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Abstract: Chimeric antigen receptor (CAR) therapy is a promising modality for the treatment of
advanced cancers that are otherwise incurable. During the last decade, different centers worldwide
have tested the anti-CD19 CAR T cells and shown clinical benefits in the treatment of B cell tumors.
However, despite these encouraging results, CAR treatment has also been found to lead to serious
side effects and capricious response profiles in patients. In addition, the CD19 CAR success has been
difficult to reproduce for other types of malignancy. The appearance of resistant tumor variants, the
lack of antigen specificity, and the occurrence of severe adverse effects due to over-stimulation of
the therapeutic cells have been identified as the major impediments. This has motivated a growing
interest in developing strategies to overcome these hurdles through CAR control. Among them, the
combination of small molecules and approved drugs with CAR T cells has been investigated. These
have been exploited to induce a synergistic anti-cancer effect but also to control the presence of the
CAR T cells or tune the therapeutic activity. In the present review, we discuss opportunistic and
rational approaches involving drugs featuring anti-cancer efficacy and CAR-adjustable effect.

Keywords: chimeric antigen receptor; small molecules; drugs; kinase inhibitors; CAR T cell; im-
munotherapy

1. Introduction

Chimeric antigen receptor (CAR)-modified T cells therapy has emerged almost two
decades ago as an innovative cancer immunotherapy and was approved four years ago
to treat certain B cell malignancies [1]. CAR therapy is part of a larger treatment family
known as adoptive cell transfer (ACT). Here, T cells are genetically modified to express a
receptor that replaces the function of the endogenous T cell receptor (TCR) to specifically
bind a defined tumor antigen. CAR is a synthetic molecule restricted to surface antigen
recognition, which upon binding will cluster and stimulate immune cellular functions.
Although different CAR generations were developed to improve effector function and
persistence, receptors are all composed of an extracellular recognition domain, a transmem-
brane anchoring domain, and an intracellular signaling domain [2,3]. The extracellular
module is usually made of an antibody’s single-chain variable fragment (scFv) followed
by a hinge region. The transmembrane domain ensures CAR distribution at the plasma
membrane and is connected to the intracellular domain, which is composed of a combi-
nation of signaling domains of the TCR machinery [1]. Thus, redirected CAR T cells are
activated upon antigen challenge to specifically kill the tumor by cytokine release and
cytotoxicity. Therefore, we can distinguish two major factors that will influence the success
of the therapy: the quality of the targeted antigen and the efficacy of the intracellular
stimulation.
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One of the first CAR targets was CD19, a pan B-lymphocyte marker, for which tremen-
dous responses were obtained in exploratory studies and which translated into clinical
benefits in relapsing and refractory B cell malignancies [4–7]. Since then, treatment of other
hematologic malignancies has benefited from CAR therapy directed mainly against lineage-
restricted proteins [8,9]. However, this approach is hampered in many other cancers,
because, unlike B cell tumors, it strictly requires cancer-specific antigens [10]. Despite many
efforts to ascertain absence of antigen expression on healthy tissues, the in vivo behavior
of infused cells cannot always be fully predicted, potentially leading to patient death [11].
However, it should be noted that epitope refining or careful dosing of the injection product
can turn a dangerous CAR into an efficient drug [12]. In addition to problems associated
with target recognition, many other parameters may hinder the success of CAR therapy
and include product manufacturing, trafficking, infiltration, activation, and persistence.
Innovative attempts to control these factors were undertaken by molecular modification of
the signaling tail or the combination with associated receptors and have been discussed
elsewhere [10,13,14]. An alternative option can be found in exogenous intervention using
chemical compounds and approved drugs. Indeed, pharmacologic interventions together
with CAR therapy were the center of many investigations during the last decade. In this re-
view, we will discuss the following five pharmacologic approaches involving combinations
of CAR T cells with anti-cancer drugs, adverse effect-neutralizing drugs, and drugs used
in synthetic system biology to improve CAR clinical outcome (Figure 1): (i) Combinatorial
anti-cancer approaches. Multiple pharmacologic modalities have been combined with
CAR T cells. Among them are compounds that sensitize cancer cells to apoptosis, Tyrosine
Kinase Inhibitors (TKIs), and histone deacetylase inhibitors. (ii) Mitigating adverse effects.
Cytokine Release Syndrome (CRS) and neuroinflammation are the main adverse events
in CAR therapy. Strategies designed to counteract these effects encompass antagonists or
neutralizing monoclonal antibodies (mAbs) directed against cytokines and their receptors
(e.g., anti-IL-6R tocilizumab), antagonists of IL-1 receptor (IL-1R), or agents that inhibit
macrophage-derived products (nitric oxides). (iii) CAR T cell elimination. Vectors express-
ing CAR constructs were also designed to harbor tracking (e.g., truncated CD34 or nerve
growth factor receptor) and removal systems (e.g., CD20 mimotopes fused to the CD8 stalk
for rituximab-mediated antibody-dependent cellular cytotoxicity). An important approach
initially developed with other adoptive cell transfer modalities is the use of suicide genes
that can induce CAR T cell apoptosis. (iv) Reversible control of CAR. Synthetic biology
systems have been exploited to engineer CARs with responsive elements to exogenously
control CAR T cell function (e.g., drug-induced dimerization of split CAR format, drug-
induced CAR targeting to proteasomal degradation). These approaches are reversible; thus,
they are preferred over suicide genes discussed above. (v) Modulating CAR specificity.
These modalities mainly express a CAR where the extracellular module is designed to bind
an additional exogenously provided soluble recognition module.
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Figure 1. Overview of the pharmacologic interventions exploited with CAR T cells. (i) Combinatorial anti-cancer approaches.
(ii) Mitigating adverse effects. (iii) CAR T cell elimination. (iv) Reversible control of CAR. (v) Modulating CAR specificity.
See the main text for description. Created with BioRender.com.

2. Combinatorial Anti-Cancer Approaches

Transformed cells divert normal cellular growth pathways and evade apoptosis to
sustain their survival, which is one of the hallmarks of cancer [15]. Mechanistically, apopto-
sis inhibitors are commonly overexpressed in tumor cells and involved in drug resistance.
These were already early on identified as attractive targets for therapy [16]. Therefore,
it was foreseen that the combination of apoptotic drugs with CAR T cells would lead
to a synergistic therapeutic effect by inhibiting anti-apoptotic pathways while triggering
extrinsic killing pathways. Inhibitors of B cell lymphoma 2 (Bcl-2) family members such as
ABT-737 or the orally bioavailable derivative ABT-263/Navitoclax were shown to restore
functional intrinsic apoptosis in B cell tumor cell lines induced by CAR therapy, thereby
enhancing cytotoxicity [17].

Interestingly, the pre-sensitization of tumor cells with ABT-737 before CAR T cell
treatment increased the killing while sparing effectors. The sequential combination seems
to be a promising alternative since Bcl-2, Bcl extra-Large (Bcl-xL), and Bcl-2-like protein
2 (Bcl-w) proteins regulate clonal expansion and survival of lymphocytes, and it could
impede the function of co-administered effectors. Indeed, Navitoclax induced peripheral
thrombocytopenia and T cell lymphopenia in relapsed and refractory lymphoma patients,
which was attributed to high-affinity inhibition of Bcl-2 proteins [18]. On a similar basis,
suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, and Celecoxib, a
nonsteroidal anti-inflammatory drug, were used to reverse the development of resistance
of non-Hodgkin lymphoma (NHL) cells brought on by the repetitive exposure to CD19-
targeting CAR T cells [19]. Furthermore, CD19-resistant NHL cells showing no aberrant
loss of CD19 antigen could be sensitized to subsequent CAR therapy and tumor necrosis
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factor-related apoptosis-inducing ligand (TRAIL) apoptotic pathway upon SAHA and
Celecoxib treatment.

In an exploratory study, Dufva et al. screened 526 compounds that spanned sev-
eral functional classes such as conventional chemotherapy agents, kinase inhibitors, and
apoptotic modulators in order to identify inhibitors and enhancers of CD19-targeting
CAR T cytotoxicity against B-acute lymphoid leukemia (B ALL) [20]. They identified
birinapant, AT-406, and LCL-161, three compounds belonging to the family of second
mitochondria-derived activator of caspase (SMAC) mimetics or inhibitors of apoptotic
antagonists to be the most potent molecules combined with CAR T cells. Other molecules
such as the protein kinase C (PKC) modulator bryostatin-1, E3 ubiquitin–protein ligase
MDM2 inhibitors (idasanutlin and nutlin-3), and topoisomerase 2 inhibitors (etoposide
and teniposide) also enhanced cytotoxicity. Furthermore, a CRISPR–Cas9 screen high-
lighted that signaling through the death receptors TRAIL, tumor necrosis factor (TNF),
and especially Fas-associated death domain-containing protein (FADD) is a key aspect of
CAR T cell cytotoxicity. In addition, sensitizers with regulatory effects on apoptotic genes
can rescue antigen-independent tumor resistance, such as resistance caused by the loss of
death receptor signaling or by immunosuppressive signals emitted by the tumor microen-
vironment (TME) [14,21]. The effect of the microenvironment is more complex in solid
tumors, which might therefore greatly benefit from pharmacological sensitizing. Although
further investigation of in vivo efficacy of small molecules/CAR combinations with careful
dissection of T cell interactions and persistence is needed to define optimal treatment
schedules, targeting the apoptotic machinery to sensitize tumor cells to CAR T cells is
appealing. To our knowledge, only CD19-targeting CAR T cells have been investigated
thus far, and further studies will reveal whether a wider applicability is possible.

Since infused CAR T cells may display an “exhausted” progressive loss of function
partly due to inhibitory receptor expression (e.g., PD-1 and Tim-3) [22,23], immune check-
point blockade was also tested in combination with CAR therapy [24–26]. For instance, the
specific blocking of PD-1 immunosuppression enhanced epidermal growth factor receptor 2
(HER2)-targeting CAR T cell function while diminishing the occurrence of myeloid-derived
suppressor cells within the tumor [24]. Therefore, the use of monoclonal antibodies can
significantly restore CAR T cells functionality. Recent reviews have already covered the
subject, which will not be further detailed here [27–29]. In addition, cytokines have also
been scrutinized along CAR T cell expansion and appeared to shape the differentiation
state and thus enhance the effector function. For instance, IL-2 has been shown to promote
effector-memory and terminally differentiated effector T cell phenotypes in comparison to
IL-15 that more often polarizes CAR T cells to stem cell memory phenotype with a higher
proportion of cells (both CD4+ and CD8+) [30–32]. The metabolic fitness of CAR T cells
was also improved, which resulted in superior in vivo antitumor activity. The use of other
cytokines, such as IL-12 or IL-18, has been investigated in the context of fourth generation
“armored” CAR T cells, featuring more potent activity against refractory solid cancers with
strongly immunosuppressive TME [33,34]. Therefore, cytokine interventions may enhance
CAR therapy but will likely have to be carefully dosed to avoid adverse effects (AEs) (see
next section).

Another axis is the targeting of hijacked and constitutively active signaling path-
ways that sustain tumor proliferation, angiogenesis, and metastasis. To this end, selective
small molecule TKIs and serine/threonine kinases inhibitors were developed such as
trametinib (mitogen-activated protein kinase kinase (MEK) inhibitors) or vemurafenib
and dabrafenib (anti-BRAF) [35]. The rational of using vemurafenib has been highlighted
in tumor-infiltrating lymphocytes and TCR-modified T cells, where it promoted antitu-
mor responses in BRAFV600E mutated cancers [36,37]. Therefore, this modality was also
investigated in melanoma in combination with a CAR [38]. Unlike previous studies, disialo-
ganglioside (GD2)-targeting CAR T cells showed reduced functionality when combined
with vemurafenib, whereas trametinib and dabrafenib showed no impairment of the CAR
T cells. Conversely, PI3K/Akt/mTOR pathway inhibition during CAR T cells expansion
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improved antitumor cell function due to enhanced T-helper 1 cytokine polarization [39].
Otherwise, ibrutinib, a Bruton’s tyrosine kinase (BTK) inhibitor, improved engraftment
of CAR T cells, tumor clearance, and survival in human or xenografts models of BTK-
resistant acute and chronic lymphocytic leukemia [40–43]. Among others, sunitinib [44],
crenolanib [45], and midostaurin [46] TKIs were also combined with CAR therapy. Al-
though midostaurin was found to inhibit CAR T cells, crenolanib and sunitinib led to
superior antitumor responses. These studies support the possibility of using TKIs to pro-
mote the antitumor effect before or simultaneously with CAR-antigen challenge. As a
result of potential interference with biological processes that are also important in T cells,
the choice of TKI should be carefully assessed to avoid dampening therapy efficacy to
suboptimal levels. However, this suppressive side effect has also been used as an advantage
to successfully pause CAR function (see the section reversible spatio-temporal control of
CAR). Additional data are required to understand the scope of kinase inhibition to fully
define the suitability of TKI and CAR combination therapy.

3. Mitigating the Adverse Effects

Although the first-in-human trials involving CD19-targeting CAR T cells have shown
remarkable anti-cancer responses, associated toxicities due to the infusion of cells have
somewhat tempered enthusiasm [6,7]. Indeed, life-threatening AEs have been observed in
addition to the expected long-lasting B cell aplasia. These AEs were found to be associated
to tumor burden [47,48] and promoted by conditioning chemotherapy [49,50]. The two most
common AEs are CRS, which are manifested by fever, hypotension, and respiratory distress
associated with high level of serum cytokines; and neurotoxicity, which is mainly character-
ized by cognitive disorders, encephalopathy, and probable seizure [47,48,51–53]. The high
occurrence of severe AEs in clinical CAR T cell studies may hamper wide applicability of
this form of immunotherapy if appropriate safety measures are not in place.

The development of CRS often occurs within a few days after CAR T cell injection
and has been linked to cell expansion in vivo. Effector cells massively produce cytokines
(including GM-CSF, IL-1, -2, -6, IFN-γ, MCP-1, TNF-α) upon interactions within the com-
plex immune environment of tumor patients from which monocytes and macrophages
were identified as a major IL-6 producer [54]. Early management of CRS mainly re-
lied on the use of anti-IL-6 strategies, such as the FDA-approved monoclonal antibody
tocilizumab, which targets the IL-6 receptor [50,55–58], and to a lesser extent the anti-IL6
antibody siltuximab [55,59]. Although efficient at mitigating CRS-related AEs, tocilizumab
has failed at preventing delayed neurotoxicity that may occur after the onset of CRS
symptoms [47,50,60]. At present, there is no approved and widely effective therapy to
improve neurotoxicity, and high doses of systemic corticosteroids are often given to weaken
the overall immune response, possibly interfering with CAR T cells’ persistence and func-
tions [55]. For instance, dexamethasone is commonly used as first-line treatment due to
its efficient penetration of the central nervous system [61]. Patient serum analysis also
identified high levels of GM-CSF [6], which can be countered by the GM-CSF neutralizing
monoclonal antibody lenzilumab. Pharmacological blockade of GM-CSF in combination
with CD19-targeting CAR T cells in an ALL-patient-derived xenograft model showed
prevention of CRS and neuroinflammation. Interestingly, CAR T cells knocked-out (KO)
for GM-CSF enhanced their antitumor functions, suggesting a parallel approach to control
GM-CSF production [62,63]. Others have studied the neutralization of IFN-γ and IL-6
using specific mAbs and showed an indirect reduction of weight loss-associated toxicity
in mice [64]. The targeting of TNF-α has also been investigated with etanercept, a soluble
TNF-α receptor, and infliximab, a neutralizing mAb [50].

CAR T-associated toxicities have also been addressed using small molecules. A
noteworthy example is anakinra, an IL-1 receptor antagonist, used concurrently with nitric
oxide inhibitors (L-NIL or 1400 W) or tocilizumab to inhibit macrophage-derived products
that contribute to CRS. These combinations abrogated CRS- and neurotoxicity-related
mortality while at the same time extending leukemia-free survival [65,66]. Anakinra is
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currently being tested in different phase-2 clinical trials (NCT04150913, NCT04205838,
NCT04359784, NCT04432506) for the prevention of CRS and neurotoxicity in multiple B
cell malignancies treated with either CD19- or BCMA-targeting CAR T cells, as well as in
prostate cancer treated with prostate-specific membrane antigen (PSMA)-targeting CAR T
cells. Finally, treatment with the tyrosine hydroxylase inhibitor metyrosine, which blocks
the synthesis of catecholamines, protected mice from lethal complications of CRS induced
by CD19-targeting CAR T cell infusion [67]. This study also found that catecholamines
promote inflammation by a self-amplifying feed forward loop of cytokine release in myeloid
and T cells.

Taken together, diverse pharmacologic approaches have been investigated to mitigate
the AEs based on insights gained from clinical CAR T cell studies. The toxicities are not
fully understood, but they converge toward the identification of common traits requiring
fine monitoring of patients likely to undergo fatal outcomes if not carefully managed.
The above-mentioned drugs are potent (e.g., high-doses of immunosuppressive agents)
and therefore themselves not devoid of iatrogenic AEs, which are capable of inducing
irreversible sequelae if used over a long period. Furthermore, such drugs were not primarily
designed to eradicate the cell therapy product and rather indirectly correct the symptoms
of AEs. As discussed in the next section, the prophylactic incorporation of safety systems
embedded in the CAR technology allows for better control of treatment.

4. CAR T Cell Elimination

A drastic method to overcome high toxicities associated with cell-based therapy is
to specifically remove the therapeutic cells. Prominent early strategies relied on suicide
genes, which control T cell fate toward the termination of DNA replication and subsequent
cell death. To this end, expression of herpes-simplex virus thymidine kinase (HSV-TK) or
human mutated thymidylate kinase (hMTK) have been used to induce cell depletion. HSV-
TK sensitizes cells to ganciclovir, whereas hMTK renders cells sensitive to the pro-drug
3′-azido-3′-deoxythymidine (AZT) [68–70]. The usefulness of HSV-TK has been validated
in clinical trials showing efficient cell depletion [71]. However, since HSV-TK contains
virus-derived immunogenic sequences and was shown to evoke xenoresponses, MTK,
being human, is currently preferred although appearing less efficient [72,73].

More recently, pro-apoptotic molecules such as Fas, FADD, the death effector domain
(DED) of FADD, or caspase 9 were engineered for inducible activation upon the addition
of chemical inducers of dimerization (CID) [74–77]. It is noteworthy that Straathof et al.
used a modified human caspase 9 fused to FK506 binding protein (FKBP) to allow condi-
tional dimerization upon the addition of a non-toxic FK506 analog (AP20187/AP1903) [77].
These initial studies showed that up to 99% of transgenic T cells were depleted following
pharmacological treatment [74,77]. As a consequence, the treatment was able to selectively
reverse Graft-versus-Host disease (GVHD) mediated by haploidentical T cell transplants
in leukemia and lymphoma patients [76,78]. Several CAR studies have harnessed in-
ducible caspase 9 (iCasp9) safety switches [79–81]. For instance, in a humanized mouse
model of B lymphoma, a direct application of the above-mentioned system together with
CD19-targeting CAR expression allowed for dose-dependent containment of redirected
T cells with normal B cell reconstitution after the addition of AP1903 (also named rim-
iducid) [79]. The EMA- and FDA-approved drug rapamycin has also been used to induce
the dimerization of caspase 9 by bringing together the FKB-rapamycin binding domain
(FRB) fragment of mammalian target of rapamycin (mTOR) and FKBP, thereby leading
to selective in vivo ablation of CD19-targeting CAR T cells [82]. Several pre-clinical and
clinical studies have explored the iCasp9 system to control CAR T cells, including CD19-
(NCT03016377, NCT03696784) GD2- (NCT04196413, NCT01953900, NCT01822652) and
Mesothelin-targeting CAR T cells (NCT02414269).

The use of surrogate markers such as truncated CD20 or CD34 were used to control
and detect, respectively, the CAR T cell population [83–86]. Here, the exogenous addition
of an authorized therapeutic monoclonal antibody, rituximab, enabled cell tracking and
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in vivo depletion of CAR T cells by antibody-dependent cellular cytotoxicity (ADCC). An
alternative strategy is an all-in-one construct, consisting of the fusion of circular CD20
mimotopes with CD34 epitopes associated with the CD8 stalk of an anti-GD2 CAR, which
allows for epitope-based targeting with rituximab on the same molecule [87]. Another
approach selected a truncated form of human epidermal growth factor receptor (EGFR) for
specific cell deletion upon cituximab (anti-EGFR mAb) treatment [88]. This strategy has
been applied along CD19 CAR expression in hematopoietic stem cells (HSCs) [89].

Taken together, in case of AEs, these transgenic approaches encoding suicide switches
or mAb-selectable markers are intended to eradicate effector cells by irreversibly removing
the cell therapy product. However, despite encouraging results, none of these technolo-
gies were entirely efficient in depleting cells, possibly causing long-lasting background
toxicity [72]. Although iCasp9 and CD20 transgenes have displayed immediate cell-death
induction after in vitro pharmacologic treatment [72], inhibition of the infused product
might not occur quickly enough to prevent the onset of AEs. Therefore, other approaches
that fine-tune the spatial and temporal presence of the CAR itself in T cells have been
the center of many investigations in the past 5 years to reduce the toxicities and redirect
cellular specific functions.

5. Reversible Spatio-Temporal Control of CAR

The main signaling component found in the intracellular tail of CARs is the CD3ζ
subunit of the TCR signaling complex [1,90]. CARs signal through CD3ζ involving mul-
tiple phosphorylations of SRC family kinases [91–93], which, when activated, trigger the
activation of a series of pivotal signaling proteins, ultimately leading to the induction of
critical transcription factors. Similar to TCR activation, CAR stimulation affects T cell fate
by inducing important changes that eventually lead to cytotoxic activity, differentiation, or
expansion. Therefore, CARs might be sensitive to kinase inhibitors targeting the TCR sig-
naling cascade and interfering with this signaling pathway might temper CAR-dependent
immune cell activation. To this end, TKIs have been evaluated in CAR T cells (Figure 2i).
Dasatinib is an EMA- and FDA-approved BCR–ABL TKI for the treatment of chronic
myeloid leukemia and Philadelphia-positive ALL [94,95]. Through an off-target effect on
SRC kinases, this TKI additionally suppresses T cell activation, which has been exploited to
tune CAR activity [20,96–98]. In mouse xenograft models of ALL and lymphoma, dasatinib
potently ablated the signaling of CD19-targeting CAR T cells, leading to the suppression of
cytotoxicity, cytokine secretion, and proliferation [99,100]. Importantly, the small molecule
also protects against fatal CRS in a mouse model of CRS [99]. The onset of action is rapid,
but it is also quickly reversible upon the discontinuation of dasatinib, and this conservation
of therapeutic potential of CAR T cells is an important advantage of this strategy. Although
pharmacologic schemes and doses remain to be settled, the extensive use of dasatinib in
onco-hematology, and the management of its related AEs render the molecule attractive for
clinicians. Other SRC-inhibiting TKIs such as ponatinib, and saracatinib, FLT3-inhibiting
TKIs such as midostaurin, but also MAPK pathway inhibitors refametinib and trametinib,
and the calcineurin inhibitor tacrolimus, all known in the clinic, strongly suppressed CAR
cytotoxicity through signaling inhibition [20,46].

Another reversible strategy to control CAR T cell function is to regulate the expression
of the transgene through inducible vectors responsive to drugs (Figure 2ii). Tetracycline
(Tet)-ON/Tet-OFF systems have been developed in which CAR T cells can be activated in
the presence or absence of a tetracycline analog [101–103]. Although the system featured
high inducibility upon doxycycline treatment, vector leakiness and important time-to-effect
issues have raised safety concerns, particularly when a rapid and absolute shutdown is
needed. Furthermore, this system involves potent drugs and proteins of bacterial and viral
origin, which could impede vector efficiency due to immunogenicity.
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Figure 2. Pharmacologic strategies to reversibly control CAR function. Engineered CAR T cells can be commanded
through signaling pathways and transgene expression (left panel), structural CAR component interactions (middle panel)
or targeting CAR for proteolysis (right panel). See the main text for detailed descriptions. Created with BioRender.com.

Alternatively, downstream control of CAR structure using small CIDs has been in-
vestigated extensively in order to append signaling domains and redirect specialized
functions [104–108] (Figure 2iii–vi). One prominent early study harnessed the conditional
rapalog-induced dimerization of FKBP/FRB partner proteins for intracellular assembly
of a split CAR (Figure 2iii). Wu et al. engineered a tunable ON-switch CAR where the
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scFv was fused to FKBP, allowing for heterodimerization with membrane-bound signaling
domains that were fused to FRB. This split CAR assembled in a strictly rapalog-dependent
manner [104], and upon antigen challenge, the CAR T cells proliferated and secreted cy-
tokines only when their receptors were chemically dimerized, which allowed the timing,
location, and dosage of T cell activity. This innovation was superior compared to existing
control solutions, because the CAR T cell product was not destroyed but rather tuned
down. Although the dose and nature of the chemical used in their first report would be
difficult to deploy in a clinical setting, the authors described an important proof-of-concept
that demonstrated the power of recycling over wasting. They extended their approach
by switching the human FKBP/FRB partners to the structurally unrelated Arabidopsis
gibberellin-induced dimerization domains (GID1/GAI) [109], strengthening the use of
chemical orthogonal tools to control CAR activity. Following this study, the extracellu-
lar heterodimerization of soluble scFv with membrane-anchored costimulatory domains
was also demonstrated using sub-immunosuppressive dose of rapamycin and FKBP/FRB
domains [105]. Using the lipid-permeable tacrolimus analog rimiducid, others have investi-
gated the inducible dimerization of MyD88/CD40 to activate downstream Toll-like receptor
(TLR) and CD40 signaling [108] (Figure 2iv). Since MyD88 is an essential component of
TLR signaling, its redirection was useful to promote survival and proliferation of CAR T
cells. These mechanistic designs sought to separate T cell signal 1 (antigen recognition) and
2 (co-stimulation) as a means to safely control signaling potency and proliferation.

The small molecule-based dimerization strategies presented above are powerful tools
to artificially regulate interactions between CAR domains, but most of them have important
drawbacks that limit their use in humans. Gibberellic acid is plant-derived and therefore
likely immunogenic, and rapamycin is toxic and immunosuppressive. Rapamycin-derived
rapalogs are less toxic but often show non-favorable pharmacokinetic profiles [104,106,110].
For instance, AP21967 has a half-life of less than 4 h in mouse serum [104]. Therefore,
selecting more suitable small molecule and partner candidates with a high degree of or-
thogonality could overcome these limitations. A recent study addressed this issue by
developing antibody-based CIDs (AbCID) that specifically recognize chemical epitopes
of CID–protein complexes [106] (Figure 2vi). For example, the Bcl-xL inhibitor ABT-787,
which has a favorable serum half-life (14–18 h) [111] has been used in combination with an
Ab (Fab AZ1) that specifically recognizes ABT-737-bound Bcl-xL. Then, the authors used
a CAR construct in which the scFv portion was replaced by Bcl-xL, which upon ABT-737
addition dimerized with a soluble bispecific antibody made of Fab AZ1 fused to a CD19-
targeting scFv. CAR T-transduced Jurkat cells bearing a nuclear factor of activated T cells
(NFAT) reporter displayed ABT-737-dependent activation upon antigen challenge with an
EC50 that was approximately 330-fold lower than the cytotoxic concentration of ABT-737.
Although further functional characterization is needed to broaden the applicability to CAR
therapy, the study highlights a robust technique to identify novel orthogonal partners. Con-
versely, Bcl-xL protein has been studied as a form of self-assembling chemically disruptable
heterodimers (CDH) able to stop CAR function [112] (Figure 2vii). Bcl-xL was used as a
starting point of CDH computational design, since the protein is globular and therefore
unlikely to impede T cell synapse configuration, and small molecule partners with a long
half-life (> 10 h) are clinically available [113]. The in-silico design sought to incorporate
Bcl-xL in the signaling tail of the CAR, while the partner BH3 domain of BIM was placed in
the recognition domain. Since BIM is a non-globular, intrinsically disordered protein in an
unbound state, the protein was replaced by transplanting the BH3 motif into a human glob-
ular protein. The highest affinity Bcl-xL partner retained was the human apolipoprotein
E4 (named LD3). Then, a split CAR format was engineered to express an anti-PSMA scFv
linked to cytoplasmic CD28-LD3, whereas the CD3ζ chain was separately linked to Bcl-xL.
Timed administration of small molecules dynamically and reversely inactivated CAR T
cells in an in vivo model of prostate carcinoma allowing for fine-tuning of CAR activity.

Finally, CIDs have been scrutinized to induce conformational changes that orthog-
onally enable the assembly of high affinity partners (Figure 2v). For instance, a human
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retinol binding protein 4 (hRBP4) binder was engineered to display around 500-fold higher
affinity than hRBP4 upon treatment with a retinol analog [107]. An ON-switch split CAR
format was explored in which the soluble CD19-targeting scFv was assembled with a
membrane-bound CD28-containing endodomain, successfully permitting the regulation of
the activity of primary human CAR T cells in vitro. Several of the synthetic compounds
required for the regulation of this CAR are already commercially available as oral drugs,
allowing for the rapid implementation of such CARs in clinical settings. As predicted by
Wu and colleagues, the replacement of rapalog with non-toxic drugs in a tunable system
would be a major advance for future CAR therapies [104].

Unlike the elimination of CAR T cells, another arm to spatiotemporally control cell
function is to use rapid proteolytic systems that perturb CAR protein regulation [114]
(Figure 2viii–x). Multiple degradation systems have been used as research tools but, similar
to CIDs, most of them are not clinically suitable due to (i) their non-human origin and
(ii) the toxicity of their pharmacologic partners [115–119]. However, some have recently
been considered in CAR technology and highlighted interesting features. It is noteworthy
that cleavable degradation moieties (degrons) were incorporated in conventional CAR
architecture [120–123]. Juillerat et al. designed a CD22-targeting CAR bearing a degradation
moiety composed of a hepatitis C virus (HCV) NS3 protease target site, the NS3 protease,
and the degron in C-terminus [120] (Figure 2viii). Constitutive expression of the CAR
induces proteolysis of the degron thus functional state unless Asunaprevir (ASN), an
antiviral protease inhibitor, was supplemented (OFF-state). Using the FKBP/FRB pair,
GD2-targeting CAR T cells were engineered to harbor a ligand-induced degradation (LID)
domain in the form of a cryptic degron [117,122] (Figure 2ix). The specific addition of Shield-
1, a synthetic binder of F36V mutant of FKBP12 possessing around 1 000-fold higher affinity
than the endogenous FKBP12 [124], displaced and exposed the cryptic degron, which
resulted in proteasomal degradation of the CAR and loss of surface expression. In vivo,
Shield-1 treatment was able to temporarily reduce CAR T cell activity in tumor-bearing
mice, but it required an external injecting device to counterbalance the short small molecule
half-life. Using a proteolysis-targeting chimera (PROTAC) against the bromodomain
(BD) of brd4 [125], an engineered CD19-targeting CAR was efficiently targeted for E3
ubiquitin ligase-mediated proteasomal degradation, resulting in suppression of CAR T cell
cytotoxicity [121]. The removal of PROTAC compounds (ARV-771 and ARV-825) stopped
the recruitment of BD-containing CARs to E3 ligases, which reversed the CAR repression.
Of note, a recent study has highlighted the importance of E3 ubiquitin ligase recognition
sites on a CD19-targeting CAR as a means to sustain or modulate receptor recycling [126].
This approach might find interest in balancing CAR degradation dynamics and could be
used as an alternative to the above-mentioned systems to regulate potency and persistence.
Another approach further harnessed E3 ubiquitin ligase (CRL4CRBN) in combination with
Cys2-His2 (C2H2) zinc finger degron motifs to allow drug-dependent interaction upon the
addition of FDA- and EMA-approved thalidomide analogs [123,127]. An OFF-switch CAR
was designed as a single chain molecule carrying the zinc finger degron, which was targeted
for proteasomal degradation when lenalidomide was added (Figure 2x). Conversely, ON-
switch CAR was also considered with two chains: one was composed of signaling domains
fused to E3 ligase, whereas the other bore the scFv linked via a transmembrane domain
to the degron. Here, lenalidomide induced split CAR heterodimerization, switching it to
a functional ON-state. The authors showed that the same modules could be exploited to
either induce or repress the function of a CAR. Although attractive in using subtherapeutic
doses of thalidomide analogs, this method showed some limitations, the main one being
the immunogenicity of their enhanced degron motifs.

Altogether, these proteolytic approaches involve advanced synthetic biology designs
that feature rapid spatio-temporal control of CARs in comparison to gene-regulated sys-
tems. Most of them sought to manipulate approved drugs to accelerate their clinical use.
However, small pharmacologic molecules may also display drawbacks such as a paucity
of tissue specificity responsible for an extended diffusion in the body and, in some cases,
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of cell penetration to reach the target. Beyond the use of small molecules, it is worth
mentioning recent efforts to provide non-invasive control over the time, location, and
dosage of CARs using either reversible optogenetic or rational designs of dual antigen
sensing, such as inhibitory CARs or synNotch positive-feedback circuits sensing antigen
threshold [128–131].

6. Modulating CAR Specificity

Since CAR specificity relies on the scFv-antigen recognition, different research groups
have shown that it is possible to exchange this part by the exogenous addition of a scFv
module. This strategy intends to not only control the timing and dosing of CAR function
but also to expand the application range by considering the therapeutic cells as a modular
recognition platform adaptable to different tumors, which is an important requirement for
the universal implementation of the method.

Switching and/or adding separate antigen recognition has been studied through
the engineering of soluble scFvs and mAbs. Initial strategies used antibodies that were
non-specifically or enzymatically labeled with haptens (incomplete antigens potentially
immunogenic with a carrier protein, such as Ab) to redirect anti-haptens CAR T cell activ-
ity [132–135]. For instance, rituximab, cetuximab, or trastuzumab (an anti-human HER2
mAb) modified to contain fluorescein isothiocyanate (FITC) efficiently redirected anti-FITC
CAR T cells, which was further attenuated upon non-specific anti-FITC IgG addition [132].
Potent and switchable antitumor activities were also achieved using CD19-targeting scFv or
folate conjugated with FITC, underscoring the versatility of this strategy to target various
tumor-associated antigens (TAAs) [132,134–136]. However, the use of haptens may induce
the production of neutralizing anti-hapten Abs in treated patients or, at a molecular level,
sterically obstruct T cell synapse formation, both impeding efficient CAR therapy [135,137].
In line with this approach, others have exploited epitope tags to redirect anti-tag CAR T cells
using engineered soluble modules. For example, using anti-CD33 and anti-CD123 scFvs
fused to an epitope derived from the human nuclear autoantigen La/SS-B, anti-epitope
CAR T cells were able to kill AML blasts in vivo [138,139]. The technology, named UniCAR
T for the switchable universal CAR T platform, sought to target antigens simultaneously or
subsequently to dampen the risk of selecting tumor variants. An additional technology
was proposed by the same group in which the soluble modules consisted of anti-TAAs and
anti-tag bispecific antibodies combined with an anti-tag CAR [140]. This approach was
named RevCAR (for reversible CAR), where combinatorial Boolean logic (e.g., “OR” and
“AND”) could be achieved with rapid turn on/off kinetics. The universal CAR setting was
tested against multiple antigens such as PSMA, prostate stem cell antigen (PSCA), FLT3,
and EGFR, showing good efficiency [141–143]. However, although elegant and innovative,
this technology might face the same challenges as the bispecific antibody-based therapy
such as the short half-life of the injected product [144,145]. Antibodies modified with
peptide neo-epitopes (PNE) also enabled retargeting of anti-PNE CAR T cells toward TAAs.
This strategy was particularly adopted to address antigen loss in B ALL variants [137,146].
Another notable innovative approach took advantage of soluble scFv fused to leucine
zipper motifs: the split, universal, and programmable (SUPRA)-CARs [147]. The system
provides versatile ON/OFF-switch possibilities as well as combinatorial Boolean logic
responses by tuning zipper motif affinity and scFv specificity. A substantial number of
studies exploiting the modular potential of soluble antibodies with universal CARs is
emerging [148–150] and will therefore not be further detailed here, since a comprehensive
review has recently been published [151]. Of note, the above-mentioned systems solely
rely on an antibody fragment that, in a near-cell environment, binds the extracellular CAR
domain without additional control. A recent study used a unique nanobody scaffold [152]
to modulate CAR recognition and activation with methotrexate (MTX) [153]. This elegant
approach used conditional scFvs that specifically bound TAAs in the absence of MTX and
display reduced binding in the presence of MTX allowing exogenous control over CAR T
cell function using an approved therapeutic molecule. CD33- and EGFR-targeting CAR T
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cells achieved cytotoxicity to a level comparable to conventional single-chain CARs while
being reversibly attenuated by the addition of MTX. This study merged efforts to redirect
specificity, attenuate CAR therapy-associated AEs, and could be applied to a broad range
of antibody-based therapeutics.

Overall, these adaptable approaches pave the way for tailored targeting, especially for
the treatment of minimal residual disease and relapse reminiscent to suspected antigen
loss. The modular systems discussed herein aim at offering adapted and cheaper product
to the patients. In addition, these methods can also target simultaneously or sequentially
several TAAs, which could improve the clinical outcome as recently exemplify here [154].

7. Concluding Remarks

CAR T cells have shown unprecedented results in treating cancers otherwise not
curable. However, the therapy is still not optimal. This is partially due to the nature of the
product, which is a “living drug”, suggesting that its control might vary with its origin
(patient fitness) and quality. It is worth mentioning that so far, all CAR studies have at least
identified severe grade 3 or 4 clinical AEs and/or patient death. We have in the present
review highlighted novel, innovative approaches to deal with the versatility of CAR T cells
by combining them with exogenous pharmacologic drugs (see Table 1 for an overview).

The first obvious utility unites the effect of drugs to sensitize tumor cells with CAR
therapy in order to further synergize the effects of the two treatments. This arm should
reveal its full potential to alleviate tumor resistance mechanisms and counteract the non-
permissive TME. However, double treatment also means more and often unexpected side
effects, and careful monitoring of the patients will be required during the initial validations.
Another important use of drug combination was found in approaches inducing immune
cell suicide. Although elegant and able to save patients from undesirable effects, drugs
can be costly. However, compared to the generation of patient-compatible transgenic T
cells, drug costs will likely only be a minor part of total treatment costs. We predict that
more advanced switch technologies will emerge in which the precious therapeutic material
will be spared by carefully modulating activity of the CAR rather than by destroying
the product. Tuning the therapeutic effect of the CAR will be an important step toward
a personalized adaptation of the “living drug”. In line with this, several groups have
used FDA and EMA-approved drugs that could readily be transferred to the clinic to
control CAR function. This has created a positive synergy between system biologists
and immunotherapists with the ambition of identifying innovative systems with specific
pharmacologic partners.

In conclusion, the success of CAR therapy relies on better control of the product as
well as on treatment personalization. We herein discussed one strategy: the combination of
pharmacological drugs with CAR treatment and observed that it was innovative, elegant,
and feasible. Therefore, we expect to see future CAR/drugs trials showing efficient clinical
outcomes in the near future.
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Table 1. Selected studies combining CAR T cells and small molecules or drugs.

Year CAR Target CAR Design * Cancer or Model Small Molecule or Drug Target Observations Ref.

Combinatorial anti-cancer approaches

2013 CD19 scFv-CD28-CD3ζ B ALL ABT-737; ABT-263
(navitoclax)

Bcl-2 family
members

Restore intrinsic apoptosis in tumor cells;
Enhance CAR T cells

efficacy
[17]

2018 CD19 N/A NHL
suberoylanilide

hydroxamic acid and
LBH589; Celecoxib

Histone deacetylase;
cyclo-

oxygenase-2

Enhance CAR T cells
cytotoxicity [19]

2020 CD19 scFv-CD28-CD3ζ B ALL >500 small
molecules Multiple

primary: birinapant,
AT-406, LCL-161 (SMAC mimetics/inhibitor of

apoptotic antagonists);

secondary: bryostatin-1 (PKC activator),
idasanutlin and nutlin-3 (MDM2 inhibitors),
etoposide and teniposide (topoisomerase 2

inhibitors);

Enhance CAR T cells cytotoxicity

[20]

2013 HER-2 scFv-CD28-CD3ζ HER-2+ PD-1+ tumor
cells anti-PD-1 mAb PD-1

Enhance CAR T cell
function;

decrease MDSCs
frequency

[24]

2017 CD19 scFv-CD28-CD3ζ B ALL Akt
inhibitor VIII Akt

Akt signaling inhibition during CAR T cell
expansion improve antitumor

efficacy
[39]

2013 CD19 scFv-CD28-CD3ζ CLL ibrutinib Bruton’s tyrosine
kinase

Improve CAR T cells engraftment, tumor clearance
and mice survival [41]

2020 CAIX scFv-41BB-CD3ζ RCC (lung
metastasis) sunitinib Multiple

kinases
Up-regulate CAIX in

tumor cells; decrease MDSCs frequency [44]

2018 FLT3 scFv-CD28/41BB
-CD3ζ AML crenolanib FLT3 kinase Synergize anti-leukemia effect [45]
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Table 1. Cont.

Year CAR Target CAR Design * Cancer or Model Small Molecule or Drug Target Observations Ref.

Mitigating the adverse effects

2016 CD19 scFv-41BB-CD3ζ B ALL etanercept, infliximab TNF-α Reduce toxicity [50]

2019 CD19 scFv-41BB-CD3ζ B ALL lenzilumab GM-CSF Suppress CRS and
neurotoxicity [62]

2018 CD19 scFv-CD28-CD3ζ B lymphoma anti-IL-6 and anti-IFN-γ
mAb IL-6 and IFN-γ Reduce toxicity [64]

2018 CD19,
CD44v6 scFv-CD28-CD3ζ B ALL anakinra,

tocilizumab
IL-1 receptor

antagonist,IL-6
Suppress CRS and neurotoxicity; Extend

leukemia-free survival [65]

2018 CD19 scFv-CD28-CD3ζ B ALL anakinra;
L-NIL and 1400W

IL-1 receptor
antagonist,

iNOs
inhibitors

Inhibit macrophage-derived products (NOs, IL-1 and
IL-6); Suppress CRS-related mortality [66]

2018 CD19 scFv-CD28-41BB
-CD3ζ B lymphoma metyrosine catecholamines Protect mice from lethal complications of CRS [67]

CAR T cell elimination

2017 CD19
iCasp9-2A-tNGFR

-2A-scFv-41BB
-CD3ζ

B lymphoma AP1903
(rimiducid)

FKBP/FRB
Inducible

caspase 9 (iCasp9)
Eliminate CAR T cells in a dose-dependent manner [79]

2018 CD19
rapaCasp9-2A

-RQR8-2A-scFv
-41BB-CD3ζ

B ALL and
lymphoma

AP20187,
rapamycin

FKBP/FRB
Inducible
caspase 9

(rapaCasp9)

Eliminate CAR T cells in vivo [82]

2014 GD2 N/A N/A rituximab
CD20 epitope fused
to CD8 stalk (RQR8,
also contain tCD34)

Enable CAR T cells selection, cell tracking (tCD34)
and deletion (CD20) [87]

Reversible spatio-temporal control of CAR

2019 CD19 scFv-CD28/41BB
-CD3ζ-2A-EGFRt B lymphoma dasatinib SRC kinases Reversibly suppress CAR T cell cytotoxicity, cytokine

secretion, and proliferation; protect from CRS [99]

2019 CD19 scFv-CD28/41BB
-CD3ζ B ALL dasatinib SRC kinases Reversibly suppress CAR T cell cytotoxicity, cytokine

secretion, and proliferation [100]
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Table 1. Cont.

Year CAR Target CAR Design * Cancer or Model Small Molecule or Drug Target Observations Ref.

2015 CD19,
Meso

scFv-41BB-FKBP
+ DAP10-41BB

-FRB-CD3ζ

CD19+ or Meso+

K562
rapalog,

(gibberellic acid)

FKBP/FRB- (or
GID1/GAI)
-based CAR
dimerization

ON-switch CAR: control the timing, location, and
dosage of CAR T cell

activity; mitigate toxicity
[104]

2018 CD19

soluble bispecific
scFv-Fab(AZ1)
+ BclxL-41BB

-CD3ζ

CD19+ K562 ABT-737

Fab(AZ1)
specific for

Bcl-xL only in the
presence of ABT-737

Drug-dependent CAR T cell activation [106]

2020 CD19

scFv-IgG1Fc
-hRBP4

+ RS3-IgG1Fc
-CD28-CD3ζ

B ALL A1120 hRBP4 and hRBP4
binders (RS3) Drug-dependent regulation of CAR T cells activity [107]

2017
PSCA,
GD2,

CD123

iMC: MyD88-CD40
-(FKBP)x2-2A

-∆CD19

iMC-2A-scFv
-CD3ζ

scFv
-CD28/41BB/OX40-CD3ζ

prostate, melanoma,
AML

AP1903
(rimiducid)

FKBP/FRB
-based

dimerization of
MyD88/CD40 (iMC)

Enhance CAR T cell proliferation and antitumor
activity [108]

2020 PSMA
scFv-CD28-LD3+

DAP10-CD28
-BclxL-CD3ζ

prostate A-1155463, A-1331852
(BH3 mimetic)

LD3/Bcl-xL
-based CAR
dimerization

STOP-CAR: dynamically and reversibly inactivate
CAR T cells [112]

2019 CD22

scFv-41BB-CD3ζ
-NS3cleaving_site

-NS3protease
-degron

B lymphoma Asunaprevir HCV NS3
protease

Switch-OFF CAR (SWIFF-CAR): constitutive CAR
degron proteolysis;

Asunaprevir-dependent CAR degradation
[120]

2020 CD19 scFv-CD28-BD2
-CD3ζ B ALL ARV-771 or ARV-825

(retinol)
bromodomain (BD of

brd4)
Induce drug-dependent CAR degradation;

Reversibly suppress CAR T cells [121]

2020 GD2

scFv
-41BB/KIR2DS2

-CD3ζ-[FKBP
-degron]LIDdomain

FAP+

Mesothelioma Shield-1
LID domain
-based CAR
degradation

Induce drug-dependent CAR degradation;
temporarily reduce CAR T cells activity [122]



Int. J. Mol. Sci. 2021, 22, 4320 16 of 23

Table 1. Cont.

Year CAR Target CAR Design * Cancer or Model Small Molecule or Drug Target Observations Ref.

2021 CD19

OFF-switch:
scFc-41BB-CD3ζ

-C2H2degron

ON-switch:
CD8-CD28-CRBN-CD3ζ +

scFv-CD28
-C2H2degron

B ALL and
lymphoma thalidomide analogs C2H2,

CRBN

OFF-switch: thalidomide analog-induced CAR
proteasomal degradation, limit inflammatory

cytokine production while retaining antitumor
efficacy

ON-switch: thalidomide analog-induced split CAR
dimerization, drug-dependent antitumor activity

[123]

Modulating CAR specificity

2016 FITC scFv-41BB-CD3ζ B ALL and
lymphoma

FITC-modified
anti-CD19 and anti-CD22

antibodies

CD19,
CD22

Enable CAR-switch combinations; potent and
dose-dependent antitumor

activity
[135]

2016
5B9

epitope of
La/SS-B

scFv-CD28-CD3ζ AML
(others)

5B9-tagged anti-CD33
and anti-CD123

antibodies

CD33,
CD123

UniCAR T (Universal): Redirect CAR in a time- and
target-dependent manner; potent anti-AML activity [139]

2018
HER-2,

Axl,
Meso

zipFv: scFv
-EEleucine_zipper

zipCAR: RRleucine_zipper
-CD28-41BB-CD3ζ

HER-2+,
Axl+, Meso+

K562
Soluble zipFv

Membrane
-bound
zipCAR

SUPRA-CAR: control signaling, fine-tune T cell
activation, mitigate

toxicity and allow multiple antigens sensing
[147]

2021 CD33,
EGFR scFv-41BB-CD3ζ AML, GBM Methotrexate Conditional

scFvs
Drug-induced decrease of CAR T cells affinity and

cytotoxicity; reversible [153]

* Only the recognition, costimulatory, and signaling domains are depicted in order to facilitate the understanding. Additional leader sequence, hinge/stalk, transmembrane domains, tags, and epitopes were
removed when irrelevant. A slash (/) means that either one or more of the costimulatory domains is present. N/A: Non-available. AML: acute myeloid leukemia; B ALL: precursor B acute lymphoid leukemia;
Bcl-2: B cell lymphoma 2; Bcl-xL: Bcl extra-large; C2H2: Cys2-His2; CAIX: carbonic anhydrase IX; CLL: chronic lymphoid leukemia; CRBN: cerebelon; CRS: cytokine release syndrome; EGFR: epidermal growth
factor receptor; FKBP: FK506 binding protein; FLT3: fms-like tyrosine kinase 3; FRB: FKBP–rapamycin-binding; GBM: glioblastoma multiform; GD2: disialoganglioside; GM-CSF: granulocyte-macrophage colony
stimulating factor; HCV; Hepatitis C virus; HER-2: epidermal growth factor receptor 2; hRBP4: human retinol binding protein 4; IFN-γ: interferon gamma; iMC: inducible MyD88/CD40; La/SS-B: human
nuclear auto-antigen La/SS-B; LD3: human apolipoprotein E4; LID: ligand-induced dimerization; MDM2: mouse double minute 2 homolog; MDSC: myeloid-derived suppressor cells; Meso: mesothelin; NHL:
non-Hodgkin lymphoma; NOs: nitric oxides; PD-1: programmed cell death protein 1; PKC: protein kinase C; PSMA: prostate-specific membrane antigen; PSCA: prostate stem cell antigen; RCC: renal cell
carcinoma; scFv: single-chain variable fragment; SMAC: second mitochondria-derived activator of caspase; tCD34: truncated CD34; TNF-α: tumor necrosis factor alpha; tNGFR: truncated nerve growth factor
receptor; zip: leucine-zipper.
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