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Abstract: Proper functioning of all organs, including the brain, requires iron. It is present in different
forms in biological fluids, and alterations in its distribution can induce oxidative stress and neurode-
generation. However, the clinical parameters normally used for monitoring iron concentration in
biological fluids (i.e., serum and cerebrospinal fluid) can hardly detect the quantity of circulating
iron, while indirect measurements, e.g., magnetic resonance imaging, require further validation. This
review summarizes the mechanisms involved in brain iron metabolism, homeostasis, and iron imbal-
ance caused by alterations detectable by standard and non-standard indicators of iron status. These
indicators for iron transport, storage, and metabolism can help to understand which biomarkers can
better detect iron imbalances responsible for neurodegenerative diseases.
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1. Introduction

Iron is a d-block transition metal with reactive properties and with excellent redox
potential. It can readily donate and accept electrons to participate in oxidation-reduction
reactions that are essential for a number of fundamental biological processes [1]. Iron
exists in two ionic states, Fe3+ and Fe2+. Free (unbound) iron can be toxic since it readily
combines with oxygen and nitric oxide, catalyzing the formation of a highly reactive
hydroxyl group (OH-) and peroxynitrite (ONOO-), resulting in oxidative and nitrosative
damage to proteins, lipids, and nucleic acids [2].

Therefore, most of the circulating and the stored iron is linked to proteins and other
transporters, and cells are equipped with proteins for iron uptake to secure its vital func-
tions and limit its potential toxicity. Not only does iron binding to glycoprotein ligands
prevent toxicity, but the nature of the ligands finely modulates the redox potential of iron.

The crucial role of iron in health and diseases is long recognized together with its very
sensitive distribution in the human body and sophisticated pathways to import, chaperone,
sequester, and export iron in order to maintain an appropriate balance [3].

Healthy adult bodies contain 4–5 g of iron. Iron is mostly (65%) bound in red blood
cell hemoglobin (Hb), and 30–35% is stored in the liver in the form of ferritin. Iron is also
in the form of iron–sulfur clusters or heme in enzymes and multiprotein complexes [4,5].
The body absorbs 1–2 mg of dietary iron a day, and this intake is balanced with losses in
the form of sloughed intestinal mucosal cells and other blood losses [6].

Iron is an essential micronutrient due to its relevance in the process of erythropoiesis,
oxidative metabolism, and cellular immune responses [7]. In humans, iron is incorporated
into proteins as a component of heme (e.g., hemoglobin, myoglobin, cytochrome proteins,
myeloperoxidase, nitric oxide synthetases), iron–sulfur clusters (e.g., respiratory com-
plexes I–III, coenzyme Q10, mitochondrial aconitase, DNA primase), or other functional
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groups [8]. These iron-containing proteins are required for vital cellular and organism
functions, including oxygen transport, mitochondrial respiration, intermediary and xenobi-
otic metabolism, nucleic acid replication and repair, host defense, and cell signaling. The
remaining iron-dependent proteins are specifically involved in iron absorption (divalent
metal transporter-1, DMT1)), export (ferroportin, Fpn), storage (ferritin, Ft), and transport
(transferrin, Tf).

The complex and multi-hierarchy iron metabolism may be divided into different steps:

(a) Active transport of dietary iron in the gastrointestinal tract by enterocytes for iron
entry into the bloodstream;

(b) Transport of iron through the bloodstream;
(c) Entry of iron into different tissues and cells;
(d) Regulation of intracellular levels, trafficking, and metabolization of iron.

The major route of iron acquisition is intestinal absorption (Figure 1), where dietary
Fe3+ is reduced to Fe2+ by the ferrireductase enzyme duodenal cytochrome B (DcytB),
localized at the apical surface of enterocytes [9]. The divalent Fe2+ ions enter the duo-
denal enterocytes via the divalent metal transporter 1 (DMT1), a duodenal brush-border
membrane protein specific for ferrous iron, zinc(II), and copper(II) [10]. This transport is
proton(H+)-coupled and depends on the presence of luminal H+ ions. When there is a low
demand for iron in the body, iron is stored within the enterocytes in the form of ferritin, an
intracellular iron storage protein [11].
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membrane of duodenal enterocytes, dietary iron is absorbed by DMT1 and driven to the basolat-
eral membrane of these cells; iron is exported by FPN1 to the circulation, transformed from ferrous 
to ferric iron by HEPH, and finally transported by Tf in the blood. Abbreviations, DcytB—duode-
nal cytochrome B, DMT1—divalent metal transporter-1, FPN1—ferroportin-1, HEPH—hephaestin, 
Tf—transferrin. 

Table 1. Table for the description of iron-related proteins involved in uptake, regulation, 
transport, and storage of iron from blood to brain. Abbreviations: BBB —blood–brain barrier, 
BCSFB—blood-cerebrospinal fluid barrier, CSF—cerebrospinal fluid, Cp—ceruloplasmin, DcytB—
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Figure 1. Mechanism of systemic iron metabolism. After being reduced by DcytB at the apical
membrane of duodenal enterocytes, dietary iron is absorbed by DMT1 and driven to the basolateral
membrane of these cells; iron is exported by FPN1 to the circulation, transformed from ferrous to fer-
ric iron by HEPH, and finally transported by Tf in the blood. Abbreviations, DcytB—duodenal
cytochrome B, DMT1—divalent metal transporter-1, FPN1—ferroportin-1, HEPH—hephaestin,
Tf—transferrin.

Ferritin is a ubiquitous, mainly cytosolic, globular protein of 450 kDa comprising
24 subunits of Ft-H and Ft-L chains [12,13]. Ft-H possesses an active ferroxidase center that
catalyzes the oxidation of Fe2+ to the Fe3+ form, while Ft-L promotes its nucleation within
the protein shell for storage. Together, these chains form a nano-cage storing approximately
4500 Fe3+ ions in a bioavailable and non-toxic form (as mineral ferrihydrite) [14–16]. The
precise mechanism of binding, storage, and release of iron from ferritin requires further
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clarification. Available information suggests that a cytosolic iron chaperone Poly (rC)-
binding protein 1 binds cytosolic iron for delivery to ferritin [17]. Ferritin-binding proteins,
amino acids, and small molecules regulate the release of iron from ferritin, supporting the
gated pore model but requiring further characterization [18–20]. Stored iron is released in
response to low intracellular iron, thus maintaining equilibrium between ferritin iron and
free iron, which constitutes the so-called labile iron pool (LIP).

On the other hand, when iron demand is high, the absorbed ferrous iron is transported
across the basolateral membrane into blood. This phase is controlled by ferroportin 1
(FPN1), a ferrous iron export protein modulating the quantity of enterocyte iron absorbed
into the circulation and available to the body [21].

Iron transportation in the bloodstream is performed by the plasma protein transferrin
(Tf) [22], which requires the transformation of ferrous iron back to ferric iron. This step
is achieved by hephaestin (HEPH), a multi-copper ferroxidase enzyme anchored to the
basolateral enterocyte membrane and coupled to FPN1, which catalyzes the oxidation of
Fe2+ to Fe3+ ions [23]. Then, Fe3+ binds to Tf, which has a high affinity for Fe3+ and enables
iron transport around the body organs, e.g., in the brain (Table 1). Apotransferrin (apo-Tf)
is the unbound form of this transporter and contains two ferric binding sites, of which
none, one, or both may be filled. Under physiological conditions, only about 30% of Tf
is saturated [1]. Tf is the primary iron-transport protein with a half-life of 8 to 10 days
that reflects both protein and iron status. Iron with Tf maintains Fe3+ in a soluble form
under physiological conditions, facilitates regulated iron transport and cellular uptake, and
maintains Fe3+ in a redox-inert state, preventing the production of toxic free radicals [24].

Table 1. Table for the description of iron-related proteins involved in uptake, regulation, trans-
port, and storage of iron from blood to brain. Abbreviations: BBB —blood–brain barrier, BCSFB—
blood-cerebrospinal fluid barrier, CSF—cerebrospinal fluid, Cp—ceruloplasmin, DcytB—duodenal
cytochrome B, DMT1—divalent metal transporter-1, FPN1—ferroportin-1, Ft—ferritin, HEPH—
hephaestin, LIP—labile iron pool, Tf—transferrin, TfR—transferrin receptor.

Body Compart-
ment/Structure Iron Uptake Iron Trans-

port/Regulation Iron Storage

Intestinal
Lumen-Enterocytes DMT1

DcytB
FPN1
HEPH

Cp

Ft

Blood

Release
from enterocytes (FPN1) Tf Ft

Apo-Tf
Hepcidin

BBB-BCSFB

DcytB
TfR

DMT1 DMT1 Ft

FPN1
HEPH, Cp

Brain-CSF
Entry from brain barriers

TfR
DMT1

Tf, Apo-Tf
FPN1, DMT1

Cp
Ft

2. Iron in Brain

Brain iron levels are tightly regulated to ensure the normal function of the central
nervous system (CNS) and to prevent high sensitivity of CNS to toxicity [25,26].

The brain is among the most metabolically active organs in the body and accounts
for at least 20% of the body’s energy consumption, although it represents only about 2%
of its weight. Iron plays a fundamental role during ATP production as a cofactor in the
oxidative chain for cytochromes and iron–sulfur complexes [27]. About 75–80% of the
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energy supports neuronal activity, with the remainder utilized to sustain the functions
of astrocytes, oligodendrocytes, and microglia [28]. Both axonal and synaptic signaling
need neuronal energy, but the major part is used post-synaptically [29]. The mitochondrial
function must supply ATP, and iron is necessary to support oxidative phosphorylation
(Figure 2).
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Figure 2. Summary of brain iron cycle and mitochondrial functions. Iron crosses the BBB via the TfR pathway on the
endothelium. The brain iron cycle involves glia and neurons. Astrocytes extend long processes that enclose the brain
capillaries and help to form the BBB. The DMT1 transports iron. Near the ends of these processes, a special form of the
Fe oxidizing enzyme, Cp, is expressed. Iron binds to Tf circulating in CSF and enters the neurons mainly by TfR. The
cells export iron mainly by FPN1. Into the cells, the mitochondrial electron transport chain contains multiple iron–sulfur
(Fe–S) clusters and heme-containing proteins necessary for ATP synthesis. NADH dehydrogenase (complex I) contains Fe–S
clusters, succinate dehydrogenase (complex II) contains Fe–S clusters and one heme moiety, while complex III (cytochrome
bc1) contains Fe–S cluster and several heme groups vital for its functions. Complex IV (cytochrome c oxidase) also contains
two heme moieties. Aconitase is a key enzyme, catalyzing the reaction of citrate to isocitrate in the tricarboxylic acid (TCA)
cycle and containing Fe–S clusters.

Accordingly, an adequate supply of iron is necessary to sustain its high-energy
needs [28,30,31]. Therefore, iron is the most abundant metal in the brain [32]. It is a
co-factor involved in oxygen transportation, DNA synthesis, mitochondrial respiration,
myelin synthesis, neurotransmitter synthesis, and metabolism [33,34] but can become
neurotoxic when there is excessive intracellular accumulation [35,36]. The systemic organs
and the brain share the same iron regulatory mechanisms and pathways based on iron-
modulating proteins, providing a link to the maintenance of iron homeostasis within the
brain [37].

The delicate balance of iron in the brain milieu is mainly maintained by the brain
barrier systems, coordinating the direction of iron fluxes between the blood and the
brain/cerebrospinal fluid (CSF) [38].

Brain iron concentrations are not static; they increase with age and in many diseases
and decrease when iron is deficient in the diet. In vivo magnetic resonance imaging
(MRI) shows that iron deposition increases in numerous age-dependent neurodegenerative
diseases, such as Parkinson’s and Alzheimer’s disease (AD), and accumulates mainly in
the basal ganglia [39,40]. Moreover, increased levels of iron are associated with motor
and cognitive impairment in the elderly [41]. Iron is believed to enter the brain via the
blood–brain barrier (BBB) by Tf receptor-mediated endocytosis in the brain capillaries and
is released back to circulation via CSF [42]. Iron is present in various cell types in the CNS
but is abundant in the astrocytes (star-shaped glial cells), which gave rise to the idea that
glial cells are involved in iron storage and regulation [33].
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Brain Iron Metabolism

Blood iron entrance into the brain is controlled by the BBB [43] and, to a lesser extent,
by the blood–cerebrospinal fluid barrier (BCSFB) [44]. The role of the BBB is to protect
the brain from neurotoxic plasma components and pathogens [45] as well as to control
the chemical composition of the neuronal milieu by regulating the transport of molecules
required for normal neuronal functioning [46]. The BBB is formed by a monolayer of
tightly sealed brain microvascular endothelial cells (BMVECs) extending along the vas-
cular tree [47] and expressing low paracellular and transcellular permeability [48]. Those
endothelial cells are surrounded by a basal lamina and astrocytic perivascular end-feet,
forming the neurovascular unit [49]. Iron enters the BMVECs as a low molecular weight
complex, or via transferrin receptor-1 (TfR1) mediated endocytosis of Tf, or independently
as non-transferrin-bound iron (NTBI) in a multi-step transcellular pathway. The binding of
Tf to Tf receptors (TfR) at the lumen of the brain microvasculature facilitates iron uptake
via receptor-mediated endocytosis [26,50,51] (Figure 2).

The Tf/TfR1 pathway is considered to be the major route for iron transport across
the luminal membrane of the capillary endothelium [50,52]. The complex passes through
the cell in the endocytosis vesicle, where the acid environment facilitates the release of
ferric iron from Tf and its reduction to ferrous iron by endosomal reductase [53], possibly
DcytB. The next steps in this pathway are still not completely clear. One possibility is that
ferrous iron is transported from the endosome to the cytosol by the DMT1 [54] and joins the
intracellular labile iron pool (LIP) [55]. It could be further utilized for metabolic purposes by
the endothelial cells, stored in endothelial cell ferritin [56], or imported into mitochondria
via mitoferrins and TfR2 [57]. It could be also released into the extracellular fluid by the
action of export protein ferroportin (Fpn) [58] and re-oxidized to Fe3+ by ferroxidases
HEPH and ceruloplasmin (Cp) [43], also expressed on the end-foot processes [54]. Studies
confirmed that the capillary endothelium of the BBB, the neurons, and the astrocytes has the
ability to express Fpn and HEPH [59,60]. The alternative mechanism that is proposed is that
the endosome containing the Tf–TfR1 complex reaches the abluminal side and releases iron
between the endothelial cells and the astrocyte end-foot processes [26]. Oxidized iron binds
to apo-Tf circulating within the brain [55]. The main source of Tf in the brain interstitium
is its diffusion from ventricles and oligodendrocytes synthesize a certain amount [61].
Because of the low concentrations of Tf in the CSF, iron saturation of CSF Tf is almost 100%,
while serum Tf is saturated by about 30% [26].

Different cell types in the brain acquire iron by distinct pathways. Neurons express
high levels of TfR1. Therefore, Tf is the main source of iron for neurons [54], although
neurons can also uptake NTBI from interstitial fluid. Oligodendrocytes and astrocytes
express less TfR1, and NTBI can be a source of iron [53,62].

Due to their peculiar position in the BBB, astrocytes take up iron from the circulation
and distribute it to other cells in the CNS using different pathways: by DMT1 to glial cells,
by binding ferrous iron in the brain interstitium to ATP or citrate released from astrocytes
and transported to oligodendrocytes and astrocytes as NTBI [26], and finally iron can be
stored as ferritin in astrocytes and exported by a mechanism involving Fpn and Cp [63].
Since most of the accumulated iron is within astrocytes, mainly iron-loaded astrocytes can
cause brain toxicity [64]. Oligodendrocytes, which are responsible for myelin production,
need high amounts of ATP [65]. Many of the enzymes involved in ATP production require a
supply of iron, such as pathways for cholesterol and fatty acid synthesis for the myelination,
which are iron-dependent. Some of these enzymes (e.g., NADH dehydrogenase and HMG-
CoA reductase) are abundant in oligodendrocytes instead of other CNS cell types [65].
A suitable supply of iron during myelination is needed; in fact, a dietary iron restriction
decreases the amount and the composition of myelin during gestation and early post-natal
periods [66].
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3. Brain Iron Mis-Metabolism

Abnormal iron content or the presence of free iron (LIP) may alter the brain metabolism
by producing oxidative stresses, which could contribute to neurodegeneration due to the
high susceptibility of the brain to oxidative damage. Moreover, functional mutation(s)
in iron-modulating proteins disrupt iron homeostasis in systemic organs and the brain
to a varying extent and, in some cases, result in specific human disorders [33,67,68]. The
correlation between brain iron metabolism and neurotoxicity associated with neurodegen-
erative conditions such as AD remains to be fully elucidated [69], however, much evidence
highlighted the involvement of iron in neurodegeneration.

Increased concentrations of total iron with aging might be caused by several factors
that include increased BBB permeability, inflammation, redistribution of iron within the
brain, and changes in iron homeostasis [70]. Aging processes might compromise the iron
homeostatic system, leading to an excess of iron that is not efficiently chelated by storage
proteins or other molecules [71]. Total iron concentrations increase with age in substantia
nigra, putamen, globus pallidus, caudate nucleus, and cortices, but why this increase is
selective for some areas of the brain is unclear [72]. Regional distribution of total iron in
a healthy adult brain is heterogeneous; the highest iron concentrations were detected in
the basal ganglia (putamen, globus pallidus, and caudate nucleus), whereas low concen-
trations were detected in cortical grey matter, white matter, midbrain, and cerebellum,
and the lowest iron concentrations were in pons, locus coeruleus, and medulla [73]. Re-
gional heterogeneity of brain iron and its change with age were both confirmed in vivo by
MRI [74].

The aggregation of proteins involved in neurodegenerative disorders was shown
in vitro to be triggered by elevated ferric iron concentrations [75]. Inclusion bodies contain-
ing damaged or aggregated proteins could cause endoplasmic reticulum stress, which is a
common feature of several neurodegenerative diseases [76].

Defective homeostasis of the redox-active metals iron and copper probably contributes
to the neuropathology of AD. High concentrations of zinc, copper, and iron are present in
the insoluble amyloid plaques and the neurofibrillary tangles characteristic of AD. Focal
accumulation of zinc, copper, and iron might deprive other brain tissues of these essential
metals, leading to aberrant neuronal function [77]. Abnormal homoeostasis of zinc, copper,
and iron metal ions is implicated in the misfolding process associated with the production
of amyloid β (Aβ) from amyloid precursor protein (APP) and hyperphosphorylated tau
(found in plaques and tangles) and contributing to neuronal oxidative stress [78]. Increases
in iron in animal brains produce pronounced cognitive defects [79]. Iron deposits in
presenilin/APP transgenic mice models of AD [80] and colocalizes with Aβ plaques [81],
and increases in total brain iron coincide with early plaque formation [82].

Some studies suggest non-specific co-precipitation of iron and other metals with aggre-
gated proteins, while others associate brain iron directly with disease pathogenesis [83–85].
In addition, dysfunction of ferritin or absence of Cp alter brain iron homeostasis and can
induce neurotoxicity [37].

3.1. Oxidative Stress and Ferroptosis

Iron can promote radical formation from physiological or xenobiotic compounds,
e.g., by catalyzing autoxidation, initiating lipid peroxidation, and reacting with hydrogen
peroxide with consequent production of more highly reactive and toxic species by means of
Fenton reaction [86]. Consequently, excess iron stores may increase pro-oxidant reactions
and generation of free radicals, inducing cellular death in neurodegeneration. Furthermore,
iron can be involved in inflammation processes, which play a key role in mediating cellular
death and destruction via poorly liganded iron [87].

In 2012, Dixon first proposed the concept of ferroptosis., i.e., iron-dependent cell death
characterized by the accumulation of lipid ROS which is morphologically, biochemically,
and genetically distinguished from other forms of cell death including apoptosis, necrosis,
autophagy, and pyroptosis [88–90].
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Morphologically, cell ferroptosis is featured by decreased mitochondrial volume,
increased bilayer membrane density, and reduction or disappearance of mitochondrial
cristae [88,89,91], but the cell membrane is preserved, and the nucleus remains normal in
size. Biochemically, intracellular glutathione (GSH) depletion and decreased activity of
glutathione peroxidase 4 (GPX4) mean lipid peroxides cannot be metabolized by the GPX4-
catalyzed reduction reaction, and Fe2+ oxidizes lipids in a Fenton-like manner, resulting in a
large amount of ROS, promoting ferroptosis [91–93]. Genetically, ferroptosis is a biological
process involved in iron homeostasis and lipid peroxidation metabolism regulated by genes
involved in iron metabolism via the Tf/TfR1 complex, the iron–sulfur cluster assembly
enzyme, and the ferritin [88].

Ferroptosis can be triggered by pharmacological impairment of anti-oxidant systems
involving GSH and GPX4 [93]. The glutamate/cystine antiporter (xc

−) exports cellular
glutamate in exchange for extracellular cystine. Once inside the cell, cystine is converted
to cysteine, a precursor of the endogenous antioxidant, GSH [88]. Erastin and sorafenib
trigger ferroptosis via inhibition of xc

−, depleting GSH and inactivating GPX4 [93,94].
Ferroptosis may also be induced by the administration of GPX4 inhibitors, RSL3 and
ML162. GPX4 catalyzes potentially toxic lipid hydroperoxides to non-toxic lipid alco-
hols [95] and its inactivation via GSH depletion or direct GPX4 inhibition, inducing lipid
peroxidation/oxidative stress and eventually cell death (Figure 3). Deferoxamine is able to
prevent ferroptosis-induced cell death through quenching of excess iron [96,97].
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Figure 3. Ferroptosis pathway. Ferroptosis can be initiated through Tf endocytosis linked to TfR1.
Ferric iron (also stored in ferritin) is released from the TfR1 complex and reduced to ferrous iron that
can be stored in ferritin or remain into the cytoplasm as a labile iron pool (LIP). LIP is composed
mainly by Fe2+, which can generate ROS through Fenton reaction and lipid peroxidation. Ferroptosis
is inhibited by GPX4, which depends on GSH, synthesized via the entry of cystine into the cell by the
system xc

−.

The hallmarks of ferroptosis (iron dysregulation, lipid peroxidation, inflammation)
are related to neurodegeneration and cognitive impairment [98,99].
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3.2. Dysfunction of Ferritin

The physiological task of ferritin is to protect cells from the redox-active ferrous iron
(Fe2+). Thus, under normal conditions, the response to a cytosol increase of Fe2+ is its
rapid uptake into ferritin, where it is physiologically stored in a redox-inert form of iron
oxyhydroxides containing only Fe3+ ions. The presence of ferrous iron inside pathological
ferritin could reveal an alteration in the mineralization process, e.g., that the enzymatic
oxidation process is faulty [100,101]. This process of Fe2+ oxidation inside ferritin takes
place in specific ferroxidase sites in the Ft-H subunit [102]. Thus, dysfunction of ferritin
could be a cause of the alterations in the mineralization of the ferritin cores, and this fact
may be associated with aging processes and especially with neurological diseases, e.g., AD
and Parkinson’s disease [103].

The imbalance of iron metabolism in affected regions also causes mitochondrial
abnormalities, accumulating oxidatively damaged DNA in the mitochondria of a mouse
model of hereditary ferritinopathy [104]. Interestingly, mutant Ft-L itself is targeted by
ROS, resulting in its cleavage and disruption of the ferritin shell, confirming the role of free
radicals in the process [105]. Co-aggregation of wild-type Ft chains can be initiated by the
free radicals generated by mutant Ft-L, creating an iron imbalance in the brain [106].

Dysfunction of ferritin can be evaluated by measuring ferritin levels in biofluids, both
in blood/serum and in CSF (in lower concentration than in the plasma). Several studies
focused on these investigations in neurodegenerative diseases. Blood ferritin levels were
reported significantly higher in patients with AD in comparison to healthy controls [107],
and the incidence of serum ferritin levels above the normal range was significantly greater
in individuals with AD [108]. Interestingly, different microscopy techniques were used to
analyze the morphology of erythrocytes, showing relative substantial changes taken from
high serum ferritin in AD individual and arguing that high ferritin levels may contribute
to an accelerated pathology [109]. Serum/plasma ferritin was investigated as a preclinical
marker of AD, reporting that both plasma and serum ferritin correlated positively with
the neocortical amyloid-β load (NAL), underlining also a potential discriminating power
between low and high NAL [110].

In addition, it was shown that ferritin levels in the CSF (reflecting brain status) can
predict AD outcomes, being strongly associated with apolipoprotein E (APOE) levels
and elevated by the AD risk allele APOE-ε4, thus revealing that elevated brain iron
adversely impacts AD progression [111]. Moreover, ferritin levels are associated with
longitudinal changes in CSF Aβ and Tau protein (the two hallmarks of AD), accelerating
AD pathology [112].

3.3. Ceruloplasmin Deficiency

Cp is a copper-containing α2-glycoprotein that functions as a multi-copper ferroxidase
to regulate body iron homeostasis [113]. The holoprotein contains six copper atoms that
confer ferroxidase activity, which is responsible for the oxidation of Fe2+ released from
intestinal epithelial, capillary endothelial, and reticuloendothelial cells to Fe3+, thereby
modulating iron transport at multiple sites. Within the brain, Cp is expressed mainly on
glial cells in the cerebellum, the microvasculature [114], and the inner nuclear layer of the
retina [115]. Although Cp requires copper for its function, the absence of Cp causes an
imbalance of iron metabolism rather than a disturbance of copper homeostasis [116]. The
absence of Cp causes iron overload mainly by down-regulating Fpn, the iron export protein
that is stabilized by the ferroxidase activity of Cp [117]. It is likely that ROS-mediated
down-regulation of Cp and perhaps Fpn contribute to the neurotoxicity associated with
neurodegenerative conditions (Figure 4). Currently, the neurotoxicity of iron accumulation
resulting from the insufficiency or the decreased activity of Cp is considered as one of
the mechanisms in the development of neurodegenerative diseases, such as AD and
Parkinson’s disease [118].
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3.4. Dysfunction of Transferrin

The importance of Tf in neurological diseases is underappreciated, though iron
dyshomeostasis leading to iron overload is reported in a number of neurodegenerative
diseases [119–121]. The cause of the age-related iron overload is still unknown but may be
due to a change in iron delivered via Tf or an alteration of iron efflux mechanisms from the
brain. Contributing to the lack of knowledge about the role of Tf in age-related neurode-
generative diseases is the incomplete understanding of the signals related to iron transport
across the BBB. Tf secretion into the CSF may be altered in states of iron dyshomeostasis,
and evaluation of Tf in CSF may be useful in determining the iron status of the brain.
For example, there are elevated levels of Tf and reduced ferritin in the CSF of patients
with restless legs syndrome (RLS), and this is indicative of low brain iron in patients with
idiopathic RLS [122].

Brain iron can also be reduced in ID that frequently results in hypomyelination [123].
ID can result in cognitive and motor impairments that last throughout life. It is hypoth-
esized that the deficits associated with brain ID may be rectified or at least limited with
increased Tf transport of iron. In patients and animal models with ID, Tf is increased,
and TfR1 expression is increased in neurons and endothelial cells [26,53], suggesting an
adaptive response to increase iron acquisition via Tf.

Tf levels in the brain are also decreased in cerebral inflammation [124]. Cerebral
inflammation occurs in diseases that include multiple sclerosis [125], AD [126], and depres-
sion [127]. A reduction in Tf levels may result in decreased iron delivery to neurons and
relative metabolic dysfunction.

Several cross-sectional studies did not find differences in blood transferrin levels
between healthy controls and AD patients [128–130]. Interestingly, blood transferrin levels
were positively associated with the Mini-Mental State Examination (MMSE) scores in AD
patients by Fischer et al. [128] but not by Squitti and colleagues [130]. Recently, it was
shown that no significant differences in the plasma Tf levels across control, mild cognitive
impairment (MCI), and AD groups but higher plasma Tf levels were associated with a
steeper cognitive decline in MCI and AD patients [131].

Furthermore, it was shown that disturbed brain iron metabolism is reflected in the
periphery by a decrease in plasma iron and Hb [108] and a decrease in plasma iron in
AD patients related to Tf desaturation was assessed, providing the potential role of Tf
saturation as an AD biomarker [132].

The reasons for decreased plasma Tf saturation in AD remain unclear, though it
appears indicative of a more widespread imbalance in metal homeostasis and also links
with Cp activity, requiring further investigation.

4. Serum Biomarkers as Indicators of Iron Status

Specific self-standing indicators of iron status in the serum are difficult to fully rely
upon because they span on different scales of measures and because of the presence of
many confounding factors ranging from inflammation to analytic challenges. Moreover,
iron status is a continuum from iron deficiency anemia (IDA) (i.e., reduced hemoglobin
in red blood cells) to ID (i.e., depleted iron stores) to iron overload, and a combination of



Int. J. Mol. Sci. 2021, 22, 4479 10 of 25

different indexes may be more useful than others depending on the situation. Available
indicators include concentrations of hemoglobin, serum ferritin (s-F), soluble transferrin
receptor (sTfR), zinc protoporphyrin, reticulocyte hemoglobin, serum iron, as well as total
iron-binding capacity (TIBC) or transferrin saturation (TSAT) [133]. Standards serum-
based indicators are generally evaluated on fully automated clinical analyzers available
in most hospitals. In addition, alternative methods and new protocols for iron evaluation
mainly based on analytical techniques are in continuous development. However, the
standardization of methodologies (e.g., immunoassays) is complicated, and the presence of
physicochemical reference methods to establish true concentrations is challenging, even if
international reference materials are available [133]. Additional investigation of methods,
relative analytic standardization, and interpretation of indicators are necessary for a better
assessment of iron profile. Details on typical range of values of iron indicators and relative
techniques to obtain these are given in Table 2.

4.1. Serum Ferritin

Although many indexes are available, determination of iron status by using s-F
concentrations is the most commonly deployed strategy used in clinical and public health
settings [134]. Ferritin is an iron storage protein and, consequently, higher intracellular iron
concentrations result in increased ferritin expression, whereas ID inhibits it [135]. However,
ferritin is also an acute-phase protein, and serum concentrations are increased in conditions
of inflammation [136], presenting a limitation for this indicator. During liver damage,
ferritin leaks from hepatocytes, and plasma concentrations rise. The ferritin measurable
in the serum appears to be chiefly derived from macrophages [137] and reflects overall
storage iron and ferritin concentrations in the liver and other tissues [138].

Table 2. Table for the standard and non-standard iron indicators. Abbreviations: CSF: cerebrospinal fluid; s-F: serum ferritin;
HS: healthy subjects; M = men; W = women; Tf: transferrin; s-Tf: serum transferrin; TIBC: total iron binding capacity; UIBC:
unsaturated iron binding capacity; NTBI: non-transferrin bound iron); Ft: ferritin; S: standard; NS: non-standard; HPLC:
high performance liquid chromatography; MS: mass spectrometry; AAS: atomic absorption spectroscopy.

Marker Tissue Normal Concentration Standard/
Non-Standard Techniques

s-F Serum

Mean s-F concentration of
adults by sex and age:

56 µg/L (W)
121 µg/L (M) [139],

120.25 ± 3.46 µmol/L
(Ref. 15–200 µg/L (M)
30–370 µg/L (W)) [108]

S

Enzyme immunoassays (IA) [140];
agglutination assay: turbidimetric,
nephelometric, latex photometric

IA [141]. Sandwich IA using direct
chemiluminometric

technology [110].

Tf Serum
204–360 mg/dL [142],
32.96 ± 0.18 µmol/L

(Ref. 23–46 µmol/L) [108]
S

IA;
MS analysis [143,144].

Iron-binding proteins evaluated by
chromatography-inductively

coupled plasma-mass
spectrometry (ICP-MS) [132].

Indirect s-Tf
concentration:
TIBC, UIBC

Serum TIBC: 250–400 µg/dL;
42.0–64.3 µmol/L [145] S Colorimetric tests [145]. Fully

automated TIBC Assay [146].

Serum Iron: ferric iron
(Fe3+) bound mainly

to s-Tf

12.5–26 µmol/L (M);
10.5–23 µmol/L (W) [147] S

Chemistry analyzers, i.e.,
colorimetric reaction with ferrine

or ferrozine as a chromogen to
form a color complex with iron.
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Table 2. Cont.

Marker Tissue Normal Concentration Standard/
Non-Standard Techniques

NTBI Serum 0.21 ± 0.10 µM [148] NS

Ultrafiltration ICP-MS [149]; HPLC
[148]; isotope dilution MS [150];
novel NTBI measuring system

using nitrilotriacetate and PSAP as
chromogen [151]; chelatable

fluorescent beads based on flow
cytometry [152]; fluorescent bead
assay CP851 chelator based [153].

Total Iron Serum ~1 mg/L NS AAS, ICP-MS [154–156].

Ft CSF
HS:

6.4 ± 2.1 ng/mL [111]
10.7–16.4 ng/mL [157]

S IA

Tf CSF
0.10–0.28 µmol/L [158];

(2.3-3.6) mg/dL; ~2 mg/L
[157,159]

S

Nephelometry [157]. Lectin
microarray, HPLC, matrix assisted
laser desorption/ionization-time

of flight MS, and tandem MS
[160,161].

Total Iron CSF

0.29–1.12 µmol/L [158];
0.12–2.00 µM [162]

(26.5 ± 9.9 µg/L) in
neurological control [163]

NS Colorimetric analysis; ICP-MS
[164], AAS [162,163].

Lactoferrin Saliva
Control subjects

(10.24 ± 1.96 µg/mL) [165]
(7.7 ± 2.4 µg/mL) [166]

NS MS; IA

Total Iron
(indirect) Brain

Putamen:
(56 ± 11 s−1)

Globus Pallidus:
(72 ± 10 s−1)

Caudeate Nucleus:
(40 ± 6 s−1)
Thalamus:

(30 ± 6 s−1)
(postmortem study)

[167]

S MRI (R2* s−1)

4.2. Serum/Plasma Tf, Serum Iron, and Tf Saturation

It is customary to measure Tf concentration indirectly from TIBC of plasma. A TIBC test
measures the blood’s ability to attach itself to iron and transport it around the body, indicating
the maximum amount of iron needed to saturate plasma or serum Tf. TIBC correlates well
with Tf concentration, and the theoretical ratio of TIBC (in mol/L) to Tf (in g/L) is 25.1:
TIBC (mol/L) = 25.1 × Tf (g/L) [168]. Theoretically, 1 mol of Tf (average molecular mass,
79 570 Da) can bind 2 mol of iron (55.8 Da) at two high-affinity binding sites for ferric iron.

Serum iron concentration measures the amount of ferric iron (Fe3+) mainly bound
to serum Tf but does not include the divalent iron contained in serum, e.g., hemoglobin
residues. It was reported that serum iron levels were significantly lower in AD patients
than in healthy controls after excluded two studies [169].

Transferrin saturation (TSAT) provides additional information for the evaluation of
iron transport and about the adequacy of iron supply. In blood, iron bounds with Tf
provided 30% of the total transferrin is in the form of apo-transferrin [24]. TSAT indicates
the percentage of binding sites of all the Tf molecules occupied by iron and is calculated as
the ratio (serum iron)/Tf or (serum iron)/TIBC. If the unsaturated iron-binding capacity
(UIBC) is measured, then TIBC is calculated as the sum of serum iron and UIBC [133].

It is reported that the average value of TSAT is 25% [170]. Reference ranges de-
pend on multiple factors such as age, sex, race, and test devices. Normal values for
TSAT are in the range of 25–45% (typically 30%) [171], and lower values of TSAT are
reported for female (i.e., 25–27%) with respect to male (28–31%) [172]. In humans, values of
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TSAT < 15% indicate iron deficiency, whereas TSAT > 45% are consistent with iron over-
load [3]. A relatively low TSAT in conjunction with its high affinity for iron makes Tf able
to efficiently buffer any alterations in plasma iron levels and to capture unshielded iron,
minimizing the risk of toxicity. Above 50%, the risk of the presence of toxic NTBI rises
exponentially, potentially causing organ damage [173,174].

Non-standard approaches allowed a more specific evaluation of iron-Tf binding than
the indirect clinical assay, as other biological iron ligands (such as ferritin) are isolated from
the iron–Tf complex, providing interesting consideration in potential AD biomarkers. In
the case of AD, the changes in iron–Tf binding were masked by the poor specificity of the
clinical TSAT assay [132].

Soluble transferrin receptors (sTfR) are proteins found in the blood that are cleaved
from the membrane-bound Tf receptors found on nearly all cells, and the level of serum
sTfR is closely related to cellular iron demands and the erythroid proliferation rate [175].
Concentrations of sTfR are inversely related to iron status; sTfR elevates in response to
iron deficiency and decreases in response to iron repletion. Because TfR expression is
upregulated when a cell needs more iron and because sTfR is proportional to total TfR,
concentrations of sTfR are increased in plasma or serum of an iron-deficient subject [176].
Together, sTfR and s-F concentrations can cover the full range of iron status [133].

To sum up, in the condition of iron overload, serum iron and TSAT are increased and
sTfR and Tf reduced, and vice versa in IDA.

4.3. Other Non-Standard Serum Biomarkers

The relevance of other iron status indicators (e.g., NTBI, hepcidin) proposed in the last
years is under investigation [133], and laboratory methods require further improvements
in terms of comparability. In particular, NTBI requires a more detailed definition of its
clinically most relevant forms.

Free iron in the form of NTBI in the circulating blood becomes detectable only when
Tf reaches 70% of saturation [173,177,178] and can cause significant damage to cells, even at
very low concentration [173], due to its ability to catalyze the formation of ROS. NTBI is a
heterogeneously speciated plasma iron and accounts for all forms of plasmatic iron bound
to ligands other than Tf. Although the exact chemical nature of NTBI remains elusive, it
is thought to circulate in the plasma in a form that is loosely bound to albumin or small
organic acids, such as citrate [173,179]. This NTBI, iron bound to low-molecular-weight
proteins or other compounds, usually comprises <1% of the plasma total iron pool and is
usually not detected in most routine assays [133].

A clinically relevant level of sensitivity is yet to be achieved, although the standardiza-
tion of methods to accurately quantify NTBI can be useful in order to investigate its nature
and possible health effects. To date, no gold standard methods for serum NTBI quantification
are established, facing technical difficulties related to the determination of heterogeneous
forms of circulating NTBI and a relatively poor agreement between assays [133].

Routine clinical analysis is normally based on colorimetric tests, although other quanti-
tative measures of total iron in serum with non-standard analytical techniques are possible,
allowing advantages in precision and accuracy, simpler processing, and quicker analysis time.
Their main drawbacks are that they are not commonly available in clinical laboratories and
are relatively expensive, requiring regular and periodic technical maintenance together with
hard pre-treatments of the blood/serum samples due to the presence of organic compounds.

Values for iron in serum were found in the order of 1 mg/L. Quantification of iron in
serum of healthy, MCI, and AD subjects was performed in several studies [155,156].

5. Iron Markers Related to Ferroptosis

Finally, due to the emerging and relevant role of ferroptosis in neurodegeneration, it
is pivotal to propose novel therapeutic approaches in AD and other neurodegenerative
diseases [180]. Due to several factors associated with the ferroptotic process [181], its
explicit identification in vivo is hampered by the absence of specific biomarkers. However,
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iron is required for the accumulation of lipid peroxides and the execution of ferroptosis.
Thus, iron import, export, storage, and turnover impact ferroptosis sensitivity [93].

Three essential hallmarks define ferroptosis: the loss of lipid peroxide repair capacity
by the GPX4, the availability of redox-active iron, and oxidation of polyunsaturated fatty
acid (PUFA)-containing phospholipids [182].

Tf and TfR, which import iron from the extracellular environment, are required for
ferroptosis [183] while silencing of the iron metabolism master regulator IREB2 decreases
sensitivity to ferroptosis [88]. Furthermore, anti-TfR1 antibodies can detect ferroptosis by
immunofluorescence and flow cytometry in tumor cells [184].

Interestingly, in a different pathology (amyotrophic lateral sclerosis), blood-based
prognostic indicators using an array of pathological markers closely associated with ferrop-
tosis in plasma samples were evaluated, and the identified markers of neuronal integrity,
DNA, lipid oxidation, as well as iron status at baseline enabled the accurate forecasting of
functional decline [185].

The development of ferroptosis-based markers is particularly timely, as iron chela-
tion [180] and potential anti-ferroptotic therapy are currently under investigation for a
range of neurodegenerative conditions, including AD.

6. CSF Biomarkers for Iron Status

Although it is less common to evaluate the same iron indicators for plasma/serum
in CSF, it has the advantage of being in direct contact with the brain and thus potentially
better reflects its iron content. One of the main limitations of CSF samples is their invasive
collection technique (e.g., lumbar puncture) compared with blood sampling, and the
low amount of iron requires very sensitive and reliable methods. Moreover, further
investigation on the relation between serum/blood iron indicators and CSF iron indicators
may be advantageous to define an iron profile for CSF.

6.1. CSF Ferritin

It is hypothesized that CSF ferritin can reflect global brain iron [111] and can be
considered a surrogate marker of brain iron load, even if is not established as a relative
biomarker [112]. However, CSF ferritin values did not show differences between cognitively
normal, MCI, and AD population [111].

Interestingly, Connor and colleagues studied the potential communication of periph-
eral iron status to CSF, showing that iron transport correlates positively with plasma Hb
concentrations but not with s-F levels [186]. The study suggested that erythropoietic de-
mands for iron take are predominant over brain requirements, and therefore total body
iron store indicators (e.g., s-F) may not be the best peripheral indicator to evaluate brain
iron uptake [186].

6.2. CSF Transferrin

The majority of CSF iron is bound to Tf, and iron levels in this compartment are
several orders of magnitude lower than in serum [187]. Additionally, it was suggested that
Tf saturation in the CSF is much higher than in the periphery and that a larger proportion
of NTBI circulates in the CNS [188].

CSF contains glycan isoforms of Tf; one appears to be derived from the brain and the
other from the blood. The ratio of serum-type/brain-type Tf differentiates AD from idio-
pathic normal pressure hydrocephalus, elderly dementia caused by abnormal metabolism
of CSF [160]. Immunohistochemistry using an anti-Tf antibody suggested that brain-type
Tf derived from choroid plexus, a CSF-producing tissue [160]. It is hypothesized that
brain-type Tf secreted from the choroid plexus would be the alternative supply of iron to
neurons, being potential biomarkers for various neurological diseases [161].

Furthermore, altered glycosylation of CSF Tf molecules could be present in AD. Tf
glycosylation is thus a potential biological marker for AD diagnosis, and changes in this
activity may play an important role in AD pathophysiology [189].
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Few studies reported values of Tf in CSF, requiring further investigation on the related
biochemical status and mechanisms.

6.3. Non-Standard Measurements for Iron in CSF

Accurate evaluations of iron in CSF can be performed by FerroZine colorimetric
analysis and related Ferrochem II analyzer methods for iron qualification in CSF or in
ICP-MS [164] and AAS [162,163] for a more quantitative measure [154].

Interestingly, changes in CSF reactive iron (as redox-sensitive labile iron), crucial
for the generation of free radicals, are associated with different stages of cognitive and
functional impairment, but total CSF iron did not present significant alterations [162].

A recent systematic review performed by Cicero and colleagues highlighted the con-
flicting results in the evaluation of metal concentrations such as iron in different biological
samples (i.e., blood/serum/plasma and CSF) [190]. This fact could be due to differences in
the treatment of samples and in the methods used to quantify iron in biological fluids.

While NTBI is usually not detectable in the plasma of healthy individuals, it seems to
be a normal constituent of brain interstitial fluid, acting as an important source of iron for
several cell types in the CNS. Even under normal conditions, due to the full saturation of Tf
in the CSF [191], NTBI is considered to be a physiological form of iron. As a matter of fact,
iron in CSF occurring in two forms, Tf-Fe and low molecular weight NTBI (less than 30
kDa), was evaluated in rats of different ages injected intravenously with [59Fe125I]Tf [192].

It is not clear whether NTBI is generated locally or is transported from the blood
across the BBB and the BCSFB, and direct evidence was reported for the transport of NTBI
to the brain, also revealing a complex interplay between inflammation and brain iron
homeostasis [193]. However, few studies are present, and further investigation on the
quantification of NTBI and redox-active iron in CSF is essential since NTBI could be a crucial
indicator, being responsible for a toxic environment contributing to neurodegeneration and
neuronal death.

7. Iron Markers in Other Biological Fluids

Alternative non-invasive approaches involve the collection of other biological flu-
ids, such as salivary samples. Saliva is one of the body’s mechanisms of defense due
to its composition of antimicrobial proteins, and it can be used as a potential diagnostic
fluid. Interestingly, a role was reported for salivary lactoferrin (LF), a glycoprotein with
broad-spectrum antimicrobial activity and iron-chelating properties, preventing iron de-
position [194]. LF was validated as a new single saliva biomarker, which can help the
early diagnosis of MCI and AD [165]. It was assessed that decreased salivary LF levels are
specific to AD, proposing that salivary LF represents one of the main defense lines against
pathogens. Therefore, related low levels may worsen AD risk [166]. Low salivary LF might
be an effect of immunological disturbances in AD, promoting the transfer of oral bacteria
and tissue inflammatory mediators to the brain [194].

8. Imaging (MRI) Biomarkers for Iron Status

Brain imaging technologies are used to show that increased iron deposits in different
brain regions might be markers of tissue damage in several neurological diseases [195].
MRI is the gold-standard methodology to assess and map brain iron in vivo.

Hydrogen nuclei (e.g., protons) abundant in fat and water are the main components
of the human body and possesses a spin, generating a small magnetic moment interacting
with properly designed external fields.

In particular, MRI acquisition employs a large magnet producing a strong magnetic
field (B0) much larger than the geomagnetic field. Within a body positioned inside the
scanner, B0 aligns the protons’ spins along its direction. At equilibrium, the net magnetiza-
tion corresponds to the longitudinal magnetization along the sagittal axis of the body and
is parallel to B0. Depending on the selected “sequence”, the net magnetization vector is
suddenly changed by exposing the spins to radiofrequency pulses modifying their orien-
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tation (e.g., overturning the vector onto the xy plane). Once the pulses are removed, the
protons tend to return to their equilibrium position according to tissue-specific exponential
relaxations. Two time constants are normally considered: the longitudinal, or spin-lattice,
relaxation time (T1), and the transverse, or spin-spin, relaxation time (T2). In real settings
the T2 decay actually results from two sources: molecular (spin-spin) interactions (pure T2)
and variations in B0 that may lead to inhomogeneities in T2 effect. The time constant that
characterizes these two processes together is called T2*.

By applying different sequences of radiofrequency pulses and collecting the resulting
signal, images with different contrasts can be reconstructed. In particular, gradient-echo
T2*-weighted images are usually generated by multiple short echo times, small flip angles,
and variable repetition times.

Starting from these standard MRI techniques, combinations of sequences and images
reconstruction strategies may produce more specific mappings.

Quantification of iron levels can be carried out using several techniques, such as relax-
ation time mapping [167,196], quantitative susceptibility mapping (QSM) [197], magnetic
field correlation [198], and direct saturation imaging [199]. Many different MRI acquisition
schemes are due to the fact that the presence of iron in the brain has different effects:
(i) changes in relaxation characteristics of tissue water in presence of ferritin; (ii) changes
in tissue susceptibility changes induced by iron presence; and (iii) microscopic field gra-
dients in its surroundings. The nature and the entity of these changes depend on the
different magnetic properties of iron compounds and may affect image contrast in terms of
quantitative relaxation parameters and of the phase of the complex MRI signal [200].

Since the earliest MRI experiments, it was observed that iron mainly accumulates
in the grey matter of the brain, which appears hypointense on T2-weighted MRI. Subse-
quently, several studies reported associations between age and the transverse relaxation
rates R2 = 1/T2 and R2* = 1/T2*, which are commonly used as surrogate markers for iron
concentration in brain tissue. In particular, Langkammer and colleagues [167] investigated
the relationship between these measurements and chemically determined iron concentra-
tions in seven human brains post mortem. They found that the basal ganglia (pallidum,
putamen, caudate nucleus) and the thalamus were the regions with the highest iron con-
centration and that the R2* rates showed the strongest linear correlation with chemical
measurements throughout the brain (r2 = 0.90, p < 0.001). These results support the fact
that R2* is more sensitive than R2 to variations in brain iron concentrations and might be
considered the preferred parameter for the in vivo assessment of brain iron concentration.
Figure 5 shows the typical processing workflow of T2*-weighted data.

In healthy subjects, a recent study [201] identified R2* measurements as the best age
predictors in specific regions of the brain, such as the putamen and the globus pallidum,
confirming the results of the abovementioned post-mortem study. Moreover, another
recent systematic review [202] suggested that T2* and R2* sequences might also be useful to
increase the accuracy of automated segmentation of subcortical brain structures, especially
when the T1-weighted contrast is reduced (e.g., due to age-related effects). About neurode-
generative diseases, Langkammer and colleagues investigated the currently available MR
methods for quantitative iron mapping in the brain of patients with AD [40], suggesting
R2* mapping as the best-validated technique for iron detection. In particular, these patients
show increased iron levels not only in the hippocampus and the temporal cortex, dam-
age of which is a well-known hallmark of the disease, but also in the pulvinar thalamus
(connected to the visual cortex) and in the putamen and the red nucleus (both involved in
motor control).

The role of iron accumulation as a potential imaging marker in patients with MCI or
AD was also suggested using susceptibility-weight imaging, since motor cortex hypointen-
sity on this sequence was more frequently found in patients with cognitive impairment
than in age-matched controls and was also positively associated with age [203].
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Figure 5. MRI processing workflow of T2* to map brain iron. (a) Each echo is aligned on the average
image for motion correction. (b) Realigned echoes are fitted through a voxel-by-voxel nonlinear least

squares model to obtain a mono-exponential signal decay curve S = S0e−
t

T2∗ and finally produce a
transverse relaxation rate map (R2*).

Among novel methods for iron detection in the brain, QSM was used for in vivo
longitudinal monitoring of Aβ accumulation and iron deposition in a transgenic mouse
model of AD [204]. Increased iron concentrations correlate with Aβ aggregation in areas
initially affected in AD and offer an opportunity for MRI-based diagnosis. MRI scans of
post-mortem human brains and a mouse model of AD showed decreases in hippocampal
T2* MRI, which is sensitive to the magnetic properties of iron [205] or its spatial variance,
attributed in part to iron in Aβ plaques [206]. Although MRI resolution is not sufficient to
detect individual plaques, T2* abnormalities that result from plaque aggregates might be
detected with MRI. When clearly distinguished from potential confounders originating
from heme iron, changes in hippocampal T2*-weighted MRI might be a valuable assessment
of morphological changes and a potential biomarker for the early stages of AD [207].

Other findings of evidence for iron overload in several specific brain regions were
reviewed by Tao et al. [154].

9. Conclusions

The aim of this review was to summarize the complexity of iron metabolism, espe-
cially related to the blood–brain exchange, and the dysregulation of several iron-related
parameters involved in neurodegeneration. We proposed an up-to-date screenshot of the
parameters presently used as indicators (routinely or not routinely assessed in clinical
practice) of iron status in biological fluids, such as serum and CSF, in order to unravel
potential iron biomarkers and their correlations in neurodegenerative diseases. Finally, we
also focused on the-state-of-art of current MRI methods to evaluate the quantification of
iron in the brain.

In conclusion, the evidence for the role of ferroptosis in the pathophysiology of neu-
rodegenerative diseases is emerging, and iron metabolism is strictly involved. Exploring
the relation between standard iron indicators, e.g., Tf, and novel indicators such as LF and
the quantification of redox-active iron (e.g., NTBI) could be useful to reveal the cascade
of events in neurodegeneration processes. Moreover, they could be integrated with other
markers possibly related to ferroptosis to foster complex pathological patterns.

In particular, new potential sets of biomarkers for iron status in biological fluids
together with an improvement and standardization of reliable analytical methods to detect
them (e.g., speciation of iron to assess ionic and binding state) are essential to quantitively
describe the processes contributing to neurodegeneration, including ferroptosis.

Finally, we believe that an accurate evaluation of the associations between iron in-
dicators in blood and cerebral space (CSF and brain regions) by means of data-driven
investigations based on the machine learning techniques or similar [163,208] could help
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to outline the peripheral indicators most suitable for a brain iron profile and potential
alterations of iron trafficking between blood and brain.
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Abbreviations

AD Alzheimer’s disease
APOE Apolipoprotein E
APP Amyloid precursor protein
Aβ Amyloid-beta
ATP Adenosine triphosphate
MCI Mild cognitive impairment
MRI Magnetic resonance imaging
DMT1 Divalent metal transporter-1
Fpn Ferroportin
Ft Ferritin
Ft-L Ferritin light chain
Ft-H Ferritin heavy chain
Tf Transferrin
LIP Labile iron pool
HEPH Hephaestin
BBB Blood–brain barrier
BCSFB Blood–cerebrospinal fluid barrier
BMVECs Brain microvascular endothelial cells
CSF Cerebrospinal fluid
Cp Ceruloplasmin
DcytB Duodenal cytochrome B
NTBI Non-transferrin bound iron
NADH Nicotinamide adenine dinucleotide
ROS Reactive oxygen species
GSH Intracellular glutathione
GPX4 Glutathione peroxidase 4
ID Iron deficiency
IDA Iron deficiency anemia
TIBC Total iron binding capacity
UIBC Unsaturated iron binding capacity
TSAT Transferrin saturation
sTfR Soluble transferrin receptor
s-F Serum Ferritin
LF Lactoferrin
IA Immunoassay
HPLC High performance liquid chromatography
MS Mass spectrometry
AAS Atomic absorption spectroscopy
QSM Quantitative susceptibility mapping
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