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Abstract: Neurodegenerative diseases (NDs) including Alzheimer’s disease, Parkinson’s disease, 

amyotrophic lateral sclerosis, and Huntington’s disease are incurable and affect millions of people 

worldwide. The development of treatments for this unmet clinical need is a major global research 

challenge. Computer-aided drug design (CADD) methods minimize the huge number of ligands 

that could be screened in biological assays, reducing the cost, time, and effort required to develop 

new drugs. In this review, we provide an introduction to CADD and examine the progress in ap-

plying CADD and other molecular docking studies to NDs. We provide an updated overview of 

potential therapeutic targets for various NDs and discuss some of the advantages and disad-

vantages of these tools. 

Keywords: neurodegeneration; drug discovery; CADD; dementia; brain diseases; CNS disorders; 

Alzheimer’s disease; Parkinson’s disease; amyotrophic lateral sclerosis; Huntington’s disease 

 

1. Introduction 

Neurodegenerative diseases (NDs) are incurable and debilitating conditions that re-

sult in progressive degeneration and/or death of nerve cells in the central nervous system 

(CNS) [1–3]. Dementia rates are alarmingly on the rise worldwide. There are over 50 mil-

lion people worldwide living with dementia in 2020, with nearly 60% living in low- and 

middle-income countries [4]. This number will almost double every 20 years, reaching 82 

million in 2030 and 152 million in 2050 [4]. The number of people with dementia in the 

UK is predicted to be around 1.14 million by 2025 and 2.1 million by 2051, an increase of 

40% over the next 5 years and 157% over the next 31 years [5]. 

The UK Prime Minister’s Challenge on Dementia was launched in 2015 to identify strat-

egies to tackle dementia by 2025 [6]. Current therapies for NDs treat symptoms, not the un-

derlying pathological changes. There is a clear and unmet clinical need to develop new thera-

pies based on understanding the molecular pathologies. One of the most promising ap-

proaches is to develop novel therapeutics using computer-aided drug design (CADD) [7,8]. 

In this review, we provide an introduction to CADD and different approaches in-

volved in this technique. We provide a list of over 200 pieces of CADD software using a 

citation-based scoring system (Supplementary Table S1), with the 30 most commonly 

used software products listed in Table 1. We examine the progress in applying CADD and 
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other molecular docking studies to NDs, provide an updated overview of potential ther-

apeutic targets for various NDs, and discuss some of the advantages and disadvantages 

of these tools. 

Table 1. The 30 most highly-scored pieces of software for CADD. Software was ranked according to the equation Si = 

log(106.Ci/Ctotal) where Si is the score for tool i, Ci is the number of citations to tool i, and Ctotal is the number of citations to 

all tools considered. Number of citations was obtained using Google Scholar, last accessed on 14 April 2021. 

No. Software 

No. of Cita-

tions to 

Published 

Studies 

Score Features 
Accessibil-

ity  
Website 

1 HADDOCK 26490 4.7323 

Docks protein−protein 

based on biochemical or 

biophysical information 

Free 
https://wenmr.sci-

ence.uu.nl/haddock2.4/ 

2 

AutoDock Autodock 1  

Autodock 2.4 Autodock 

3 Autodock 4 Autodock 

4.2 Autodock Vina Au-

toDockFR AutoDock-

Tools 

22422 4.6599 Automated docking tools Free  
http://auto-

dock.scripps.edu/ 

3 
Glide Glide 1.8 Glide 2 

Glide 2.5 
22091 4.6535 

Rapid, accurate docking 

and scoring approach 

Subscrip-

tion 

https://www.schrodinger.c

om/glide 

4 FlexX 19987 4.6100 

Predicts the geometry of 

the protein–ligand com-

plex and estimates the 

binding affinity 

Free 
https://www.bio-

solveit.de/FlexX/ 

5 LigandFit 19890 4.6079 

Presents a shape-based 

approach for docking lig-

ands into the active site 

of the protein  

Subscrip-

tion  

https://www.phenix-

online.org/documenta-

tion/reference/ligand-

fit.html 

6 AmberTools 14572 4.4728 
A suite of biomolecular 

simulation programs 

Subscrip-

tion 
https://ambermd.org/ 

7 ENCoM 13145 4.4280 

 A coarse-grained normal 

mode analysis method 

utilized for different resi-

dues in proteins or nucle-

otides in RNA 

Free  
http://biophys.umon-

treal.ca/nrg/resources.html 

8 PROCHECK-NMR 10783 4.3420 

Checks the stereochemi-

cal quality of a protein 

structure solved by NMR 

Free 

https://www.ebi.ac.uk/thor

nton-srv/soft-

ware/PROCHECK/ 

9 MCDOCK 10603 4.3347 

Allows for a full flexibil-

ity of ligands in the dock-

ing calculations 

Free DOI: 10.1021/jm990129n 

10 ICM ICM 2.8 ICM-Dock 10271 4.3209 

A new method for pro-

tein modelling and de-

sign applications to dock-

ing and structure predic-

tion 

Subscrip-

tion 

http://www.molsoft.com/d

ocking.html 

11 

Dock Dock2 Dock3 

Dock4 Dock5 Dock6 

Dock7 Dock8 Dock9 

8181 4.2221 
Based on a geometric 

matching algorithm 
Free 

http://dock.comp-

bio.ucsf.edu/ 
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No. Software 

No. of Cita-

tions to 

Published 

Studies 

Score Features 
Accessibil-

ity  
Website 

12 SOFT Docking 7474 4.1828 

Predicts the sites of inter-

action between two cog-

nate molecules based on 

their 3D structures 

Subscrip-

tion 

https://doi.org/10.1016/002

2-2836(91)90859-5 

13 FDS 7188 4.1659 
Cluster analysis based on 

distance similarities 
Free  

http://www.scfbio-

iitd.res.in/dock/fds.jsp 

14 DockVision 6950 4.1512 
Increases capability to 

generate laudable results 
Free 

http://dock-

vision.sness.net/over-

view/overview.html 

15 PRODOCK 6442 4.1183 

Renders the program-

ming easier and the defi-

nition of molecular flexi-

bility more straightfor-

ward 

Subscrip-

tion 

https://doi.org/10.1002/(SI

CI)1096-

987X(199903)20:4<412::AID

-JCC3>3.0.CO;2-N 

16 

YASARA YASARA Dy-

namics YASARA Model 

YASARA NMR Module 

YASARA Structure 

YASARA View 

YASARA Virtual Reality 

Workstation 

YASARA/WHAT IF 

Twinset  

5870 4.0779 

A molecular-graphics, -

modelling, and -simula-

tion program 

Free 
http://www.yasara.org/pro

ducts.htm 

17 KBDOCK 5820 4.0742 

A program that proposes 

structural templates for 

protein docking 

Free  http://kbdock.loria.fr/  

18 TreeDock 5796 4.0724 

A docking tool that is 

able to explore all clash-

free orientations at very 

fine resolution in a rea-

sonable time 

Subscrip-

tion 

https://doi.org/10.1021/ja01

1240x 

19 LePro 5639 4.0605 

Generates a docking in-

put file for LeDock with 

refined protein atoms 

within 0.4 nm of any 

atom of the ligand 

Free 
http://www.lephar.com/do

wnload.htm 

20 DockoMatic 5594 4.0570 

A software that docks 

secondary ligands, used 

to assist inverse virtual 

screening  

Free  
https://doi.org/10.1186/175

6-0500-3-289 

21 

SYBYL_ChemScore 

SYBYL_D-Score 

SYBYL_F-Score 

SYBYL_G-Score 

5486 4.0485 

A conformational sam-

pling and scoring func-

tion 

Subscrip-

tion 

https://doi.org/10.1021/jm0

203783 

22 ZDOCK ZDOCKpro 5415 4.0429 

A new scoring function 

for the initial stage of un-

bound docking 

Subscrip-

tion 

http://zdock.umass-

med.edu/ 
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No. Software 

No. of Cita-

tions to 

Published 

Studies 

Score Features 
Accessibil-

ity  
Website 

23 AADS 5087 4.0157 

An automated active site 

identification, docking, 

and scoring protocol 

Free  

http://www.scfbio-

iitd.res.in/dock/Ac-

tiveSite_new.jsp 

24 Surflex Dock 4896 3.9991 

An automatic and flexi-

ble molecular docking al-

gorithm for rapid in silico 

drug-screening applica-

tions 

Subscrip-

tion 

https://doi.org/10.1007/s10

822-007-9114-2 

25 

PyMOL PyMOL 1.4.1 

PyMOL 2.1.1 PyMOL 

2.4 

4805 3.9910 

An open-source, user-

sponsored, molecular vis-

ualization system 

Subscrip-

tion 
http://www.pymol.org 

26 FlipDock 4614 3.9733 

Allows the automated 

docking of flexible ligand 

molecules into active 

sites of flexible receptor 

molecules 

Free http://flipdock.scripps.edu/ 

27 SymmDock 4545 3.9668 

A flexible induced-fit 

backbone refinement in 

molecular docking 

Free  

http://bio-

info3d.cs.tau.ac.il/Fi-

berDock/php.php 

28 ClusPro 4360 3.9487 
A widely used tool for 

protein–protein docking 
Free  http://nrc.bu.edu/cluster 

29 Surflex 4180 3.9304 A robust screening tool 
Subscrip-

tion 

https://pub-

med.ncbi.nlm.nih.gov/1257

0372/ 

30 ConsDock 4001 3.9114 

 A pose within 2 Ao 

RMSD of the X-ray struc-

ture can be performed 

with this software 

Subscrip-

tion 

   

https://doi.org/10.1002/prot

.10119 

2. Computer-Aided Drug Design 

“Computer-aided drug design” (CADD) refers to the application of computational 

modelling approaches to drug discovery. Drug discovery is an expensive and time-consum-

ing process with the average approved drug requiring 10 to 15 years to develop with an 

estimated cost of 0.8–2 billion USD [9]. Many licensed drugs, such as captopril, dorzolamide, 

oseltamivir, aliskiren, and nolatrexed, were all optimized using CADD [10], and a large 

number of publications describe the successful design and discovery of leads/drugs using 

CADD [11–13]. The major steps involved in CADD are summarized in Figure 1A and dis-

cussed in the following sections. The main goal of CADD is to reduce these timescales and 

costs without affecting quality (Figure 1B) [14]. Importantly, CADD can be used in most 

stages of drug development: from target identification to target validation, from lead dis-

covery to optimization, and in preclinical studies. It is therefore estimated that CADD could 

reduce the cost of drug development by up to 50% [15,16]. 
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Figure 1. (A) Schematic representation of CADD process. (B) Comparison of traditional and com-

puter-aided drug development in terms of time and cost investments. 

2.1. Drug Target Selection 

Drug target selection is the first step of structure-based drug design. This involves 

identifying and determining the structures of the relevant proteins [17]. Understanding 

and characterization of the molecular biology of the targeted disease are therefore neces-

sary before the initiation of any active compound search process. 

2.2. Determination of the Protein Structure 

An in-depth understanding of biological processes is still often hampered by a lack 

of detailed knowledge of protein structures [18]. The determination of the structure of the 

target protein is a prerequisite for CADD [19]. Structural elucidation of the target protein 

can be performed by experimental tools including, but not limited to, nuclear magnetic 

resonance (NMR) spectroscopy, Cryo-EM, and X-ray crystallography [20,21]. 

2.3. Homology Modelling 

Despite the current revolution in structural studies, in particular the recent develop-

ments in cryo-EM, the detailed structures of a large number of proteins, and especially mem-
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brane proteins (which are over-represented amongst drug targets), have not been deter-

mined [18,22]. Homology modelling is an approach to estimate the structure of a target pro-

tein based on structural data from proteins with sequence homology to the target [23]. 

For instance, a homology model of human catechol-O-methyltransferase (COMT) 

was constructed utilizing the X-ray crystal structure of rat COMT to design anti-PD drugs 

by performing ligand docking, resulting in the discovery of nine putative inhibitors. An-

other example involves a cysteine protease from Xanthomonas campestris (an aerobic, 

Gram-negative rod-shaped bacterium known to cause black rot in crucifers by darkening 

the vascular tissues). The active site of this enzyme is homologous to human cathepsin B 

enzyme (hCB), the activity of which contributes to the reduction of the amyloid peptide 

by proteolytic cleavage of Aβ1-42, offering a protective role against AD [24]. 

2.4. Identification of Binding Sites 

When the three-dimensional structure of the target protein is determined, the next step 

is the identification of potential binding sites for small molecules. This process can be con-

ducted using various algorithms for computing and identifying binding pockets [25–27]. 

2.5. Molecular Dynamics Simulation 

Molecular dynamics (MD) simulations are a theoretical tool to discover the configu-

rations and dynamic behaviours of molecules, providing atomic-level insight into drug 

mechanisms of action [13]. MD may also help to reveal the aggregation pathway of neu-

rotoxic protein aggregates and thus aid in the design of new inhibitors [28]. 

2.6. Molecular Docking Studies 

Molecular docking is a computational procedure that predicts the lowest energy 

binding conformations of one molecule to a second (usually a small drug-like molecule to 

a protein). Accordingly, molecular docking procedures, along with their different scoring 

systems, are frequently utilized to predict the binding modes and affinities between chem-

ical compounds and drug binding sites on biological macromolecules [29,30]. 

2.7. Virtual Screening 

Virtual screening (VS) is the process of screening small molecule libraries in silico to 

identify chemical structures that may bind to a drug target [31–33]. 

2.8. Quantitative Structure—Activity Relationship Study 

Quantitative structure—activity relationship (QSAR) methods are conducted to cor-

relate a biological response (e.g., enzyme activity, cell viability, etc.) to the chemical prop-

erties of a set of molecules [34–36]. 

2.9. Pharmacophore Modelling 

Pharmacophore modelling deals with finding the optimal shapes and charge distri-

butions for binding of a small molecule to a biological macromolecule. Pharmacophore 

modelling is commonly implemented to rapidly specify potential lead compounds [37,38]. 

3. Neurodegenerative Diseases 

NDs include Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lat-

eral sclerosis (ALS), and Huntington’s disease (HD) [39]. These diseases are diverse in 

their pathophysiology and effective treatments are urgently needed, but they will only be 

achieved with an in-depth understanding of the causes and mechanisms of each disease. 

These diseases and potential drug targets for each are discussed briefly below. Current 

molecular targets for these diseases, along with examples of drugs discovered in CADD 

projects, are summarised in Table 2. The molecular mechanisms of neurodegeneration and 

potential drug targets in these diseases are summarised in Figure 2. 
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Table 2. NDs with specified molecular targets and selected examples of drugs that have been identified with the aid of in 

silico drug design. The assay format used to validate each drug is indicated and drugs that progressed to clinical trials are 

highlighted in bold. 

NDs 
Molecular Docking 

Targets 
Molecule Software Assay Type 

Alzheimer’s 

disease 

Acetylcholinesterase, 

Beta-secretase enzymes, 

Muscarinic and nico-

tinic ACh receptors, N-

methyl-D-aspartate re-

ceptor, Tau proteins 

1-benzy-l1,2,3,4-tetrahydro- 

b-carboline), 3-substituted-

1H-indoles, 6-triazolyl ami-

dine derivatives [40] 

ICM cell-based assay [40] 

Chloropyridonepezil [41] Autodock Vina 
In vitro blood–brain barrier 

model [42] 

Flavone, 5-hydroxyflavone, 

7-hydroxyflavone, chrysin, 

apigenin, kaempferol, 

fisetin, and quercetin[43] 

AutoDock Mice and rats models [44,45] 

Ifenprodil [46] 
Schrödinger 

Suite 

Primary cultures from chicken 

embryo forebrain (E10) [46] 

Memantine [47,48] Glide Human clinical trial [49] 

Morin [50] Glide In APPswe/PS1dE9 mice [51] 

Pyridopyrimidine deriva-

tives [52] 

Auto grid and 

auto dock 

In vitro enzyme inhibitory 

model [53] 

Pyridonepezil [54] Autodock Vina 
In vitro blood–brain barrier 

model[42] 

Piperazine derivatives [55] PASS software 
Tested on AChE in vitro by us-

ing Ellman’s method [56] 

Rutin [57] 
AutoDock and 

Autodock Vina 

Doxorubicin (DOX)-treated neu-

roblastoma cells (IMR32) and 

doxorubic-induced cognitive 

dysfunction in Wistar rats [58] 

Parkinson’s 

disease 

Dopamine receptors, 

expression and mito-

chondrial localization, 

Mutant LRRK2, Mu-

tated, PINK1, PARK2, 

DJ1 SNCA Motif 

LRRK2 kinase inhibitors (9-

methyl-N-phenylpurine-2,8-

diamine, N-phe-

nylquinazolin-4-amine, and 

1,3-dihydroindol-2-one) [59] 

MOE 
Both in vitro and in vivo studies 

were established [60] 

Amyotrophic 

lateral sclerosis 

Mutant SODI, SODI oli-

gomerization, CASP-3, 

CASP-8, TDP-43, p38 

MAPK  

Nav1.6 sodium channel 

Angiogenin [61] AmberTools20 
HeLa cells (Nuclear transloca-

tion assay) [61]) 

Hesperidin and THSG [62]) 

(Molecular Dy-

namics (MD) 

Simulation 

High affinity to mutant SOD1 

[62] 

Riluzole [63] 
PROCHECK 

program 

FDA-approved drug for ALS  

[64] 

Huntington’s 

disease 

FIP-2 Specificity pro-

tein, 1HTT Interacting 

proteins Mutant HTT, 

Infant Testing  

Nuclear receptor core-

pressor, Postsynaptic 

density-95 

T1–11 (synthesized in a high 

yield by the substitution re-

action) [65] 

AutoDockTools PC12 cells [65] 
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Figure 2. Overview of molecular mechanisms and drug targets (red text) in Alzheimer’s, Parkinson’s, ALS, and Hunting-

ton’s diseases. Figure made using Biorender.com. 

3.1. Alzheimer’s Disease (AD) 

AD is a chronic, progressive, and persistent neurodegenerative disease whose main 

symptoms are reduced motor and cognitive function and accelerated memory loss, result-

ing from the progressive loss of neurons and synapses in the cerebral cortex, ultimately 

leading to death [66]. 

The estimated number of people aged 65 years or older in the USA with AD in 2010 

was 4.7 million and this number is predicted to reach 13.8 million by 2050 [67]. In 2013, 

the number of people in the UK with dementia was estimated at 815,827, of which 62% 

had AD [68]. Approximately 70% of the UK care home population suffers from dementia 

and more than 42,000 people below 65 years also have dementia [69]. 

AD is characterised by the presence of amyloid plaques, composed primarily of aggre-

gated amyloid-β (Aβ) peptides proteolytically derived from the amyloid precursor protein 

(APP), and neurofibrillary tangles (NFTs) that are intracellular protein aggregates com-

posed primarily of phosphorylated tau protein. Although amyloid deposits are thought to 

develop before NFTs, amyloid burden is poorly correlated with disease progression, 

whereas NFT burden is more strongly correlated [70]. The exact mechanisms by which NFTs 

and Aβ plaques lead to neurodegeneration are still poorly understood. Several genetic con-

tributors to AD have been identified, including variants of presenilin 1 (PSEN1) and prese-

nilin 2 (PSEN2), components of the γ-secretase complex that cleaves an APP intermediate 

to its amyloidogenic forms, as well as variants of APP itself. The strongest genetic risk factor 

not directly involved in amyloid formation is the APOE gene, encoding an apolipoprotein 

that is responsible for CNS cholesterol transport. Weaker genetic risk factors include a vari-

ety of genes involved in cholesterol metabolism, endocytosis, and neuroinflammation 

[71,72]. Recent work on the glymphatic waste clearance system suggests that reduced glym-

phatic function is correlated with Aβ and tau accumulation [73]. Bulk flow through the 

glymphatic system is elevated during sleep and mediated by the water channel protein 

AQP4, which is also implicated in various CNS pathologies [74–76]. Despite there being no 

single drug that has been approved to successfully target AQP4 [77], new studies suggest 

that modulators of sleep or AQP4 (by targeting the trafficking mechanism or membrane 

abundance rather than pore-blocking) could be novel targets for early intervention in AD 

and other protein-misfolding diseases [78,79]. 
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3.1.1. Macromolecular Targets in AD 

Acetylcholinesterase 

Acetylcholinesterase inhibitors (AChEIs) have been considered as potential drugs to 

treat AD and other dementias for many years, due to the degeneration and loss of cholin-

ergic neurons associated with AD symptoms. Indeed, three of the four currently approved 

drugs for AD are AChEIs (donepezil, galantamine, and rivastigmine). Accordingly, ace-

tylcholinesterase is routinely targeted in docking studies [80]. For example, utilizing mo-

lecular docking, the binding of compounds found in Salvia miltiorrhiza (red sage) extract, 

e.g., miltirone and salvianolic acid A, to acetylcholinesterase [81], and the binding of cin-

erin C (a molecule extracted from Prosopis cineraria pods) to acetylcholinesterase [82] 

have been reported. 

Beta-Secretase and Gamma-Secretase Enzymes 

Aβ formation is catalysed by β-secretase (BACE) and γ-secretase (GS) enzymes and, 

thus, inhibiting these enzymes could prevent Aβ plaque formation and prevent AD [83]. 

Molecular docking has been utilized to score putative inhibitors of GS, and the highest 

scoring compound was used to identify chemically similar compounds for pharmaco-

phore mapping [84]. 

Caspases 

Caspases are important mediators of apoptosis in neurons (and indeed in most cell 

types); their inhibition might therefore be helpful in preventing neurodegeneration-asso-

ciated neuronal death in ALS, AD, PD, and HD [85–88]. 

Several studies employed in silico drug design and molecular docking to target caspa-

ses to treat NDs. For example, ten non-cytotoxic nitrones were assessed for their capability 

to arrest apoptosis and reduce the levels of active caspase-3 and oxidative stress in the 

HT22 neuronal cell line. Molecular docking suggested that these nitrones bound to a site 

near the catalytic region of caspase-3. This suggested that medicinal chemistry using these 

nitrones as a starting point could be considered to begin the development of novel ND 

therapies [89]. 

Acetylcholine (ACh) Receptors 

Many studies conducted both in vitro and in vivo have demonstrated that reduced 

cholinergic activity is a direct cause of memory loss in AD patients [90]. Consequently, 

one of the potential targets in AD is the nicotinic acetylcholine receptor (nAChR). Com-

pounds discovered using multitarget CADD studies based on nicotinic receptors were 

found to improve memory, cognition, and spatial capabilities in animal models [91,92]. 

N-Methyl-D-Aspartate Receptor 

N-methyl-D-aspartate (NMDA) receptors transduce glutamate and glycine signals 

that play crucial roles in CNS development and the synaptic plasticity that is essential for 

memory and learning processes [93]. However, overexposure to glutamate can result in 

neurotransmission disturbances correlated with the NMDA receptor, which are treatable 

with NDMA antagonists [94,95]. The identification of conantokins, MK-801 and meman-

tine (memantine was approved by the FDA for AD in 2004), as NMDA receptor inhibitors 

led to the investigation of these structures using CADD to identify new NMDA receptor 

inhibitors. New compounds discovered in this way could be utilized as potential AD ther-

apeutics [47,94,96,97]. 

ROCK-I and NOX2 Enzymes 

One of the possible approaches to treat neuroinflammation is the inhibition of both 

NADPH oxidase 2 (NOX2) and Rho kinase 1 (ROCK-I). This might be an effective way to 
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treat some progressive neurological diseases, including AD [98]. NOX2 is the catalytic 

subunit of a multi-protein complex that can be activated in host defence phagocytic pro-

cesses (e.g., in microglia) to govern the generation of superoxide from oxygen. ROCK-I is 

a significant mediator of cell migration, proliferation, and adhesion. In disease states, 

NOX2 integration into the NADPH oxidase complex is activated by ROCK-I via Ras asso-

ciated C3 botulinum toxin substrate (Rac). Consequently, microglial cells with high 

ROCK-I and NOX2 lead to progressive neuronal damage in the early development of neu-

rological disease [99]. In one study, CADD was utilized to discover new molecules with 

the ability to inhibit both ROCK-I and NOX2, with 18 compounds identified from a library 

of 5 × 105. Of these 18 molecules, 7 had an inhibitory effect against both enzymes in cell-

based assays [98]. 

3.2. Parkinson’s Disease (PD) 

PD is the second most common neurodegenerative disorder with symptoms includ-

ing tremors, muscle rigidity, and postural imbalance [100–102]. PD affected around 

145,000 people in the UK in 2019 [103–105]. In the USA, the estimated number of annual 

PD diagnoses is 60,000 and approximately one million are affected with PD in 2020 

[106,107]. PD is characterised by preferential and progressive loss of dopaminergic neu-

rons starting in the substantia nigra pars compacta, and the presence of intracellular ag-

gregates, known as Lewy bodies, composed primarily of the protein α-synuclein. Exactly 

how (or even if) Lewy bodies exert neurotoxic effects is poorly understood. 

3.2.1. Macromolecular Targets in PD 

COMT (Catechol-O-Methyltransferase) Inhibitors 

COMT metabolises catechols by methylation. As dopamine is one of the catechols 

that is reduced in the CNS during PD, COMT is considered a drug target for the manage-

ment of PD. Nitrocatechol-type inhibitors (e.g., tolcapone and entacapone), bisubstrate 

inhibitors (e.g., thiopyridine, purine, N-methyladenine, and 6-methylpurine), and other 

molecules (e.g., 4-phenyl-7,8-dihydroxycoumarin) were reported as potential COMT in-

hibitors from structure-based drug design studies [108]. 

Dopamine Agonists 

Pergolide, pramipexole, ropinirole, bromocriptine, and piribedil are currently the 

most commonly prescribed dopamine-receptor agonists. They are generally combined 

with levodopa plus dopa decarboxylase inhibitors (DDIs), especially in patients with mo-

tor dysfunctions. They can be efficient as a monotherapy during early PD (they can delay 

the need for the introduction of levodopa plus DDIs in newly diagnosed patients) or in 

combination with levodopa plus DDIs for dyskinesia and motor fluctuations [109]. 

There are five subtypes of dopamine receptors, D1–5 and each one has a different 

function. Different patients may respond differently to different dopamine receptor ago-

nists. Hence, clinicians often change the therapeutic choice from one dopamine receptor 

agonist to another in order to achieve better control of PD symptoms and avoid specific 

side-effects [110]. D1, D2, and D3 receptors primarily control locomotor activity. Moreo-

ver, D1 and D2 receptors (and to a lesser extent D3) are essential in memory and learning 

mechanisms, mainly in the prefrontal cortex [111]. D2 receptors have a crucial function in 

psychotic behaviours since almost all effective antipsychotic drugs antagonize D2 recep-

tors. The D3 receptor is primarily expressed in the limbic area of the brain  [112]. D4 re-

ceptors are associated with relapse to stimulant use and selective D4 inhibitors/antago-

nists might be potential therapies for drug-relapse. 

Outside the CNS, dopamine is also implicated in cardiovascular and renal functions, 

mainly through D1 and D2 receptors. Heterodimerization of dopamine receptors in vari-

ous biological systems further complicates the role of dopaminergic interactions in PD 
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[113]; therefore, designing more specific effective drugs using molecular docking might 

be a viable strategy to achieve drugs with fewer adverse effects in PD patients. 

Gene Variants 

Variants in a variety of genes have been reported to be associated with PD, including 

SNCA (encoding α-synuclein), ADH1C, DJ-1, EIF4G1, FBXO7, GBA/GBAP1, GIGYF2, 

HTRA2, LRRK2 [114], MAPT, PARK2, PARK7 [115], PRKN, PINK1, PLA2G6, UCHL1, and 

VPS35 [116]. For example, several mutations to LRRK2, encoding the leucine-rich repeat 

kinase 2 (LRRK2), are associated with PD and it has been reported as a significant factor 

for drug resistance [117,118]. A panel of 160 kinase inhibitors was examined for their ac-

tivity against LRRK2 in vitro employing a peptide substrate kinase assay and neuronal 

SH-SY5Y cells overexpressing LRRK2 [59]. In silico docking studies utilizing the LRRK2 

kinase structure and some selected compounds found a correlation between docking 

scores for the LRRK2 ATP binding site and both in vitro and cellular compound activity 

[59]. 

Glutamate Antagonists 

Glutamate receptors can be classified into two major classes: ionotropic (iGluRs) and 

metabotropic receptors (mGluRs). Glutamate antagonists have well-established neuro-

protective effects through slowing the rate of dopaminergic neuron loss in the substantia 

nigra [119]. A number of glutamate antagonists improve motor function in PD animal 

models through acting on α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid 

(AMPA) and NMDA subtypes of ionotropic glutamate receptors. Nonetheless, systemic 

administration is associated with serious side-effects such as sedation and ataxia, espe-

cially for NMDA antagonists [120]. This has substantially affected their widespread use; 

therefore, developing selective antagonists against specific receptor isoforms that are pref-

erentially expressed in the critical parts of the pathophysiological circuitry might be an 

interesting therapeutic approach in the future. 

MAO-B 

Monoamine oxidase inhibitors (MAOI) were one of the earliest drugs to be tried in 

PD and can be used with or without levodopa. Non-selective MAOI (such as tranylcypro-

mine) have limited use in treating PD-associated depression due to their numerous side 

effects, while reversible and selective MAO-A inhibitors are more recommended. Selec-

tive and irreversible MAO-B inhibitors such as selegiline and rasagiline are recommended 

for the control of motor fluctuations and akinesia. 

Selegiline is a selective, irreversible MAO-B inhibitor that has been widely used for 

PD treatment. It has been shown to delay the need for levodopa during early stages of PD 

and managing the end-of-dose akinesia in fully developed PD patients. A number of fur-

ther irreversible and reversible MAO-B inhibitors have been developed. 

Safinamide is a relatively new selective reversible MAO-B inhibitor with ion channel 

activity that does not cause a cheese-reaction, unlike other MAO-B inhibitors [121]. This 

drug enhances motor function in early PD [122]. 

3.3. Amyotrophic Lateral Sclerosis (ALS) 

ALS is a lethal condition that is characterised by progressive muscular paralysis and 

wasting, reflecting degeneration of neurons controlling voluntary muscles, including both 

the upper motor neurons in the motor cortex and lower motor neurons in the brainstem 

and spinal cord [123]. 

Around 5000 people in the USA are diagnosed with ALS each year. Cumulatively, 

there are more than 30,000 and 5000 people affected with ALS in the USA and UK, respec-

tively [124–126]. 
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The pathogenesis of ALS is relatively poorly understood. Only two drugs are ap-

proved for ALS: one of these is a glutamate antagonist (riluzole) and the other (edaravone) 

works by an unknown mechanism. 

3.3.1. Macromolecular Targets in ALS 

SOD1 

Superoxide dismutase (SOD1) is an antioxidant enzyme involved in the detoxifica-

tion of superoxide radicals. The SOD1 enzyme requires bound zinc and copper ions to 

maintain intra-molecular disulphide bonds  [127]. Variation in zinc and copper ion bind-

ing to SOD1 leads to misfolded enzymes and can initiate aggregation and facilitate the 

protein instability associated with ALS. 

In one study, 32,791 molecules were virtually screened by establishing an in silico 

assay system to screen for inhibitors of the aberrant interaction between mutant SOD1 and 

tubulin, with the aim of identifying lead compounds for ALS [128]. 

Molecular docking studies have been used to develop inhibitors of dimer destabili-

zation and aggregation of the human SOD1 G85R mutant. CADD studies have predicted 

a number of inhibitors such as linear tripeptides [129], the tubulin binding site of G85R 

SOD1  [128], resveratrol [130], natural polyphenols of curcumin [131], kaempferol, and 

kaempferide [132] as potential lead compounds for treating ALS. 

MAPK 

Many processes within the cell, such as mitogenesis, apoptosis, oncogenesis, and dif-

ferentiation, are associated with the mitogen activated protein kinases (MAPKs) [133]. 

MAPKs are activated by upstream kinases called MAPK kinases (termed MAPKK, MEK, 

or MKK) and an MAPK kinase kinase (termed MAPKKK, MEKK, or MKKK) [134], and 

are linked to the inhibition of proinflammatory cytokines [135]. An in silico and in vitro 

study of a MAPKK inhibitor (silibinin) used molecular docking to address the interactions 

of silibinin with p38 MAPK, which is an important kinase associated with glial cell acti-

vation and neuroinflammation [136]. 

Casein Kinase 1 (CK-1) Inhibitors 

The protein kinase CK-1 was reported to directly phosphorylate Tyrosyl-DNA phos-

phodiesterase (TDP3). The latter is a DNA repair enzyme and is considered a promising 

target for antitumor and neurodegenerative therapy [137], and up-regulation of CK-1 is 

correlated with ALS [138]. Accordingly, CK-1δ inhibitors crossing the blood–brain barrier 

(BBB), such as riluzole and others, may be a novel approach to treat ALS [139–141]. 

Nav1.6 Sodium Channel 

One of the most abundant sodium channels in the human brain is the voltage-gated 

sodium channel Nav1.6 [142,143]. Nav1.6 is a potential drug target for ALS as the blockage 

of these channels may enhance the survival of motor neurons in excitotoxic conditions 

[144–146]. In silico analyses demonstrated the interaction of riluzole with the Nav1.6 chan-

nel. Riluzole, an antiglutamatergic drug [147], exerts its antiglutamatergic effect partly by 

inactivation of Nav1.6 [63]. This suggests that riluzole reduces excitotoxicity via indirect 

interference with glutamate-mediated transmission [63]. The latter was proposed to par-

ticipate in the loss of motor neurons resulting from a reduced glutamate uptake capacity 

of astrocytes in ALS [63,148]. 

3.4. Huntington’s Disease 

HD is a genetic, incurable, and fatal neurodegenerative condition characterized by 

progressive degeneration of neurons, starting specifically with medium spiny neurons 
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(MSNs) in the striatum, and leading to inevitable deterioration of the mental and physical 

abilities of those affected [149,150]. 

In the UK, the number of people diagnosed with HD is around 6000 people, whereas 

the number is around 30,000 in the USA [151–154]. 

HD is a monogenic disease caused by expansion of a CAG trinucleotide repeat in the 

HTT gene, leading to expansion of a polyglutamine tract in the Huntingtin protein, which 

is expressed ubiquitously throughout the brain. Mutant Huntingtin is prone to aggrega-

tion, but how this causes selective degeneration of striatal MSNs is poorly understood. 

Currently, no disease-modifying therapies or cures are available. 

Reducing levels of mutant HTT is, understandably, a major therapeutic goal in HD. 

A recent study showed that intrathecal administration of the antisense oligonucleotide 

(ASO) IONIS-HTTRx (Tominersen) to HD patients resulted in a dose-dependent reduc-

tion of mutant HTT in the cerebrospinal fluid (CSF)  [155]. Tominersen was rapidly moved 

to a Phase III trial. However, a press release by Roche in March 2021 announced the deci-

sion to discontinue dosing of Tominersen in manifest HD in the Phase III trial. 

Despite the unfortunate news, these studies suggest that ASOs administration is a via-

ble therapeutic strategy to reduce levels of toxic proteins in NDs. How and to what extent 

ASOs reach different parts of the central nervous system is not fully understood yet. 

3.4.1. Macromolecular Targets in HD 

4-Aminobutyrate Aminotransferase 

4-Aminobutyrate aminotransferase (ABAT) (PDB ID: 1OHY) is responsible for the 

degradation of gamma-aminobutyric acid (GABA), a major inhibitory mediator for syn-

aptic transmission in the mammalian CNS [156]. Reduction in GABAergic transmission is 

the result of many genetic disorders and chronic neurological diseases, including HD, AD, 

PD, and epilepsy. Unfortunately, GABA is unable to cross the BBB, preventing the direct 

use of exogenous GABA [157]. Enhancing the levels of GABA by decreasing its degrada-

tion by ABAT is an alternative strategy. In one study, the structures of thirty-two mole-

cules from thirty-one medicinal plants were obtained from a chemical database and were 

chosen with the aid of previous literature reports. These 32 natural molecules were exam-

ined in a molecular docking study in which the researchers concluded that the top-ranked 

compounds may be suitable candidates for in vitro and in vivo studies of ABAT inhibition 

[158]. Moreover, GABA derivatives have been tested for ABAT binding in silico [156]. 

4. A Roadmap for Implementing CADD in ND Drug Design 

Even with the number of successful implementations of CADD in modern drug dis-

covery, it has its limitations. Molecules designed in silico utilizing computational and the-

oretical chemistry sometimes do not work in real biological systems [159,160]. In general, 

poor pharmacokinetics and/or pharmacodynamics result in only 40% of drug candidates 

passing phase I clinical trials [161]. Moreover, each computational technique depends on 

pre-determined algorithms that have their own limitations. CADD results must be vali-

dated in real biological systems, as many molecules that appear to bind in silico do not 

show the desired activity in vitro. Another limitation of CADD is that all tools for design-

ing and discovery of new drugs are based on algorithms that, by necessity, simplify the 

underlying physics and chemistry and, therefore, have a variety of limitations that neces-

sitate the continuous updating of these algorithms to enhance the accuracy and thus the 

provision of new drugs [162–168]. Furthermore, the shortage of experimental data regard-

ing predicted absorption, distribution, metabolism, excretion, and toxicity results has led 

to several published failures [169–173]. 

To overcome the limitations and improve the accuracy of CADD it is necessary to up-

date and develop software and associated algorithms, validate with experimental data, use 

reliable databases (e.g., PDB), and use algorithms that give docking scores that accurately 
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predict in vitro binding with comprehensive and fully retrospective coverage of the pub-

lished literature [174–176]. For example, by September 2020, the Cambridge Structural Da-

taset (CSD) acquired more than 1.8 million entries, which may help with future develop-

ments in small molecule structural modelling [177]. Consequently, the above-mentioned 

tools could help with future design of pharmacophores that possess the desired biological 

activity [178–180]. 

One of the main reasons for implementing in silico drug design is to predict the lig-

and–target binding in terms of binding site and binding strength. To predict potential lig-

ands to treat NDs, novel target proteins must be identified and studied, and the resulting 

docking studies should be validated in vitro and eventually in the clinic [181–183]. 

In the meantime, there is no effective treatment to cure NDs, although many treat-

ments are available that offer minor improvement of symptoms [2]. The development of 

effective treatments is further hindered by the BBB that excludes many molecules from 

the CNS parenchyma [184–186]. Accordingly, clinical effectiveness of a potential drug is 

not guaranteed even with positive data in silico, in vitro, and in vivo [187–190]. 

New experimental approaches including genome-wide association studies (GWAS) 

[188,191,192], CRISPR-Cas9 technology [193–195], high throughput screening (HTS) [196], 

organ-on-chip technologies [197,198], functional MRI (fMRI) techniques [199,200], and 

positron emission tomography (PET) [201] may lead to new drug targets for NDs, which 

can feed into future CADD projects. 

Being incurable, the NDs are major challenges to healthcare providers and research 

scientists. The accelerating increase in the numbers of affected people adds more impetus 

to tackle NDs. Developing a better understanding of NDs and the underlying molecular 

pathophysiology will provide more opportunities to develop novel treatments in the near 

future. This may be achieved with the incorporation of computational tools. CADD can 

have a major impact on drug discovery by saving both time and money and reducing the 

risk of following up with the development of non-viable leads. 
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