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Abstract: Tristetraprolin (TTP), an RNA-binding protein, controls the stability of RNA by capturing
AU-rich elements on their target genes. It has recently been identified that TTP serves as an anti-
inflammatory protein by guiding the unstable mRNAs of pro-inflammatory proteins in multiple cells.
However, it has not yet been investigated whether TTP affects the inflammatory responses in the
hypothalamus. Since hypothalamic inflammation is tightly coupled to the disturbance of energy
homeostasis, we designed the current study to investigate whether TTP regulates hypothalamic
inflammation and thereby affects energy metabolism by utilizing TTP-deficient mice. We observed
that deficiency of TTP led to enhanced hypothalamic inflammation via stimulation of a variety of
pro-inflammatory genes. In addition, microglial activation occurred in the hypothalamus, which
was accompanied by an enhanced inflammatory response. In line with these molecular and cellular
observations, we finally confirmed that deficiency of TTP results in elevated core body temperature
and energy expenditure. Taken together, our findings unmask novel roles of hypothalamic TTP on
energy metabolism, which is linked to inflammatory responses in hypothalamic microglial cells.

Keywords: tristetraprolin; hypothalamus; inflammation; microglia; sickness response; hyperthermia;
energy metabolism

1. Introduction

The hypothalamus is the central unit that controls multiple body homeostasis [1].
In particular, whole-body energy homeostasis is tightly coupled to the operation of the
hypothalamic circuit through the integration of hormonal signals and neuronal inputs [2].
Thus, it is currently well accepted that deterioration of hypothalamic circuit activity causes
the development of metabolic diseases such as obesity and diabetes [3]. A growing body
of evidence has firmly suggested that hypothalamic inflammation in association with
overnutrition could be a primary pathological cellular event in the acceleration of positive
energy balance and obesity development [4]. Since microglia, the smallest glial cells,
are similar in nature to macrophages in the peripheral immune system and serve as a
representative of the brain immune system, multiple lines of evidence have suggested
that hypothalamic microglia actively participate in the development and deterioration of
hypothalamic inflammation [5,6]. During the past decade, a great deal of attention has been
paid to investigating the interrelationship between chronic hypothalamic inflammation and
obesity pathogenesis; however, whether an acute hypothalamic inflammation governed by
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microglial cells is coupled to negative energy balance and sickness behaviors, including
anorexia, hyperthermia, and hypoactivity, needs to be clarified [7].

Post-transcriptional regulation of inflammatory genes is also a crucial molecular event
in inflammatory responses and is tightly connected to various inflammation-associated
diseases. In this regard, RNA-binding proteins (RBPs), which control the stability of RNA
by recognizing 3′ untranslated regions (UTRs) of target mRNAs, determine the fate of
target mRNAs involved in the pro-inflammatory responses [8,9]. Tristetraporlin (TTP),
an RNA-binding protein, governs the stability of the target mRNAs by capturing the
AU-rich elements (AREs) in the 3′-UTRs of their target mRNAs [10]. Previous studies have
shown that TTP displays anti-inflammatory properties and functions by promoting the
degradation of major pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α),
interleukin-1-β (IL-1β), and cyclooxygenase-2 (Cox-2), an enzyme involved in the synthesis
of prostaglandins [11,12]. Furthermore, TTP deficient mice display multiple inflamma-
tory diseases accompanied by the overproduction of inflammatory cytokines through
a prolonged half-life of target mRNAs involved in pro-inflammatory responses [13,14].
However, it has not yet been identified whether TTP plays an active role in the regulation
of inflammatory responses in the hypothalamic microglia and, in turn, controls the devel-
opment of negative energy balance. Therefore, the current study aimed to evaluate the
effect of TTP on the development of inflammatory responses in the hypothalamic microglia
and further identified the pathophysiological relevance by determining the metabolic
phenotypes involved in the sickness responses triggered by hypothalamic inflammation.

2. Results
2.1. Hypothalamic TTP Responded to Inflammatory Stimuli

We first confirmed whether hypothalamic TTP responds to inflammatory stimuli.
Fluorescence immunohistochemistry (IHC) data showed that immunosignals of TTP were
elevated in the hypothalamus of mice that received intraperitoneal (i.p.) injection of
lipopolysaccharide (LPS) (Figure 1A), well known as an endotoxin and inflammatory
stimulant. Consistent with the histological data, we also observed elevated mRNA levels of
TTP in response to i.p. injection of LPS (Figure 1B). Since it has been well established that
overnutrition triggers hypothalamic inflammation, we next evaluated the mRNA expres-
sion of TTP in the total hypothalamus of mice fed a high-fat diet (HFD) for 8 weeks and
found that mice fed a HFD displayed increased mRNA levels of TTP in the hypothalamus
compared to that of wild-type mice (Figure 1C). In accordance with these data, we further
identified that the mRNA level of TTP was increased by i.p. administration of palmitate, a
saturated fatty acid (Figure 1D), which leads to an inflammatory response during exposure
to a fat-rich diet. Based on these results, we hypothesized that TTP might be functionally
linked to the development of hypothalamic inflammation and related pathological outputs.

2.2. Deficiency of TTP Led to an Enhanced Inflammatory Response in the Hypothalamus

We next evaluated the mRNA expression of pro-inflammatory genes in the hypothala-
mus utilizing TTP-deficient mice. qPCR analysis revealed elevated mRNA levels of pro-
inflammatory cytokines, including TNF-α (Figure 2A), IL-1β (Figure 2B), and interleukin-6
(IL-6) (Figure 2C), and genes regulating the synthesis of prostaglandins, which also re-
tain proinflammatory properties such as Cox-2 (Figure 2D) and microsomal prostaglandin
E synthase-1 (mPGES-1) (Figure 2E). We also confirmed an effective reduction in the TTP
gene (Figure 2F) in the hypothalamus of TTP-deficient mice compared with wild-type
mice. These data suggest that TTP participates in the pathophysiology of hypothalamic
inflammation.
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Figure 1. Elevation of Tristetraporlin (TTP) protein and mRNA expression levels by multiple inflammatory stimuli.
(A) Representative image showing increased signals of TTP protein in the hypothalamus upon lipopolysaccharide (LPS)
intraperitoneal (i.p.) injection into C57BL/6 mice as determined by immunohistochemistry. qPCR data show elevated TTP
mRNA in response to inflammatory stimulants including (B) lipopolysaccharide (LPS, treated for 2 h or 24 h), (C) HFD
(high-fat diet), and (D) Palmitic acid (Pal). Data are presented as the mean ± SEM. n = 4–6 mice per group for LPS treatment;
n = 5 mice per group for HFD treatment; n = 5–6 mice per group for palmitic acid treatment. * p < 0.05, ** p < 0.01, and
*** p < 0.001. Scale bar = 100 µm. SEM; standard error of the mean.

2.3. Deficiency of TTP Elicited Enhanced Inflammatory Responses in the Hypothalamic Microglia

To further confirm whether deficiency of TTP affects the inflammatory tone in the
hypothalamic microglia, we evaluated the mRNA expression levels of genes that control in-
flammation in cultured primary microglia isolated from the hypothalamus of TTP-deficient
and wild-type mice. In order to test the purification of primary microglial cells isolated
from hypothalamus, we evaluated mRNA expression of genes including glial fibrillary
acidic protein (Gfap), a molecular maker for astrocyte and cluster of differentiation molecule 11b
(CD11b), a molecular maker for microglia. We confirmed purification of cultured primary
microglial cells by identifying an approximately 10-fold higher mRNA level of CD11b
compared to that of Gfap (Figure 3A). In addition, we confirmed a significant reduction in
TTP mRNA expression in cultured primary microglial cells isolated from the hypothalamus
of TTP-deficient mice compared with that of wild-type mice (Figure 3B). In support of
identified TTP functions as an anti-inflammatory RBP, we observed that TTP-deficient
mice displayed an increase in mRNA levels of pro-inflammatory cytokines such as TNF-α
(Figure 3C), IL-1β (Figure 3D) and IL-6 (Figure 3E) in cultured hypothalamic microglia
when compared with that of wild-type mice. In accordance with mRNA data, we fur-
ther identified that the release of pro-inflammatory cytokines including IL-1β and IL-6
was increased in the medium of the cultured primary microglial cells extracted from the
hypothalamus of TTP-deficient mice when compared with that of wild-type mice (Supple-
mentary Figure S2). Moreover, we found that the mRNA levels of Cox-2 (Figure 3F) and
mPGES-1 (Figure 3G) were significantly elevated in the cultured hypothalamic microglial
cells of TTP-deficient mice compared with that of wild-type mice. We further observed
that TTP-deficient mice showed increased mRNA levels of CD11b, which can be used
as a molecular marker for microglial activation [15,16] (Figure 3H). From these results,
we verified that TTP plays an active role in controlling the inflammatory processes in
hypothalamic microglia.
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Figure 2. Upregulation of pro-inflammatory genes in the hypothalamus of TTP-deficient mice. Elevated mRNA levels of
pro-inflammatory cytokines including (A) TNF-α, (B) IL-1 β, (C) IL-6, and genes involved in the synthesis of prostaglandin
E2, including (D) Cox-2 and (E) mPGES-1 in the hypothalamus of the TTP-deficient (TTP +/−) mice compared to that of
wild type (WT) mice (TTP +/+). (F) qPCR data reveal a significant reduction in TTP mRNA in the hypothalamus of the
TTP-deficient mice compared with that in WT mice. Data are presented as the mean ± SEM. n = 9 mice per group for
Figure 2A,B,F; n = 6 mice per group for Figure 2C–E. * p < 0.05 and ** p < 0.01. SEM; standard error of the mean.

2.4. Microglial Activation Was Observed in the Hypothalamus of TTP Deficient Mice

Different studies have suggested that microglial activation is the hallmark of the devel-
opment of brain inflammation [17]. In addition, hypothalamic microgliosis accompanied
by sustained inflammation is tightly coupled to metabolic disorders such as obesity and
dyslipidemia [18–21]. Thus, we additionally evaluated the distribution of microglia in the
hypothalamic regions as determined by IHC experiments utilizing an antibody against
ionized calcium-binding adapter molecule 1(Iba-1) protein, which is a molecular marker
for activated microglia, where it participates in membrane ruffling and phagocytosis. Since
an increased number of microglia occurred when they were activated, we first determined
the number of cells retaining Iba-1 immunosignals in the arcuate nucleus (Arc), a cen-
ter for integrating energy homeostasis by mediating peripheral afferent inputs, and the
paraventricular nucleus (Pvn), a center for regulating energy expenditure by operating
both sympathetic nerve activity and secretion of endocrine hormones in the hypothalamus
(Figure 4A). Consistent with the mRNA data obtained from total hypothalamus and pri-
mary microglia, we found an increased number of microglial cells in the hypothalamic Arc
and Pvn of TTP-deficient mice compared with that of wild-type mice. Intriguingly, a signif-
icant elevation in the number of microglial cells was observed in the ventral tegmental area
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(VTA) of TTP-deficient mice compared with that of wild type mice (Figure 4B). However,
no significant alteration in the number of microglial cells was found in the hippocampal
dentate gyrus (DG) and prefrontal cortex (PFC) (Figure 4B). We additionally identified that
the intensity of Iba-1 immunosignals was significantly increased in the hypothalamus of
the TTP-deficient mice compared with that of the wild-type mice (Figure 4C). These data
suggest that TTP plays an active role in inflammation in hypothalamic nuclei and VTA
rather than in other regions of the brain. In accordance with the histology data, we further
observed that TTP-deficient mice showed elevated mRNA expression levels of CD11b, Iba-1,
and transmembrane protein 119(TMEM119), which are molecules that actively participate in
the activation of microglia in the hypothalamus (Figure 4D–F). Taken together, a reduction
in TTP leads to enhanced microglial activation accompanied by inflammatory responses in
the hypothalamic nuclei and VTA.

Figure 3. Deficiency of TTP leads to increased expression levels of genes involved in inflammatory responses. Primary
microglia were extracted from the hypothalamus of both TTP-deficient and wild-type mice and seeded at 5×105 cells/well
to determine mRNA expression. (A) Cultured hypothalamic primary microglial cells retain a 10-fold higher level of CD11b
mRNA compared to that of Gfap. (B) qPCR data revealed a significant decrease in TTP mRNA in the primary microglial
cells extracted from the hypothalamus of the TTP-deficient mice compared with that of wild-type mice. qPCR data display
elevated mRNA expression of pro-inflammatory cytokines including (C) TNF-α, (D) IL-1β, and (E) IL-6, and genes involved
in the synthesis of prostaglandin E2, including (F) Cox-2 and (G) mPGES-1, and (H) CD11b, a molecular marker for microglial
activation, in the primary microglial cells extracted from the hypothalamus of the TTP-deficient mice compared with that
in wild-type control mice. Data are presented as the mean ± SEM. n = 4 experiments per group for Figure 3A; n = 6–8
experiments per group for Figure 3B–H. All experiments were performed from at least three different preparations of
microglial cells. * p < 0.05; ** p < 0.01; *** p < 0.001. SEM; standard error of the mean.
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Figure 4. Deficiency of TTP leads to the activation of microglia in the hypothalamus. (A) Representative images show
immunosignals of Iba-1 protein, a molecular marker for microglial cells, in the hypothalamus as determined by IHC. (B)
Iba-1 positive cells were significantly elevated in hypothalamic arcuate nucleus (Arc), paraventricular nucleus (Pvn) and
ventral tegmental area (VTA), but not significantly altered in the hippocampal dentate gyrus (DG) and prefrontal cortex
(PFC) of the TTP-deficient mice compared to that of wild type mice. (C) A significant increase in the intensity of Iba-1
immunosignals was observed in the hypothalamic Arc of the TTP-deficient mice compared to that of wild type mice as
determined by IHC. qPCR data reveal increased levels of (D) CD11b, (E) Iba-1, and (F) TMEM119, molecular markers for
microglia activation, in total hypothalamus of the TTP-deficient mice compared to that of wild type mice. Data are presented
as the mean ± SEM. n = 8 mice per group for IHC data (Figure 4A–C); n = 6–9 mice per group for qPCR data (Figure 4D–F).
* p < 0.05, ** p < 0.01. *** p < 0.001. Scale bar = 100 µm. SEM; standard error of the mean.

2.5. Deficiency of TTP Led to Altered Neuronal Activity in the Hypothalamic Arc

Hypothalamic microgliosis linked to elevated circulating levels of fatty acid affects the
operation of hypothalamic neurons controlling appetite and energy expenditure such as
agouti-related peptide (Agrp) and proopiomelanocortin (Pomc)-positive neurons [22–24].
Therefore, we evaluated the neuronal activity in the hypothalamic Arc, where Agrp and
Pomc neurons are predominantly present, and hypothalamic Pvn, one of the major target
nuclei of melanocortin signals derived from Pomc neurons, to determine whether the
melanocortin pathway is involved in the induction of microglial activation caused by TTP
downregulation. Intriguingly, we observed that TTP-deficient mice showed a significant
increase in immunosignals of c-fos, an immediate early gene that is regarded as a molecular
marker for enhanced neuronal excitability, in both hypothalamic Arc and Pvn (Figure 5A,B).
However, no significant alteration of c-fos signals was observed in the hippocampal DG,
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VTA and prefrontal cortex (PFC). Since alpha-melanocyte-stimulating hormone (alpha-
MSH) originates from the Pomc gene by proteolytic cleavage and targets Pvn, where
efferent POMC neurons trigger satiety signals and enhance energy expenditure, we further
evaluated the signals of alpha-MSH fibers in Pvn of both wild type and TTP-deficient
mice. We found that TTP-deficient mice displayed an increased number of alpha-MSH
fibers in Pvn compared to wild-type mice (Figure 5C,D). These observations suggest that
TTP-controlled hypothalamic inflammation is coupled to the operation of the hypothalamic
melanocortin system.

Figure 5. Deficiency of TTP leads to enhanced immunosignals of c-fos and alpha-melanocyte-stimulating hormone (MSH)
fibers in the hypothalamic Arc and Pvn. (A) Representative images reveal immunosignals of c-fos, a marker for neuronal
activation, in the hypothalamic Arc and Pvn as determined by IHC. (B) A higher number of c-fos positive cells in the
hypothalamic Arc and Pvn of the TTP-deficient mice compared to that of wild type mice. No significant alteration of
c-fos positive cells was found in the DG, VTA and PFC of the TTP-deficient mice compared to that of wild type mice. (C)
Representative images obtained by IHC show increased immunosignals of α-MSH fibers in the hypothalamic Pvn. (D) The
number of α-MSH fiber signals was elevated in hypothalamic Pvn of the TTP-deficient mice compared to that in wild type
mice. Data are presented as the mean ± SEM. n = 6 mice per group. * p < 0.05. Scale bar = 100 µm. SEM; standard error of
the mean.

2.6. Hyperthermia Occurred in TTP-Deficient Mice

In order to identify the pathophysiological relevance of the cellular and molecular
observations obtained from TTP-deficient mice, both TTP deficient and wild-type mice
were subjected to evaluation of the core-body temperature (Figure 6A) and physical activity
(Figure 6B), which are the behavioral outputs in association with hypothalamic inflamma-
tion and altered melanocortin tone in the hypothalamus. In accordance with the enhanced
hypothalamic inflammatory response, an elevated core-body temperature was observed
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in TTP-deficient mice during both light and dark periods. However, no alteration in loco-
motive activity was observed, which is also one of the behavioral phenotypes associated
with hypothalamic inflammation. Taken together, these observations suggest that TTP
has a functional contribution to the hypothalamic control of thermogenesis during the
development of inflammatory processes.

Figure 6. TTP-deficient mice display signs of hyperthermia. Core body temperature and physical activity were determined
using telemetry probes. (A) An elevation of core body temperature was observed in the TTP-deficient mice compared to
that in wild-type mice. (B) Locomotor activity was not altered in the TTP-deficient mice compared to that in wild-type
control mice. Data are presented as the mean ± SEM. n = 5 mice per group. * p < 0.05. SEM; standard error of the mean.

2.7. TTP-Deficient Mice Displayed Increased Energy Expenditure

We further investigated the pattern of energy expenditure in both wild type and
TTP-deficient mice using an indirect calorimetry instrument. TTP-deficient mice showed
an increase in energy expenditure accompanied by higher oxygen consumption (VO2)
and carbon dioxide production (VCO2) (Figure 7A–C), which is consistent with previous
reports showing increased energy expenditure during hypothalamic inflammation [25].
Respiratory exchange ratio (RER), the ratio between the amount of CO2 emission and
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O2 consumption, can be used to determine the proportion of carbohydrates and fats
utilized. TTP-deficient mice showed a reduction in the RER value, indicating enhanced
lipid utilization (Figure 7D). This result implies that enhanced thermogenic effects observed
in TTP-deficient mice might be linked to increased lipid utilization. Overall, our findings
suggest that the phenotypes of energy expenditure seen in TTP-deficient mice can be
explained, at least in part, via the molecular and cellular observations showing enhanced
hypothalamic inflammation.

Figure 7. TTP-deficient mice display increased energy expenditure and lipid utilization. Metabolic phenotypes that reflect
energy expenditure were determined using an indirect calorimetry instrument. (A) Increased oxygen consumption (VO2),
(B) carbon dioxide generation (VCO2), and (C) energy expenditure were observed in TTP-deficient mice compared to that
in wild-type mice. (D) Respiratory exchange ratio (RER) was decreased in the TTP-deficient mice compared to that in
wild-type mice. Data are presented as the mean ± SEM. n = 9 mice per group. * p < 0.05. SEM; standard error of the mean.

2.8. Deficiency of TTP Led to Hyperphagia without Body Weight Change

To further identify whether enhanced thermogenesis and energy expenditure were
linked to changes in body weight and food intake, we compared the changes in the body
weight and food intake between TTP-deficient and wild-type mice. Although anorexia
and body weight loss can be observed during the development of negative energy bal-
ance, TTP-deficient mice paradoxically displayed no significant difference of body weight
(Figure 8A,B) and adiposity (Figure 8C), and a tendency toward increased food intake
(Figure 8D,E). These data imply that TTP may participate in the regulation of appetite
regardless of inflammation-induced anorexia or that TTP-deficient mice displayed hyper-
phagic behavior to compensate for the loss of adiposity induced by enhanced thermogenesis
and lipid utilization.
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Figure 8. Deficiency of TTP results in an increase in food intake and no alteration of body weight. Body weight changes were
measured in both the TTP-deficient mice and wild-type mice under standard diet treatment. (A) No significant difference in
body weight and (C) adiposity (ratio of epididymal fat weight per body weight) was found between TTP-deficient mice and
wild type mice during the observation periods (from 5-week-old to 40-week-old). (B) Cumulative body weight gain for
36 weeks was not significantly altered between the TTP-deficient mice and wild-type mice. (D) Cumulative food intake for
48 h tended to be higher in the TTP-deficient mice (10-week-old) than in wild-type mice. (E) Average food intake for 12 h
was enhanced in the TTP-deficient mice compared to that in wild-type mice. Data are presented as the mean ± SEM. n = 5
mice per group. * p < 0.05. SEM; standard error of the mean.

3. Discussion

The present study highlighted the previously underappreciated function of TTP in
the central nervous system. We demonstrated that genetic ablation of TTP led to the
development of hypothalamic inflammation coupled to microglial activation and patho-
logical outputs, including hyperthermia and increased energy expenditure. A great deal
of attention has been paid to investigating intracellular signaling molecules that mediate
extracellular inflammatory stimuli, including external environment-derived pathogens
and internal substances such as hormones, cytokines, and nutrients. Among the multiple
molecular components, transcription factors act as a final switch to control the expression
of pro-inflammatory genes [26]. For instance, the transcription factor nuclear kappa B
(NF-κB) plays a major role in innate immunity and inflammatory responses, and is re-
garded as a major link between inflammation and related diseases [27]. Recently, intensive
research has been conducted to investigate the post-transcriptional regulators involved
in pro-inflammatory and anti-inflammatory processes. In support of this notion, it has
been established that RNA-binding proteins (RBPs) also participate in post-transcriptional
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regulation of genes associated with innate immunity by modulating the stability of their
target RNAs [28].

The hypothalamus is the central unit that governs a variety of body homeostasis [1].
In particular, the circuit activity in hypothalamic nuclei operates the peripheral metabolic
organs such as adipose tissues and thus maintains the whole-body energy homeostasis [29].
Furthermore, hypothalamic inflammation has been regarded as a critical pathological event
in the disruption of energy balance, causing obesity pathogenesis [30]. In this context, it
is not surprising that evidence has emerged linking the development of hypothalamic
inflammation and the functions of RBPs in the post-transcriptional regulation of inflam-
matory genes. In order to confirm our working hypothesis, we mainly utilized the global
TTP-deficient mice due to severe symptoms involved in inflammatory responses seen in
global TTP knock-out mice [13]. Consistent with the previous findings showing enhanced
peripheral innate immunity seen in TTP knock-out mice, TTP-deficient mice showed
enhanced hypothalamic inflammation as well as elevated circulating levels of proinflam-
matory cytokines (Supplementary Figure S1). Although glial cells are the most abundant
cells and are considered to be primary orchestrators for neuronal functions beyond their
contributions to support neuronal homeostasis [31–33], the effects of non-neuronal cells
have been relatively relegated to a less prominent role in the control of energy homeosta-
sis supported by hypothalamic neurocircuitry. Among the glial cells, microglia is well
identified as an active participant in the development and deterioration of hypothalamic
inflammation [19]. We also verified that microglial activation is a major cellular event to
interpret the development of hypothalamic inflammation in TTP down-regulation. No-
tably, it has been determined that the inflammatory processes in microglia give rise to the
perturbation of hypothalamic neurocircuitry and thus, cause abnormalities in whole-body
energy metabolism [17]. In addition, it has been proposed that functional interactions
between hypothalamic neurons and microglia determine metabolic phenotypes, including
feeding and energy consumption. In support of this evidence, the present study also con-
firmed that TTP-deficient mice showed altered neuronal excitability in the hypothalamic
nuclei where presynaptic and postsynaptic melanocortin components exist. Previous stud-
ies have suggested that acute hypothalamic inflammation, irrespective of overnutrition
and/or elevated nutritional components, is implicated in the occurrence of a negative
energy balance accompanied by sickness behaviors, including anorexia, hyperthermia,
and hypoactivity [34]. In addition, our previous study has also proposed that Toll-like
receptor 2 signaling triggers sickness behaviors by modulating the microglia–neuronal
axis in the hypothalamus [7]. In accordance with this evidence and our molecular and
cellular observations obtained from TTP -deficient mice, our study provides experimental
clues that could propose the pathophysiological roles of hypothalamic TTP with the deter-
mination of multiple behavioral phenotypes such as hyperthermia and increased energy
expenditure observed during hypothalamic inflammation. Intriguingly, TTP-deficient mice
displayed increased lipid utilization as assessed by a reduction in the RER value as well
as increased energy expenditure, which are the general behavioral outputs reflecting the
status of negative energy balance. However, TTP-deficient mice did not show any change
in body weight, even though elevated core-body temperature and energy expenditure
were detected. Surprisingly, the TTP-deficient mice displayed a slightly increased food
intake. This paradoxical hyperphagic response might be due to compensatory feeding
behavior to maintain energy balance. Presumably, the existence of direct regulatory roles
of TTP in hunger-promoting neurons might be another possible explanation for unchanged
body weight. Therefore, further studies are needed to clarify the cell-specific roles of
hypothalamic TTP in the control of whole-body energy metabolism.

Collectively, the current study identified the active roles of TTP in hypothalamic
inflammation in association with microglial activation and in the promotion of hyperther-
mia and increased energy expenditure. These findings provide a novel insight into the
molecular mechanism linked to the development of hypothalamic inflammation to identify
strategies that can be utilized to treat patients with severe sickness responses.
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4. Materials and Methods
4.1. Animals

Tristetraprolin deficient (TTP +/−) mice (generated by Dr. Perry J. Blackshear, Na-
tional Institute of Environmental Health Sciences, Durham, NC, USA) were fed standard
chow (DBL, Chungcheongbuk-do, Korea) ad libitum, unless otherwise stated and main-
tained in a temperature and humidity-controlled room with a 12 h–12 h light–dark cycle,
with lights on from 7:00 a.m. to 7:00 p.m. Lipopolysaccharide (LPS, 100 µg/kg, Sigma-
Aldrich, St. Louis, MO, USA) was administered to 8-week-old C57BL/6 mice by an
intraperitoneal (i.p.) injection. Palmitic acid (20 µM, Sigma-Aldrich) was also administered
to 8-week-old C57BL/6 mice with i.p. injection daily for 3 days. C57BL/6 mice were fed
with a high-fat diet (HFD, 60% of fat calories, Research Diets Inc., New Brunswick, NJ,
USA) for 8 weeks and subjected to analysis of TTP mRNA expression in the hypothalamus.
All animal care and experimental procedures were performed in accordance with a protocol
approved by the Institutional Animal Care and Use Committee (IACUC) at the Incheon
National University (Permission number: INU-2016-001).

4.2. Primary Microglia Culture

Microglial cultures were prepared as described previously [35]. Briefly, following de-
capitation of five to seven C57BL/6 mice (five-day-old), the diencephalon was removed un-
der sterile conditions and then triturated in Dulbecco’s modified Eagle′s medium (DMEM)
F-12 containing 1% penicillin–streptomycin using a pair of corneal scissors. The cell sus-
pension was filtered through a 100-µm sterile cell strainer to remove debris and fibrous
layers. The suspension was centrifuged, and the pellet was resuspended in DMEM F-12
containing 10% fetal bovine serum (FBS) and 1% penicillin–streptomycin. The cells were
then grown in this culture medium in 75-cm3 culture flasks at 37 ◦C and 5% CO2. When
the cells reached confluence (at approximately nine days), microglia were separated from
the adhered astrocytes by shaking the culture at approximately 250 rpm for 2 h. The cells
were then seeded onto 6-well tissue culture plates, previously coated with poly d-lysine
hydrobromide (50 µg/mL), after which they were distributed at 5 × 105 cells/well and
incubated at 37 ◦C with 5% CO2.

4.3. Quantitative Real-Time PCR

Total RNA was extracted from the hypothalami according to the Tri-Reagent (Invitro-
gen, Carlsbad, CA, USA) protocol, and cDNA was synthesized from total RNA using a high-
capacity cDNA reverse transcription kit (Intron Biotechnology, Seoul, Korea). The mRNA
expression levels were measured using a Bio-Rad CFX 96 Real-Time Detection System (Bio-
Rad Laboratories, Hercules, CA, USA) with the SYBR Green Real-time PCR Master Mix Kit
(TaKaRa Bio Inc., Foster, CA, USA). The results were analyzed using the CFX Manager soft-
ware and normalized to the levels of β-actin, a housekeeping gene. The primers used were:
IL-1β, F-AGGGCTGCTTCCAAACCTTTGAC and R-ATACTGCCTGCCTGAAGCTCTTGT;
IL-6, F-CCACTTCACAAGTCGGAGGCTTA and R-GCAAGTGCATCATCGTTGTTCATAC;
TNF-α, F-TGGGACAGTGACCTGGACTGT and R-TTCGGAAAGCCCATTTGAGT; cox-
2, F-TGCTGTACAAGCAGTGGCAA and R- CTCGGGCTCTGATGTAGGTC; mPGES-
1, F-CTGCTGGTCATCAAGATGTACG and R-TGCCAGATTTTCTCCATGTCG; TTP, F-
GGATCTCTCTGCCATCTACGA and R-CAGTCAGGCGAGAGGTGAC; TMEM119, F-
CCTTCACCCAGAGCTGGTTC and R-GGCTACATCCTCCAGGAAGG; Iba-1, F-AGCTT
TTGGACTGCTGAAGG and R-TTTGGACGGCAGATCCTCATC; CD11b, F-CCACTCATT
GTGGGCAGCTC and R-GGGCAGCTTCATTCATCATGTC; GFAP, F-TCAATGACCGCTTT
GCTAGC and R-ACTCGT GCAGCCTTACACAG; β-actin, F-TGGAATCCTGTGGCA TC-
CATGAAAC and R-TAAAACGCAGCTCAGTAACAGTAACAGTCCG.

4.4. Immunohistochemistry

Mice were anesthetized and perfused transcardially with 0.9 % saline (w/v), followed
by fixation with 4 % paraformaldehyde in phosphate buffer (PB, 0.1 M, pH 7.4). Fixative
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brains were harvested and post-fixed overnight with 4 % paraformaldehyde in PB. The
coronal section (thickness, 50 µm) was prepared using a vibratome (5100 mz Campden
Instruments; Leicestershire, UK). After several washes with PB buffer, the sections were
preincubated with 0.3 % Triton X-100 (Sigma-Aldrich) for 30 min at room temperature. The
sections were then incubated with primary antibodies against rabbit TTP (1:500, abcam,
Cambridge, UK) [36], rabbit Iba-1 (1:1000 dilution, Wako, Osaka, Japan) [24], rabbit c-fos
(1:1000 dilution, Santa Cruz Biotechnology, Dallas, TX, USA) [37], and sheep alpha-MSH
(1:1000 dilution, Millipore, MA, USA) [24] overnight at room temperature. Immunofluo-
rescence was performed with a secondary antibody (Alexa Fluor 488-labeled anti-rabbit
antibody; 1:1000 dilution; Invitrogen Life Technologies, Carlsbad, CA, USA) for 2 h at room
temperature. To perform diaminobenzidine (DAB)-based IHC, sections were incubated
with a biotinylated anti-rabbit secondary antibody (Vector Laboratories, Burlingame, CA,
USA) for 2 h. After treatment with the avidin-biotin complexes (ABC) reagent (Vector
Laboratories) for 2 h, Iba-1 proteins were specifically stained through the DAB substrate
(Vector Laboratories). The sections were then placed on a glass slide, mounted with a
mounting solution (Dako North America Inc., Carpinteria, CA, USA), and covered with
a coverslip to prevent movement and drying of the sample. Images were acquired by
fluorescence microscopy (Axioplan2 Imaging; Carl Zeiss Microimaging Inc., Oberkochen,
Baden-Württemberg, Germany). For IHC analyses, sections were anatomically matched
with the mouse brain atlas. Both sides of the bilateral brain regions were analyzed for two
brain sections per mouse. The numbers of Iba-1-positive microglial cells and c-fos-positive
cells were counted using ImageJ 1.47 v software (National Institutes of Health, Bethesda,
MD, USA; https://imagej.nih.gov/ij/; accessed on 20 March 2021) by an unbiased observer.
The intensity of Iba-1 immunosignals detected by DAB-based IHC was measured in a
region of interest from a captured image using ImageJ 1.47 v software.

4.5. Measurement of Body Temperature and Locomotor Activity

Body temperature and locomotor activity were measured using biotelemetry trans-
mitters (Mini-Mitter, Bend, OR, USA). Mice (9-week-old) were anesthetized with tribro-
moethanol and the telemetry transmitter was implanted in the peritoneal cavity 1 week
before the experiment. After implantation, the layer of the abdominal wall was sutured,
and the skin incision was closed with staples. The output (frequency in Hz) was monitored
by a receiver (model RA 1000; Mini-Mitter) placed under each cage. A data acquisition sys-
tem (Vital View, Mini-Mitter) was used for automatic control of data collection and analysis.
Body temperature was recorded at 10-min intervals. Changes in locomotor activity were
detected as changes in the position of the implanted transmitter over the receiver board,
which resulted in a change in the signal strength and was recorded as a pulse of activity.
Activity pulses were counted every 10 min, and average values were calculated after 12 h.

4.6. Measurement of VO2, VCO2, Energy Expenditure and Food Intake

A standard 12 h light/dark cycle was maintained throughout the indirect calorimetry
studies. Mice (10-week-old) were acclimated to the cages for 48 h before data collection.
Energy expenditure and food intake were measured using a computer controlled indirect
calorimetry system (Promethion, Sable Systems, North Las Vegas, NV, USA). Food and
water were provided ad libitum, and data were collected for three days after acclimation.
Oxygen consumption (VO2) and carbon dioxide production (VCO2) were measured for
each mouse at 10-min intervals. Incurrent air reference values were determined after the
analysis of the mice in all cages. The respiratory quotient (RQ) was calculated as the ratio
of CO2 production to O2 consumption. Data acquisition and instrument control were
performed using MetaScreen v. 1.6.2 software, and the obtained raw data were processed
using ExpeData v. 1.4.3 (Sable Systems) with an analysis script detailing all aspects of data
transformation.

https://imagej.nih.gov/ij/
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4.7. Measurement of Cytokine Levels

The cytokine levels in supernatants harvested from cultured primary microglial cells
and sera collected from mice were measured using an enzyme-linked immunosorbent
assays (ELISA). The assays were conducted using mouse IL-1β and IL-6 DuoSet (R&D
Systems, Minneapolis, MN, USA) according to the manufacturer’s instructions.

4.8. Statistical Analysis

In the images of the stained tissue, the signals of the target protein were uniformly
analyzed using the Image J program. All statistical analyses were performed using Graph-
Pad Prism 6.0 software (GraphPad, San Diego, CA, USA), and differences between the two
groups were indicated by performing a two-tailed Student’s t-test. All graphs represent
the mean ± SEM.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422
-0067/22/7/3328/s1, Figure S1: Elevated circulating levels of pro-inflammatory cytokines were
observed in sera of TTP-deficient mice, Figure S2: Deficiency of TTP leads to increased release of
pro-inflammatory cytokines in cultured primary microglial cells.
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