

∑
k∈[1,kC]

δ−β (k,m), m ∈ [1, 3],

∑
(µ,µ′,m)=γ∈Γint

ecCF([γ]
int) =

∑
c∈[1,t̃C]

δinβ (c,m), m ∈ [1, 3],

∑
(µ,µ′,m)=γ∈Γint

ecTF([γ]
int) =

∑
c∈[t̃C+1,cF]

δinβ (c,m), m ∈ [1, 3],

(75)

∑
γ=(ad,bd′,m)∈Γ̃C

ec

[(a, b,m)]int · δCec(i, [γ]int) =
∑
ν∈Γ̃C

ac

[ν]int · δCac(i, [ν]int),

∆C+
ec (i) +

∑
γ=(ad,ξ,m)∈Γ̃C

ec

d · δCec(i, [γ]int) = degC(tail(i)),

∆C−
ec (i) +

∑
γ=(µ,bd,m)∈Γ̃C

ec

d · δCec(i, [γ]int) = degC(head(i)),

∆C+
ec (i) + ∆C−

ec (i) ≤ 8(1− eC(i)), i ∈ [k̃C + 1,mC],∑
i∈[k̃C+1,mC]

δCec(i, [γ]
int) = ecC([γ]

int), γ ∈ Γ̃C
ec, (76)

∑
γ=(ad,bd′,m)∈Γ̃T

ec

[(a, b,m)]int · δTec(i, [γ]int) =
∑
ν∈Γ̃T

ac

[ν]int · δTac(i, [ν]int),

∆T+
ec (i) +

∑
γ=(ad,ξ,m)∈Γ̃T

ec

d · δTec(i, [γ]int) = degT(i− 1),

∆T−
ec (i) +

∑
γ=(µ,bd,m)∈Γ̃T

ec

d · δTec(i, [γ]int) = degT(i),

∆T+
ec (i) + ∆T−

ec (i) ≤ 8(1− eT(i)), i ∈ [2, tT],∑
i∈[2,tT]

δTec(i, [γ]
int) = ecT([γ]

int), γ ∈ Γ̃T
ec, (77)
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∑
γ=(ad,bd′,m)∈Γ̃F

ec

[(a, b,m)]int · δFec(i, [γ]int) =
∑
ν∈Γ̃F

ac

[ν]int · δFac(i, [ν]int),

∆F+
ec (i) +

∑
γ=(ad,ξ,m)∈Γ̃F

ec

d · δFec(i, [γ]int) = degF(i− 1),

∆F−
ec (i) +

∑
γ=(µ,bd,m)∈Γ̃F

ec

d · δFec(i, [γ]int) = degF(i),

∆F+
ec (i) + ∆F−

ec (i) ≤ 8(1− eF(i)), i ∈ [2, tF],∑
i∈[2,tF]

δFec(i, [γ]
int) = ecF([γ]

int), γ ∈ Γ̃F
ec, (78)

degT(i) + 4(1− χT(i, k) + eT(i)) ≥ degCT
T (k),

degCT
T (k) ≥ degT(i)− 4(1− χT(i, k) + eT(i)), i ∈ [1, tT],∑

γ=(ad,bd′,m)∈Γ̃CT
ec

[(a, b,m)]int · δCT
ec,C(k, [γ]

int) =
∑
ν∈Γ̃CT

ac

[ν]int · δCT
ac (k, [ν]int),

∆CT+
ec (k) +

∑
γ=(ad,ξ,m)∈Γ̃CT

ec

d · δCT
ec,C(k, [γ]

int) = degC(tail(k)),

∆CT−
ec (k) +

∑
γ=(µ,bd,m)∈Γ̃CT

ec

d · δCT
ec,C(k, [γ]

int) = degCT
T (k),

∆CT+
ec (k) + ∆CT−

ec (k) ≤ 8(1− δTχ (k)), k ∈ [1, kC],∑
k∈[1,kC]

δCT
ec,C(k, [γ]

int) = ecCT([γ]
int), γ ∈ Γ̃CT

ec , (79)

degT(i) + 4(1− χT(i, k) + eT(i+ 1)) ≥ degTC
T (k),

degTC
T (k) ≥ degT(i)− 4(1− χT(i, k) + eT(i+ 1)), i ∈ [1, tT],∑

γ=(ad,bd′,m)∈Γ̃TC
ec

[(a, b,m)]int · δTC
ec,C(k, [γ]

int) =
∑
ν∈Γ̃TC

ac

[ν]int · δTC
ac (k, [ν]int),

∆TC+
ec (k) +

∑
γ=(ad,ξ,m)∈Γ̃TC

ec

d · δTC
ec,C(k, [γ]

int) = degTC
T (k),

∆TC−
ec (k) +

∑
γ=(µ,bd,m)∈Γ̃TC

ec

d · δTC
ec,C(k, [γ]

int) = degC(head(k)),

∆TC+
ec (k) + ∆TC−

ec (k) ≤ 8(1− δTχ (k)), k ∈ [1, kC],∑
k∈[1,kC]

δTC
ec,C(k, [γ]

int) = ecTC([γ]
int), γ ∈ Γ̃TC

ec , (80)
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degF(i) + 4(1− χF(i, c) + eF(i)) ≥ degCF
F (c),

degCF
F (c) ≥ degF(i)− 4(1− χF(i, c) + eF(i)), i ∈ [1, tF],∑

γ=(ad,bd′,m)∈Γ̃CF
ec

[(a, b,m)]int · δCF
ec,C(c, [γ]

int) =
∑
ν∈Γ̃CF

ac

[ν]int · δCF
ac (c, [ν]int),

∆CF+
ec (c) +

∑
γ=(ad,ξ,m)∈Γ̃CF

ec

d · δCF
ec,C(c, [γ]

int) = degC(c),

∆CF−
ec (c) +

∑
γ=(µ,bd,m)∈Γ̃CF

ec

d · δCF
ec,C(c, [γ]

int) = degCF
F (c),

∆CF+
ec (c) + ∆CF−

ec (c) ≤ 8(1− δFχ(c)), c ∈ [1, t̃C],∑
c∈[1,t̃C]

δCF
ec,C(c, [γ]

int) = ecCF([γ]
int), γ ∈ Γ̃CF

ec , (81)

degF(j) + 4(1− χF(j, i+ t̃C) + eF(j)) ≥ degTF
F (i),

degTF
F (i) ≥ degF(j)− 4(1− χF(j, i+ t̃C) + eF(j)), j ∈ [1, tF],∑

γ=(ad,bd′,m)∈Γ̃TF
ec

[(a, b,m)]int · δTF
ec,T(i, [γ]

int) =
∑
ν∈Γ̃TF

ac

[ν]int · δTF
ac (i, [ν]int),

∆TF+
ec (i) +

∑
γ=(ad,ξ,m)∈Γ̃TF

ec

d · δTF
ec,T(i, [γ]

int) = degT(i),

∆TF−
ec (i) +

∑
γ=(µ,bd,m)∈Γ̃TF

ec

d · δTF
ec,T(i, [γ]

int) = degTF
F (i),

∆TF+
ec (i) + ∆TF−

ec (i) ≤ 8(1− δFχ(i+ t̃C)), i ∈ [1, tT],∑
i∈[1,tT]

δTF
ec,T(i, [γ]

int) = ecTF([γ]
int), γ ∈ Γ̃TF

ec , (82)

∑
X∈{C,T,F,CT,TC,CF,TF}

(ecX([γ]
int) + ecX([γ]

int)) = ecint([γ]int), γ ∈ Γint
< ,

∑
X∈{C,T,F,CT,TC,CF,TF}

ecX([γ]
int) = ecint([γ]int), γ ∈ Γint

= . (83)

3.11 Descriptor for the Number of of Fringe-configurations

We include constraints to compute the frequency of each fringe-configuration in an inferred chemical
graph G.

variables:
fc([ψ]) ∈ [0, tC + tT + tF], ψ ∈ F∗: the frequency of a chemical rooted tree ψ

in the set of ρ-fringe-trees in G;

constraints:
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∑
i∈[1,tX],X∈{C,T,F}

δXfr (i, [ψ]) = fc([ψ]), ψ ∈ F∗. (84)

3.12 Constraints for Normalization of Feature Vectors

By introducing a tolerance ε > 0 in the conversion between integers and reals, we include the following
constraints for normalizing of a feature vector f(G) = (x1, x2, . . . , xK):

(1− ε)(xi −min(dcpi;Dπ))

max(dcpi;Dπ)−min(dcpi;Dπ)
≤ x̂i ≤

(1 + ε)(xi −min(dcpi;Dπ))

max(dcpi;Dπ)−min(dcpi;Dπ)
, i ∈ [1,K]. (85)

An example of a tolerance is ε = 0.01.
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