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Abstract: Chronic obstructive pulmonary disease (COPD) is the important medical and social
problem. According to modern concepts, COPD is a chronic inflammatory disease, macrophages play
a key role in its pathogenesis. Macrophages are heterogeneous in their functions, which is largely
determined by their immunometabolic profile, as well as the features of lipid homeostasis, in which
the ATP binding cassette transporter A1 (ABCA1) plays an essential role. The objective of this work
is the analysis of the ABCA1 protein participation and the function of reverse cholesterol transport in
the pathogenesis of COPD. The expression of the ABCA1 gene in lung tissues takes the second place
after the liver, which indicates the important role of the carrier in lung function. The participation of
the transporter in the development of COPD consists in provision of lipid metabolism, regulation of
inflammation, phagocytosis, and apoptosis. Violation of the processes in which ABCA1 is involved
may be a part of the pathophysiological mechanisms, leading to the formation of a heterogeneous
clinical course of the disease.

Keywords: chronic obstructive pulmonary disease; COPD; inflammation; ABCA1; reverse cholesterol
transport; innate immune system

1. Introduction

Chronic obstructive pulmonary disease (COPD) is one of the most widespread dis-
eases, it has great medical significance due to the high frequency of temporary and per-
sistent disability and mortality. Social and economic burden of the disease is becoming
more evident for health care systems as well as patients [1–3]. COPD is characterized
by a steadily progressive course, it has heterogeneous clinical manifestations and it is
often associated with a wide range of comorbid diseases, among which cardiovascular
diseases take the key position [4]. The inflammation, which is due to prolonged exposure to
smoking, is the basis of the development and progression of the disease [4,5]. Despite this,
there are relatively few research works describing the triggering events and inadequate
regulatory mechanisms, corresponding to them, as well as the subsequent cellular and
molecular processes that lead to tissue damage and remodeling.

Inflammation in COPD is characterized by the participation of many cells and humoral
factors and is believed to have local and systemic components that can be the basis for the
development of comorbid diseases. Comorbidity is a part of the extrapulmonary clinical
heterogeneity of COPD and in many respects it determines the nature of the course and
prognosis.

Macrophages—key participants in the innate link of the immune system, as indicated
by a significant increase in their number in the lungs, take an important place in the patho-
genesis of COPD [6–8]. It is impossible not to note the role of lipid metabolism disorders
besides the innate immune system, to the involvement of which in the development of
bronchial inflammation many works are devoted. Macrophages are actively involved in
the processes under consideration, and immunometabolic investigations that have been
developed in recent years show the importance of lipid metabolism disorders in the basis
of dysregulation of the immune response [9]. Cross-links and their disruptions in the
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regulation of lipid metabolism, the innate immune system, and inflammation may be the
key to understanding the pathophysiological bases of COPD.

In this regard, information about the participation of cholesterol and its metabolic
pathways in the immune response and inflammation is of considerable clinical interest.
The objective of this article is the analysis of the ATP binding cassette transporter A1
(ABCA1 transporter) participation and the function of reverse cholesterol transport in the
pathogenesis of COPD. The ABCA1 transporter has a lot of functions, the key to which
is participation in the provision of lipid homeostasis of cells. The transport function,
the nature of the transported substrates and the cellular localization of the protein have
determined its role in many processes and mechanisms underlying the pathogenesis
of COPD.

2. Disorders of Lipid Metabolism in the Development and Progression of COPD

Despite the active development of medicine, the current understanding of the natural
course of COPD is incomplete and often contradictory [10]. It is known that the devel-
opment and progression of the disease can be very different in different patients, and its
onset is not possible to establish. The molecular mechanisms underlying the processes
that determine the clinical picture of COPD in different patients or even in one patient at
different times, are largely unclear.

Negative dynamics of lung function remains the main criterion for the diagnostics
of COPD and a key predictor of the prognosis. The data about an association between
a decrease in the airflow parameters and the level of high-density lipoprotein (HDL)
cholesterol are interesting. Oelsner E. et al. showed on the basis of a seven-year analysis of
a large sample, that higher HDL cholesterol was associated with a higher rate of decrease
in FEV1 (p < 0.0001) and FEV1/FVC (p < 0.0001). The magnitude of indicated effect
was similar to the 10-year increase in the pack-years index [11]. Previously the risk of
emphysema by 0.4% for every 10 mg/dl increase in HDL cholesterol has already been
stated in the MESA LungStudy [12].

The role of high HDL level in the reduction of lung function and in the progression of
emphysema has been described previously [12–15], and it has already been associated with
the participation of apolipoprotein M in the previous studies [14,15]. However, there are
other data available from the literature indicating a positive association of high HDL levels
and pulmonary function. A decrease in HDL in patients with COPD with more severe
stages is also noted [15–18]. It is demonstrated in the recent study that the best predictor of
pulmonary function in patients with COPD can be the ratio of lymphocytes to HDL [19]. It
is also shown that HDL levels decrease in patients with COPD, who have undergone lung
transplantation [20].

In general, these ambiguous data do not correspond to the protective role gener-
ally accepted for HDL, according to which they are well known in the pathogenesis of
atherosclerosis [21,22]. The results are of more interest if we take into account that COPD
and atherosclerosis are often combined and have similar trends of progression.

The presented data allow to suggest that the processes associated with the formation
and function of HDL play a significant role in lung function. The differences shown in the
data can be related to the clinical heterogeneity of COPD patients, which is associated with
individual features of pathophysiological mechanisms and lipid metabolism.

It is necessary to emphasize that the high levels of HDL in the presented studies
corresponded to the development of the emphysematous phenotype of COPD. It is known
that patients belonging to another, the so-called bronchitic type of COPD, suffer from
concomitant cardiovascular diseases, which is associated with an increased predisposition
to the development of atherosclerosis in this category of patients. The prevalence of
cardiovascular disease and metabolic syndrome in patients with lower body mass index
and emphysema is generally relatively low [23,24].

Although the exact mechanisms of the relationship of lung function and the devel-
opment of emphysema with HDL levels are not clear, various explanations are proposed,
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for example, the intake of glucocorticosteroids by patients with more severe course of
COPD [25].

Thus, the obvious involvement of lipid metabolism in the pathogenesis of COPD,
demonstrated by numerous studies, determines the need for a better study of the mecha-
nisms of participation of ABCA1 and reverse cholesterol transport.

In the modern scientific literature there are quite a lot of data describing the biological
functions of ABCA1. It belongs to a large family of membrane proteins that transport
chemically diverse substrates through the lipid bilayer of cell membranes, accompanied
by ATP hydrolysis. In clinical practice mutations in the ABCA1 gene are known as the
cause of a rare genetic disease-Tangier disease. The disease is characterized by a significant
decrease in HDL level and a high incidence of cardiovascular diseases [26–28].

ABCA1 is localized on the plasma membrane of cells and is expressed in many organs
and tissues. It participates in the reverse transport of cholesterol, exporting cholesterol
and phospholipids from cells to extracellular acceptors [29–31]. In addition to the plasma
membrane, ABCA1 is also found in the Golgi complex and in lysosomes, which confirms
the information about the mobility of the transporter, which can move between the plasma
membrane, the Golgi complex, and lysosomes, ensuring the functioning of the lipid
transport route [32–36].

ABCA1 expression has complex regulatory pathways that are carried out both at the
transcriptional and post-transcriptional levels [37–39]. Excess of cholesterol in macrophages
leads to the formation of oxysterols that stimulate ABCA1 expression via LXR (liver X
receptor) [40–43]. LXR forms a heterodimer with RXR (retinoid X receptor), and they form
a transcription factor together, connecting with specific sites on the ABCA1 gene promoter
for ABCA1 expression increase [44–47].

The participation of the ABCA1 transporter in the formation of HDL has determined
its leading role in the pathogenesis of atherosclerosis, which is the subject of researchers’
close attention [48]. However, in recent years there is more and more evidence that
the transporter is also involved in the regulation of inflammation [27], which is carried
out through various mechanisms, including participation in the immune response and
phagocytosis, which increases the interest of clinicians in ABCA1 as the pathogenesis link
of other diseases in addition to atherosclerosis [49,50].

The important role of both the transporter itself and lipid homeostasis in lung function
in general is indicated by the fact that the expression of ABCA1 in lung tissues takes the
second place after the liver [26]. This observation is extremely important, taking into
account the great clinical significance of lipids for respiratory function and the influence of
oxidative processes to which lipids are exposed during smoking. To the greatest extent,
ABCA1 is present in alveolar macrophages, alveolar pneumocytes of types I and II [51,52],
which characterizes its involvement in various biological processes [53]. Indeed, the func-
tion of the protein is not limited to the simple exchange of cholesterol and understanding
all the mechanisms in which the transporter is involved requires serious research.

3. Participation of ABCA1 in the Regulation of Inflammation in COPD

It is believed that the ABCA1 transporter can participate in the regulation of inflamma-
tion in the lungs. The mechanisms of this involvement are diverse and in many respects are
not studied completely. It is assumed that the intracellular accumulation of cholesterol in
macrophages acts as a trigger of the cellular inflammatory response [54,55]. Consequently,
the ABCA1 transport activity can be anti-inflammatory, through the removal of cholesterol
excess [26,56–59].

There is evidence that cigarette smoke modulates signaling pathways that regulate
ABCA1 expression in macrophages [60,61]. The reduced ABCA1 transport activity due
to smoking leads to intracellular accumulation of cholesterol or even the formation of
so-called “foam cells” [62–64]. Research data have shown that ABCA1 expression changes
in COPD [60,65]. It was found that in patients with moderate and severe COPD ABCA1
expression in lung tissues was for certain lower than in healthy subjects [60].
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The role of ABCA1 in pulmonary inflammation is well demonstrated in mouse models.
In ABCA1 knockout mice, compared to the wild type a violation of lipid metabolism is
observed, including a significant decrease in plasma the level of cholesterol and phos-
pholipids (by about 70%) due to almost undetectable levels of HDL and ApoA-I [66].
Analyzing these data, it is necessary to note that mice differ from humans in a number
of features of HDL metabolism (in mice, unlike humans, protein CETP (cholesterol ester
transfer protein) in the blood plasma is absent, it transfers cholesterol esters from HDL to
LDL and VLDL containing AрoB, as a result of which they have naturally low LDL and
high HDL levels) [67,68].

In the ABCA1 knockout mice, pulmonary focal lesions were found, including thick-
ening of the interalveolar septa, foam alveolar macrophages and hyperplasia of type II
alveolar pneumocytes, the surfactant was characterized by alveolar proteinosis [69–71].
With age, the alveolar architecture of these mice was destroyed, and the remaining alveoli
were epithelized due to severe hypertrophy and hyperplasia of type II pneumocytes [69,70].
The importance of ABCA1 in normal lung physiology is confirmed by the fact that in mice
with ApoA-I knockout increased infiltration by inflammatory cells (especially neutrophils),
collagen deposition and airway hyperreactivity, as well as impaired lung vasodilation were
observed [69–71]. These observations demonstrate the role of ABCA1-mediated reverse
lipid transport in inflammatory lung diseases.

3.1. Participation of ABCA1 in the Regulation of Inflammation with the Participation of TLR4

The lungs contact constantly with a huge number of pollutants and pathogenic mi-
croorganisms through the inhaled air, and therefore they are populated with immune
cells densely. As the first line of defense for the lungs, the innate immune system is
thought to rely on a large family of PRR (pattern-recognition receptors) for detection of
standard molecular structures (patterns) specific to large groups of pathogens, including
viruses, bacteria, fungi, parasites, and protozoa. An important role in the initiation of
inflammation in COPD is played by Toll-like receptors (TLR) of macrophages, which are
a family of transmembrane receptors that are expressed by many cell types, including
epithelial cells, endothelial cells, monocytes, macrophages, dendritic cells, and T- and
B-lymphocytes [72,73].

The most studied Toll-like receptor TLR4 recognizes lipopolysaccharides of the cell
wall of Gram-negative bacteria (LPS) and is localized both on the plasma membrane and in
endosomes. When LPS is being recognized, conformational changes in TLR4 receptors lead
to the recruitment of its intracellular toll-interleukin 1 receptor (TIR) domain (TIR-domains)
containing molecules-adapters, realizing MyD88-dependent and MyD88-independent
pathways.

Signaling via TLR4 is of importance in COPD [74–76]. In addition to inflammation, it
is involved in other processes, such as angiogenesis [77]. TLR4 in the lungs can be activated
by either LPS or exogenous oxidants [78] and, consequently, modulate inflammatory
responses. It is known that the components of cigarette smoke are also able to activate
TLR4, which is important, taking into account its role in the etiology of COPD [79,80].

The evidence that saturated fatty acids can also activate TLR4 is of considerable inter-
est [81,82]. Moreover, unlike saturated fatty acids, unsaturated ones do not have such an
effect [82]. These data support clinical observations in which overweight and obese people
showed increased TLR4 expression on peripheral blood mononuclear cells and in adipose
tissue compared to low body weight, and TLR4 expression levels increased significantly
with increase of body mass index [83,84]. Interestingly, that polyunsaturated fatty acids can
destabilize ABCA1, disrupt the reverse transport of cholesterol and HDL formation [85–89].
This information is relevant when analyzing the comorbid relationship between COPD
and atherosclerosis. There is an assumption that the prevalence of cardiovascular diseases
(in particular, coronary artery disease (CAD) and peripheral artery disease (PAD)) may
be higher in individuals with a higher body mass index (BMI) and, as it has been noted
previously, predominantly bronchitic form of COPD [23,24,90]. At the same time, a low
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BMI increases the risk of mortality in patients with COPD [91,92], and overweight and obe-
sity are positive predictors of long-term survival [93,94]. This phenomenon got the name
“the obesity paradox” [95–97]. Its mechanisms are not completely clear, but participation
of cytokines, contributing to the development of cachexia, such as TNF (Tumor Necrosis
Factor) and IL-6 (Interleukin-6), is assumed [98,99]. TNF is a proinflammatory cytokine
that is highly expressed in COPD patients [100]. It is known that TNF activates a number
of signaling pathways that induce changes in ABCA1 expression [100], including nuclear
factor-kB (NF-kB), sterol regulatory element binding protein 2 (SREBP-2), and janus kinase
2/signal transducer and activator of transcription 3 (JAK2/STAT3) [101–103]. However,
currently there is contradictory information about the TNF role in the expression of ABCA1
in macrophages and reverse cholesterol transport. In foamy cells derived from THP-1
macrophages, TNF suppresses ABCA1 expression via the NF-kB-dependent pathway [104],
while in mouse peritoneal macrophages it induces ABCA1 expression [105].

The results of investigations show that the ABCA1 expression in macrophages can
play a physiologically significant role, also through the removal of LPS from macrophages,
which helps to restore a normal immune response.

Although TLRs have developed evolutionarily for detection of exogenous pathogens,
providing innate immune responses, it is becoming apparent that TLR4 activation is also
modulated by endogenous molecules, including lipids.

Recent data suggest that TLR 4, when activated, is localized in the so-called “lipid
rafts” of plasma membranes, which can regulate its activity [106]. The plasma membrane
is heterogeneous in its structure and functions. The structure of the plasma membrane that
separates cells from their environment is the subject of numerous studies. According to
current data, the plasma membrane is represented by a lipid bilayer containing various
types of lipids distributed asymmetrically between two bilayer sheets in which proteins
are embedded. In addition, plasma membranes are assumed to contain so-called lipid
rafts-dynamic signaling platforms, which are areas of the plasma membrane enriched with
glycosphingolipids, sphingomyelin, cholesterol, glycophosphatidylinositol anchor proteins
and signaling proteins [104,107–109].

Cholesterol is the main component of lipid rafts, accounting for about 50% of the
lipids present in these domains. Cholesterol has many functions, including participation in
maintaining the spatial structure of the plasma membrane. In this case, most cholesterol
molecules are located by their hydroxyl groups close to the glycerol region of the framework
of the lipid bilayer, and their hydrophobic rings are located in the hydrophobic core of the
bilayer. Changes in the cholesterol content in the plasma membrane affect its structure
and function. Due to the influence on the biophysical properties of the membrane, as well
as through the direct interaction of the sterol with specific protein sites, cholesterol can
participate in the regulation of the function of transmembrane proteins [110]. It has been
shown that proteins that interact with cholesterol or bind it may contain characteristic
amino acid sequences that play a definite role in this interaction [106].

One such known sequence, the amino acid cholesterol-binding domain (CRAC,
Cholesterol Recognition/interaction Amino acid Consensus sequence), has been iden-
tified in proteins that interact with cholesterol or are regulated by it [102,111–113]. The
amino acid sequence, referred to as CRAC, is defined by the following set of amino
acids: (L/V)–X(1–5)–(Y)–X(1–5)–(R/K) [112,112], the CARC motive, has similar properties in
binding to transmembrane proteins and has an inverse sequence of amino acids: (R/K)–
X(1–5)−(Y/F)–X(1-5)−(L/V) (with X = any amino acid), and tyrosine can be replaced by
phenylalanine [112] (Figure 1).
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Figure 1. Cholesterol-binding domain (CRAC and CARC domains).

Taking into account, that the probability of the presence of such a domain is very
high for many proteins, it is believed that the very presence of CRAC does not indicate
the occurrence of specific cholesterol–protein interactions [112,114] and experimental data
are necessary for their confirmation [115]. It is also assumed that the CRAC sequence
contributes to the localization of membrane proteins in lipid rafts to a certain extent [116].
The presence of several CRAC or CARC sequences, in the transmembrane region or near
it, may indicate a possible participation of cholesterol in the accomplishment of protein
function.

Analysis of the TLR4 receptor structure allows to reveal the presence of both CRAC
and CARC sequences near the transmembrane domain, which can provide a link between
cholesterol and the regulation of signal transduction of the receptor [106]. Interestingly, that
the CARC-CRAC-CARC domains in TLR4 are located close to the membrane, in front of
the TIR domain. This may indicate that this intracellular region of TLR4 binds cholesterol
specifically [106].

The interaction of transmembrane proteins, including TLR4, with cholesterol is pos-
sible due to its structure. Cholesterol is a polycyclic amphipathic molecule derived from
sterane. The cholesterol molecule has a polar and apolar parts. The polar part is repre-
sented by a hydroxyl group, which allows to establish hydrogen bonds. The apolar part
has an asymmetric structure, including a flat α surface and a β surface with aliphatic
groups (two methyl groups and a terminal isooctyl chain). Sphingolipids usually interact
with the α-surface of cholesterol, and transmembrane domains of proteins interact with
the β-face [112,117]. It is believed that the side chains of branched amino acids, such as
valine or leucine, can “permeate” these aliphatic groups and therefore they are particularly
suitable for association with the β surface of cholesterol [112] through numerous van
der Waals contacts between these residues and cholesterol. The interaction between the
aromatic amino acid and cholesterol occurs in the apolar region of the membrane, far
from the hydroxyl group of cholesterol, and the interaction with cholesterol is mediated
almost exclusively by the CH-π-stacking binding between the aromatic ring of the amino
acid (either tyrosine or phenylalanine) and one of the sterane rings of cholesterol [110,117]
(Figure 1).

Thus, ABCA1, by changing the cholesterol content in the plasma membranes of
macrophages and ensuring the stability of lipid rafts, can regulate the activity of TLR4 [60],
which can occur in COPD. In its turn, TLR4 activation inhibits ABCA1 expression, which
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reduces the outflow of cholesterol from macrophages [118,119]. The activity of IRAK1
(IL-1R-associated kinase 1) plays a key role in this process [120].

Studies of the biological role of ABCA1 have determined that in addition to lipid
export, it can mediate intracellular cholesterol transport and allow the movement of lipids
between the inner and outer sheets of the plasma membrane [28,121]. These findings have
improved our understanding of the role of the ABCA1 transporter in inflammation through
the regulation of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] in plasma membranes.
PI(4,5)P2 is the main cellular type of PIP and it is mainly localized in the inner sheet of the
plasma membrane, where it is involved in many cellular processes, such as endocytosis,
exocytosis, protein transport, and receptor-mediated signal transduction [122–126]. In
the plasma membrane, it is concentrated mainly in lipid rafts. It has been found out that
ABCA1 participates in the exchange of PI (4,5)P2, redistributing it from the inner to the
outer sheet of the plasma membrane [123,125]. It is believed that PI (4,5) P2, moved to
the outer side of the plasma membrane, ensures the binding of apoA-I and the outflow of
lipids during the formation of HDL. In addition to it, ABCA1 exports PI (4,5)P2 to nascent
HDL, reducing its amount in the plasma membrane [122]. Accordingly, a decrease in the
functional activity of ABCA1 may increase the amount of PI (4,5)P2 in the inner sheet of
the plasma membrane.

Recent data have shown that PI (4,5)P2, localized in the outer sheet of the plasma
membrane, participates in the regulation of cell adhesion and cell motility [126]. One of
the most important biological functions of PI(4,5)P2 is related to the fact that it is necessary
for the functioning of the sorting adapter TIRAP, a member of the MyD88-dependent
TLR4 pathway (Figure 2) [127–129]. The MyD88-dependent pathway is regulated by two
adapter-associated proteins: Myeloid differentiation primary response gene (88) (MyD88)
and toll-interleukin 1 receptor (TIR) domain containing adapter protein (TIRAP) [130].

Figure 2. Schematic picture of the ATP binding cassette transporter A1 (ABCA1) participation in the mechanisms of
inflammation in macrophages in chronic obstructive pulmonary disease (COPD) (1) and apoptosis (2).



Int. J. Mol. Sci. 2021, 22, 3334 8 of 22

The MyD88 protein is a key link in the inflammatory signaling pathways of Toll-like
receptors (TLR) and interleukin-1 (IL-1) receptors [131]. MyD88 forms a protein complex
with kinases of the interleukin-1 receptor-associated kinase (IRAK) family, called the
Middosome. MyD88 has a limited ability to interact directly with TLR. This requires
an intermediate protein that binds activated TLRs to MyD88. Most plasma membrane-
localized TLRs, including TLR4, use the TIRAP sorting adapter to recruit MyD88. The
ability of TIRAP to function as a sorting adapter depends on its N-terminal motive rich
in positively charged lysine residues [106,128], which interacts with PI (4,5) P2 and other
lipids (phosphatidylserine (PS)) localized on the plasma membrane.

Thus, ABCA1, through the transport of PI (4,5)P2, can participate in the regulation of
signal transmission along the MyD88 dependent TLR4 pathway [128,132,133].

3.2. ABCA1 Cross-Links and JAK2/STAT3 Pathways

It is interesting to learn about another mechanism associated with inflammation, in
which the transporter is involved, and which is implemented in parallel with the reverse
transport of cholesterol. It has been found out that the interaction of ABCA1 and ApoA-I
increases phosphorylation and activates JAK2, which, in its turn, increases the binding
activity of ApoA-I and ABCA1, which is responsible for the export of lipids [57,134,135]. At
the same time, JAK2 increases the transport activity of ABCA1 [136,137], which is known
to have an anti-inflammatory effect.

JAK2, activated by the interaction of ABCA1 and ApoA-I, activates STAT3 addition-
ally [57,138], which is independent of the lipid transport function of ABCA1 [37]. ABCA1
contains two potential docking units with STAT3, necessary for phosphorylation of the
latter by ApoA-I/ABCA1/JAK2 [136]. It is considered that the transcription factor STAT3
mediates IL-6 signaling pathways [57,138] and performs an anti-inflammatory function in
macrophages [138,139]. This fact allows to suggest the functioning of ABCA1 as a direct
anti-inflammatory receptor due to the activation of JAK2/STAT3 [37,138].

The JAK2/STAT3 pathway can also exhibit a proinflammatory effect [57,138–141].
Such multidirectional participation highlights the complexity of parallel processes and their
insufficient investigation. STAT3 regulates a number of fundamental cellular processes,
including inflammation, proliferation, differentiation, and cell migration [142]. STAT3 can
also regulate apoptosis by inducing the expression of the apoptosis inhibitor Bcl-2 (B-cell
lymphoma 2) [143,144].

The JAK2/STAT3 pathway is involved in the regulation of airway inflammation in
COPD (Figure 2) [144]. This agrees well with the fact that cigarette smoke, the main
etiological factor of COPD, can activate STAT3 in the lungs [44,144,145]. In patients with
COPD the STAT3 expression in the lung tissue is increased significantly [146,147]. Moreover,
activation levels correlate with the degree of bronchial inflammation, but not with air flow
obstruction [148]. This may be explained by the function of STAT3 in the regulation of
inflammation, protease production and apoptosis [149–151], underlying the pathogenesis
of COPD [152,153].

Taking into account the fact that many of the cytokines considered to be the key
participants of the persistent inflammation observed in COPD implement their action
through JAK/STAT or are produced as a result of its activation [153,154], the interest of
researchers in this pathway has increased significantly in recent years. It is noteworthy that
ABCA1 mutations, violating the ABCA1/STAT-3 complex did not affect the lipid outflow
of ABCA1, but blocked the ability of ABCA1 to suppress cytokine secretion in response to
LPS [155].

The data, received as a result of experiments, indicate that the cholesterol load
of macrophages associated with ABCA1 inhibition leads to an increase in IL-6 produc-
tion [118]. In this regard, the increased levels of IL-6 observed in the induced sputum and
lung tissue of patients with COPD [156,157] are in good agreement with the data on the
reduction of the ABCA1 transport function in macrophages during smoking, as well as
with the fact that IL-6 is known to activate STAT3 [158].
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IL-6 is well known as a participant in the pathogenesis of many diseases [159], and
is often considered as one of the factors of systemic generalization of inflammation and
comorbidity of COPD. It is known that IL-6 contributes to the development of emphysema
due to activation of STAT3-independent apoptosis [148]. In addition, a correlation between
high IL-6 level and mortality of COPD patients has been demonstrated previously [160,
161]. At the same time, it should be noted that the function of IL-6 is complex and not
unambiguous. It is believed that IL-6 can control inflammatory processes associated with
the involvement of adaptive and innate immunity. For example, it can attract myeloid
cells to areas of inflammation [162,163]. The experimental results indicate that IL-6 can
reduce the proinflammatory response of human macrophages due to induction of anti-
inflammatory IL-4 and IL-10 and secretion decrease of the proinflammatory cytokine
Il-1β [118]. IL-10 induced by IL-6 may be involved in activation support of STAT3 in
macrophages with the help of the specific receptor IL-10R [118,164].

It is also interesting that IL-6 induces ABCA1 expression and enhances the transporter-
mediated outflow of cholesterol from human macrophages to apoA-I with the participation
of the JAK-2/STAT3 pathway [118,165]. Thus, lipid-loaded macrophages, producing
a significant amount of IL-6 promote the induction of ABCA1 gene expression, which
leads to an increase in ABCA1-mediated cholesterol outflow through activation of the
Jak-2/STAT3 pathway, thereby reducing the formation of foam cells and the accumulation
of free cholesterol, respectively.

It has been found out that not only IL-6, but also a number of other cytokines can affect
the expression of ABCA1. They can inhibit it as, for example, interferon (IFN) -γ, IL-1β or
Platelet-derived growth factor (PDGF), or enhance it as anti-inflammatory cytokines such
as IL-10 and TGF-β1 [37].

These and other data suggest that in cholesterol-loaded macrophages Jak2/STAT3
may represent a key signaling pathway for weakening both the accumulation of cellular
lipids and the proinflammatory response [57,118,166]. Such anti-inflammatory effect cor-
responds to the previously described mechanism, in which the interaction of apoAI with
ABCA1 activates the Jak-2/STAT3 pathway and participates in the establishment of an
anti-inflammatory response in human macrophages [138,166].

The presented data correspond to the concept of macrophage heterogeneity in COPD,
according to which proinflammatory M1 and “alternatively activated” (anti-inflammatory,
reparative) M2 macrophages producing proinflammatory (including TNF, IL-1ß, IL-6) and
anti-inflammatory (e.g., IL-10) cytokines, respectively, are found in the focus of persistent
inflammation at the same time [6,167].

However, in COPD, there are obviously violations of the described anti-inflammatory
mechanisms, and the implementation of the JAK-2/STAT3 pathway may be one of the
links in a complex chain of mechanisms of COPD pathogenesis [144].

3.3. Other Mechanisms of ABCA1 Participation in Inflammation

There are other known mechanisms of inflammatory activation of macrophages associ-
ated with intracellular cholesterol accumulation. Intracellular cholesterol in crystalline form
can participate in the activation of inflammation via Nod-like receptors (NLR) acting as
intracellular observation molecules [168–171]. The ability of various crystalline substances
to activate NLRP3 inflammation is well known for many both exogenous substances and
endogenous molecules, for example, silicon dioxide and monosodium sulfate, and it has
also been described for cholesterol crystals [168–171]. It should be noted that nowadays
the possibilities of activation of NLRP3 inflammation in COPD due to the accumulation
of crystalline forms of cholesterol in myeloid cells are not clear, but this is well known by
the example of atherosclerosis [168–172]. At the same time, recent studies have shown that
NLRP3 is highly expressed in the lungs, which is due to the large number of immune cells
characteristic of this organ, and emerging scientific evidence suggests that the activation of
NLRP3 inflammasome may be involved in the onset of COPD pathogenesis [173–176].
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Infectious exacerbations of COPD are an important characteristic of the disease and
largely determine the rates of progression and prognosis. It has been found out that
bacterial colonization of the bronchi makes a contribution to the progression of the disease.
Bacterial colonization of the bronchi caused by a defect in phagocytosis in COPD [177].
Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis and Pseudomonas
aeruginosa are most often found in the lower respiratory tract in COPD [178,179]. Bacterial
colonization leads to dysregulation of the immune response, also with the participation of
TLR4.

Information about the ability of some bacteria to influence ABCA1-mediated lipid
transport in lung epithelial cells is interesting. In particular, it has been shown that Ps.
aeruginosa can impair lung function through the induction of ABCA1-mediated export
of the surfactant phosphatidylcholine (PtdCho) in the alveolar epithelium of mice. The
regulation of the transporter expression is probably carried out via the PPARa (peroxisome-
proliferator-activated receptor-a)/RXR pathway [135]. Previously it has been found out that
the effect of LPS on macrophages leads to a rapid dose-dependent increase in the expression
of ABCA1 mRNA [180]. It has also been shown that infection Chlamydia pneumoniae
infection reduces ABCA1 expression in A549 lung epithelial carcinoma cells [66].

In general, violations of ABCA1-mediated lipid transport due to bacterial colonization
of the bronchi are of considerable clinical and research interest for assessment its role in
infectious exacerbations of COPD.

4. Participation of ABCA1 in Phagocytosis and Apoptosis

Due to chronic inflammation of the respiratory tract in COPD there is a significant
increase in the number of cells undergoing apoptosis [181]. Apoptosis is the most important
mechanism for ensuring of cell self-renewal and plays an important role in responses to
damage or infection by controlling the number of cells involved in the process of inflam-
mation [182,183]. The removal of apoptotic cells is mainly carried out by macrophages in
the process of efferocytosis [181].

It is known that efferocytosis is impaired in patients with COPD, but the mechanisms
of these disorders are not clear nowadays [184,185]. An accumulation of apoptotic epithelial,
endothelial, and immune cells in the lungs is noted in these patients [186–188]. In addition,
the induction of structural apoptosis of airway cells may be the cause of the development
of emphysematous changes [189].

Effective removal of cells that have undergone apoptosis from tissues requires their
specific recognition either by neighboring cells or by specialized phagocytes [182,190].
Although cells undergoing apoptosis retain the integrity of the plasma membrane, the
resulting changes in the composition of membrane lipids, carbohydrates and proteins
provide the necessary molecular signals, marking them for recognition by other cells. One
of the signs of apoptosis is the translocation of phosphatidylserine (PtdSer) from the inner
sheet of the plasma membrane to the outer sheet [182,183]. It has been shown that this
process is connected with the ABCA1 transporter function [191,192]. The involvement
of the transporter in phagocytosis is well known from the animal models, that we have
analyzed before [193].

It is believed that the localization of phosphatidylserine in the outer sheet of the
plasma membrane of apoptotic cells is an almost universal signal for recognition by phago-
cytes [182,194,195]. This process occurs due to binding to various receptors on the cell
surface of phagocytes, for example, merthyrosine kinase (MerTK) [44,196,197]. An in-
creased expression of MerTK on the macrophages of the respiratory tract is detected in
smokers [198].

Studies have shown that during MerTK-regulated efferocytosis in lung tissue, the LXR
pathway is activated, resulting in increased expression of ABCA1 (Figure 2) [181,192,199].
The independent of LXR pathway of ABCA1 activation in phagocytic macrophages, such
as BAI1/ELMO1/Rac, is known [200]. This pathway includes receptor brain-specific
angiogenesis inhibitor 1 (BAI1), which recognizes phosphatidylserine on apoptotic cells.
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BAI1 is also identified as a pattern recognition receptor (PRR), which detects LPS and
mediates phagocytosis of Gram-negative bacteria by macrophages [201,202]. Despite this,
the role of BAI1 in COPD has not been known yet.

The increase of ABCA1-mediated reverse transport of cholesterol from macrophages
during phagocytosis is physiologically explicable. As phagocytes absorb objects, rich in
cholesterol, ABCA1 provides protection of cells from its overload [104]. Although ABCA1
does not participate directly in the phagocytosis of apoptotic cells, it can help phagocytes
recover [104,191]. In addition, ABCA1 induction provides protection of macrophages from
oxidative stress caused by the uptake of oxidized lipids [104].

5. Participation of ABCA1 in the Development of COPD Phenotypes

The clinical heterogeneity of COPD is an important characteristic of the disease. The
mechanism explaining why different patients with the same risk factor have an emphy-
sematous or bronchitic phenotype is largely unknown. In accordance with the vascular
hypothesis, it is assumed that the development of emphysema in COPD may include the
progressive loss of endothelial and epithelial cells in the process of apoptosis [203–207]. The
results of the studies indicate that vascular endothelial growth factor VEGFA is involved in
this process [208,209]. Its role in the pathogenesis of COPD is diverse. The activation of the
VEGFA pathway explains the hyperproduction of mucus in the bronchitis phenotype, since
VEGFA was originally described as a factor, increasing vascular permeability [210]. Inhibi-
tion of the VEGFA pathway, on the contrary, contributes to the disruption of endothelial cell
renewal, avascularization of the alveolar septa and their subsequent destruction [209,211].
Experiments on animals have confirmed that blockade of the VEGFA signaling pathway
with a VEGFR inhibitor led to apoptosis of endothelial cells in the lungs and morphological
changes characteristic of emphysema [212].

It is believed that a decrease, as well as an increase in the amount of cholesterol in
the plasma membrane, affects the structure of lipid rafts and disrupts the signaling of
VEGFR2, the main angiogenic receptor on the cell membrane [213]. The restoration of the
normal cholesterol content in the lipid rafts of endothelial cells stabilizes the dimeric state
of VEGFR2 and angiogenesis [213]. Thus, ABCA1, providing the stability of lipid rafts
through the regulation of cholesterol content in the plasma membrane, can participate in
the signal transduction of VEGFR2 (Figure 3) [214]. The results of the studies confirmed
that the activation of LXR can disrupt angiogenesis, which is associated with their effect on
the homeostasis of endothelial cholesterol [214–216].

VEGFA, binding to VEGFR2 triggers its autophosphorylation, activating various in-
tracellular pathways, including ERK1/2 [216]. ERK1/2 are involved in many cellular
processes, such as embryogenesis, differentiation, proliferation, and cell death [217,218].
It has been shown that inhibition of ERK1/2 affects both the expression and the activ-
ity of ABCA1 [219–221]. In macrophages inhibition of ERK1/2 induces expression of
ABCA1 [219] via LXR, which significantly increases cholesterol export. In general, the
available literature data allow to suggest that ERK1/2 activity may play an important role
in the cholesterol metabolism of macrophages.

It has been shown that HDL can also affect angiogenesis, demonstrating both pro-
and antiangiogenic actions, which are implemented in several ways, including through
VEGFA and sphingosine-1-phosphate (S1P) [213,222–225]. Moreover, ABCA1 may be
involved in the regulation of these pathways [226]. In vitro, under hypoxic conditions,
reconstituted HDL (rHDL) enhanced VEGFR2 activation and enhanced phosphorylation
of the downstream angiogenesis signaling proteins ERK1/2 and p38 MAPK [222]. Thus,
promoting angiogenesis, induced by ischemia, HDL can suppress angiogenesis induced
by inflammation [227–229]. The antiangiogenic action can be realized by suppression of
NF-kB and activation of macrophages [228].

Thus, the ABCA1 transporter may be involved in the pathogenesis of COPD pheno-
types. The development of emphysema involves several mechanisms, many of which have
not been identified yet. ABCA1 is involved in angiogenesis, apoptosis, and inflammation,
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which indicates its significant role not only as a simple lipid transporter, but as a regulator
of many important biological processes.

Figure 3. Schematic picture of the ABCA1 transporter participation in angiogenesis through regula-
tion of the vascular endothelial growth factor (VEGFA) pathway in endothelial cells in COPD.

6. Conclusions

Thus, the mechanisms of COPD initiation, development and progression are complex
and involve many different pathways. At the same time, the importance of lipid metabolism
disorders in these processes does not raise any doubts.

The performed analysis of the data showed that ABCA1 can take part in various
processes that are disrupted in COPD. These conclusions are supported by the fact that
tobacco smoke, the main etiological factor of COPD, can disrupt the expression and function
of ABCA1.

ABCA1 in COPD, due to a violation of its lipid transport function, does not provide
adequate reverse transport of cholesterol in macrophages, which may cause inflammatory
activation of these cells. The mechanisms through which the transporter is involved in the
activation of inflammation are different. The analysis of the data from available studies
has shown that one of these key pathways is the participation of the transporter in the
activation of the TLR4 receptor signaling pathway, which is well known in the pathogenesis
of COPD. Activation of both TLR4 itself and its signaling pathway links is possible through
participation in the stabilization of lipid rafts, the accumulation of excess cholesterol in
cells, and participation in ensuring the functioning of the descending links of the signaling
pathway.

It is interesting to learn about the presence of crosstalk between ABCA1 and the
JAK2/STAT3 pathway, which takes an active part in the pathogenesis of COPD, demon-
strating both anti- and proinflammatory properties, which shows the complexity of simul-
taneous processes. The associations of ABCA1 with cytokines such as IL-6, IL-1β, which
are involved actively in the pathogenesis of COPD, in addition enhance the significance of
the transporter and disorders of its functioning.

Taking into account the fact that part of the pathogenesis of COPD is an increase in
bacterial colonization of the bronchi, as well as the presence of infectious exacerbations of
the disease, the possible participation of bacteria in the regulation of ABCA1 activity opens
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up new prospects for studying these relationships. The crosstalk of ABCA1 and TLR4,
which is also involved in bacterial colonization of the bronchi, reinforces this interest.

Since disorders of phagocytosis and apoptosis are an important link in the develop-
ment of COPD, data on the participation of ABCA1 in these processes are significant. The
function of the protein in this process is related to the fact that the reverse transport of
cholesterol, mediated by ABCA1, provides protection of cells from cholesterol overload
during phagocytosis. In addition, ABCA1 participates in the exposure of phospholipid
ligands on the surface of apoptotic cells.

It is known that COPD is a clinically heterogeneous disease. This heterogeneity
includes both pulmonary and extrapulmonary components, such as cardiovascular co-
morbidity. The involvement of ABCA1 in the pathogenesis of atherosclerosis, through the
function of reverse cholesterol transport, as well as participation in the development of lung
emphysema through the regulation of angiogenesis, indicate an important contribution of
the transporter to various mechanisms of COPD development.

Thus, the closely intertwined disorders of ABCA1-mediated cellular lipid export,
homeostasis of membrane lipid rafts and inflammatory activation of macrophages make a
significant contribution to the pathogenesis of COPD [230].

The performed analysis showed that ABCA1 and reverse cholesterol transport are
involved in many links of the pathogenesis of COPD and, accordingly, take part in deter-
mination of the character of the natural course of the disease, including a decrease in lung
function, infectious exacerbations, pulmonary and extrapulmonary clinical heterogeneity.
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