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Abstract: Deficient acid β-glucocerebrosidase activity due to biallelic mutations in GBA1 results
in Gaucher disease (GD). Patients with this lysosomal storage disorder exhibit a wide range of
associated manifestations, spanning from virtually asymptomatic adults to infants with severe
neurodegeneration. While type 1 GD (GD1) is considered non-neuronopathic, a small subset of
patients develop parkinsonian features. Variants in GBA1 are also an important risk factor for
several common Lewy body disorders (LBDs). Neuropathological examinations of patients with GD,
including those who developed LBDs, are rare. GD primarily affects macrophages, and perivascular
infiltration of Gaucher macrophages is the most common neuropathologic finding. However, the
frequency of these clusters and the affected anatomical region varies. GD affects astrocytes, and,
in neuronopathic GD, neurons in cerebral cortical layers 3 and 5, layer 4b of the calcarine cortex,
and hippocampal regions CA2–4. In addition, several reports describe selective degeneration of the
cerebellar dentate nucleus in chronic neuronopathic GD. GD1 is characterized by astrogliosis without
prominent neuronal loss. In GD-LBD, widespread Lewy body pathology is seen, often involving
hippocampal regions CA2–4. Additional neuropathological examinations in GD are sorely needed to
clarify disease-specific patterns and elucidate causative mechanisms relevant to GD, and potentially
to more common neurodegenerative diseases.

Keywords: neuropathology; Gaucher disease; Parkinson disease; Lewy Body disorder; lysosomal
storage disorder; Lewy body; glucocerebrosidase

1. Introduction

Gaucher disease (GD) is a lysosomal storage disorder resulting from mutations
in the GBA1 gene that lead to decreased activity of acid β-glucocerebrosidase (GCase,
E.C 3.2.1.45.). This enzyme cleaves the lipids glucocerebroside (GluCer) into glucose and
ceramide [1], and glucosylsphingosine (GluSph) into glucose and sphingosine. Failure
of this enzyme to clear these substrates from lysosomes causes macrophages to become
engorged with lipid, giving rise to what are known as “Gaucher cells”. Typically, GD
has been subdivided into three types based on presence and rate of progression of neu-
rological involvement. However, GD can also be seen as a phenotypic spectrum due to
the diversity of associated clinical manifestations, with the primary distinction being the
degree of central nervous system (CNS) involvement [2]. Type 1, or non-neuronopathic
GD (GD1), has presentations ranging from asymptomatic adults to young patients with
significant visceral or skeletal disease. The most severe type, acute neuronopathic or type 2
(GD2), is associated with progressive neurodegeneration and early lethality. The disease
manifests before 6 months of age, and some cases may present perinatally with congenital
ichthyosis or hydrops fetalis [3–6]. Type 3 (GD3), or chronic neuronopathic GD, has neu-
rologic involvement, particularly the presence of oculomotor involvement, that typically
presents in early childhood with a slower progression. Even within GD3 there are multiple
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different phenotypes. Some patients have remarkable visceral and skeletal involvement
with few neurological manifestations, while others may have learning disabilities, autism,
generalized seizures, or progressive myoclonic epilepsy (PME) [2]. In addition, slowing of
the horizontal saccadic eye movements, discrepant verbal and performance IQ scores, and
background slowing on EEG are frequently observed in GD3 [3,7–9].

Over two decades ago it was appreciated that a small subset of adult patients with
GD also develop parkinsonian features [10,11]. Greater awareness of patients sharing
these disorders led both to the identification of further patients in GD clinics around
the world [10], and the observation that parkinsonism was also more frequent among
relatives of GD probands [12]. Subsequently, patients diagnosed with sporadic Parkinson
disease (sPD) were also found to carry pathologic heterozygous variants in GBA1 [2,13].
Ultimately, large multicenter studies confirmed that heterozygous GBA1 mutations is a
genetic risk factor for both Parkinson disease (PD) and dementia with Lewy bodies (DLB),
increasing the disease risk 5–10-fold, depending on the specific mutation [14,15]. The
risk of developing parkinsonism for patients with GD is not well established and varies
between studies, from 9–12% at the age of 80 [16,17] to a 20-fold increased lifetime risk [18].
Importantly, a majority of GD1 patients never exhibit parkinsonian features, indicating
that there is a more complex interplay underlying the neurodegeneration. In cell and
animal models of GD, GCase deficiency is accompanied by neuroinflammation, evident by
glial activation, as well as α-synuclein (α-syn) accumulation [19,20]. However, the exact
mechanism underlying GBA1-associated PD remains unknown. Hypotheses include both
gain-of-function due to promotion of α-syn aggregation, and loss-of-function leading to
neurotoxic lipid accumulation, as well as a bidirectional feedback loop between GCase
activity and α-syn aggregation, although no theory has been fully validated [19,21].

To better understand the disease pathogenesis, we reviewed the neuropathologi-
cal features associated with glucocerebrosidase deficiency, examining autopsy studies
of rare patients with GD. The limited number of cases, especially in subjects with non-
neuronopathic GD, highlight the need for standardization of examinations. In addition,
we examined reports of neuropathologic studies conducted on patients with GD who
developed parkinsonism and compared the findings to heterozygous GBA1-mutation car-
riers with parkinsonism, which are more frequently examined. As uncertainty persists
regarding the mechanism underlying GBA1-associated synucleinopathy, an evaluation
of neuropathological features associated with GCase deficiency, could provide clues into
pathways contributing to the clinical features observed.

2. Specific Brain Regions Are Involved in Gaucher Disease

Published reports of neuropathological evaluations of patients with GD are few, and
most have been sporadic case studies including autopsy findings. The first larger and more
comprehensive evaluation of the neuropathology of GD was published in 2004, examining
autopsies of 12 patients with all three types of GD [22]. Certain neuropathological features
of GD were shared among individuals with each of the three types. The cell types most
often affected were neurons and astrocytes, and distinct regional specificity was noted [22].
The cerebral cortical layers 3 and 5, layer 4b of the calcarine cortex, and hippocampal
areas CA2–4 were selectively involved in all forms of GD, although the extent of the
abnormalities seen appeared to be dependent on the severity of the disease [22]. Regions
adjacent to the specific areas involved, including the hippocampal CA1 region and calcarine
lamina 4a and 4c, were spared, emphasizing the specificity of neural involvement (Figure 1).
The authors also demonstrated that in wildtype brain the pyramidal neurons in CA2–4
and cortical layer 5 showed intense anti-GCase immunoreactivity, suggesting that this
region might be especially vulnerable to diminished GCase levels [22]. Generally, a low
level of background gliosis was observed, which was associated with the vasculature and
most apparent in the brainstem and striatum. Perivascular clusters of Gaucher cells were
identified in all cases, with a generally higher disease burden in GD2 and GD3 compared
to GD1.
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Figure 1. Regions affected in Gaucher disease (GD) include hippocampal regions CA2–CA4 and
cortical layers. (A) Neuronal loss and astrogliosis observed in an autopsy of infant with GD2
case demonstrating astrogliosis in hippocampal regions CA2–CA4 with relative sparing of CA1
(H&E, 40× magnification). (B) Mild astrogliosis in GD1 detected by GFAP staining, without neuronal
loss. (GFAP immunoperoxidase, 40× magnification). (C) Astrogliosis in GD1 shown by GFAF staining
in cerebral cortical layer 5 (GFAP immunoperoxidase, 40× magnification). (D) Calcarine cortex in an
infant with GD2 demonstrating neuronal loss and astrogliosis in layer 4b, sparing layer 4a and 4c
(H&E, 40× magnification). Scale bars: (A) 1 mm; (B) 1 mm: (C) 250 µm; (D) 100 µm. Adopted with
permission from Wong et al., 2004, Elsevier Inc. [22].

3. Neuropathological Involvement Is also Noted in “Non-Neuronopathic” GD1

GD1 has traditionally been defined as non-neuronopathic, and hence, no neurolog-
ical symptoms or signs are evident. In 1980, Soffer et al. described autopsy findings of
widespread perivascular clusters of Gaucher cells in cortical and subcortical regions in
a 51-year-old man with GD1. While the affected blood vessels were surrounded by an
intense fibrillary reaction, there was no neuronal loss and no accumulation of GlcCer in the
brain. Importantly, despite the autopsy findings, the patient did not show any neurological
symptoms [23]. In the case series by Wong et al., the primary neuropathological features
described in the seven cases with GD1 were astrogliosis and perivascular Gaucher cells [22].
Affected brain regions in GD1 were described as gliotic with perivascular and fibrillary
astrogliosis, evident by GFAP staining, but again, without prominent neuronal loss [22].
Hippocampal involvement was most prominent in the CA2 region, modest in CA3–4 and
CA1 was typically spared.

Hulková et al. examined the frontal cortex and cerebellum in a 59-year-old woman
with GD1 and reported occasional perivascular Gaucher cell clusters in white and grey
cerebral matter and in the leptomeninges. Astrocytosis was noted in the white matter and
subpial regions with mild gliosis in the dentate gyrus. In addition, lipofuscin particles were
noted in Purkinje cells, Bergman astroglia, and cortical neurons, further documenting mild
neuropathological involvement in GD1, without clinical neurological symptoms [24].
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4. Neuropathologic Findings in Neuronopathic GD

Neuronopathic GD (nGD) encompasses GD2 and GD3, which both affect the central
nervous system in several ways. Elevated levels of brain GlcCer and GlcSph occur in both
types, although levels tend to be higher in GD2 [22,25–27]. Gaucher cells are also found in
the brains of patients with both types, but there is some indication that their localization
differs. In GD2, there can be free Gaucher cells in the cerebral cortex, with or without
additional perivascular Gaucher cells. In GD3, however, perivascular Gaucher cells were
predominant [28]. However, there is at least one case report of a patient with GD3 who was
also found to have free parenchymal Gaucher cells [29]. Four neuronal alteration patterns
have been suggested in patients with nGD: (1) mild and nonselective, (2) cerebellodentate,
(3) bulbar, and (4) thalamocortical. Patterns (3) and (4) are common in patients with GD2,
while pattern (1) is more characteristic of patients with the Norbottnian subtype of GD3 and
pattern (2) is observed in other GD3 cases [30]. As described above, pyramidal neuronal
loss in hippocampal layers CA2–4 is observed in nGD, with CA2 being the region most
severely affected and CA1 largely spared [22]. Additionally, cortical laminar necrosis of
the third and fifth cortical layers occurs in conjunction with astrogliotic neuronal loss of
the fourth layer, though fourth layer abnormalities are largely localized to the occipital
lobe [22,27].

Clinically, the initial distinction between GD2 and GD3 is the age at symptom onset.
GD2 is diagnosed perinatally or in infancy while GD3 can present at any age, but often has
a later diagnosis. GD2 has some unique presentations, including hydrops fetalis, congenital
ichthyosis, severe stridor, and failure to achieve an independent gait [3]. In the case series
by Wong et al., hippocampal involvement in GD2 was particularly severe, with significant
neuronal loss. The few remaining hippocampal CA2 neurons observed were described
as basophilic and shrunken [22]. The finding of particularly severe gliosis in CA2 in a
GD2 case was also reported by Kaga et al. in an infant who died at six months. In this
child, Gaucher cells were found both in the perivascular regions of the cerebrum and in
the brainstem. Neuronal loss was observed in the brainstem, especially in nuclei of cranial
nerves III, V, VII, and the superior olivary complex. The dentate nucleus, as well as the
granular layer of the cerebellum, were lost [31].

An early study by Kaye et al. studied neuropathological differences between patients
with GD2 and GD3. In the two cases of GD2 studied, GlcCer accumulation, Gaucher
cells, gliosis, and microglial nodules were observed, and the level of GlcCer accumulation
correlated with degree of neurodegeneration. The one case of GD3 reported displayed a
similar pattern of GlcCer accumulation, but surprisingly lacked the other neuropathological
findings [27]. Other studies have, however, found neuropathological changes in GD3,
possibly reflecting the clinically diverse phenotypes collectively associated with GD3. In
another case, a 10-month-old girl, clinically diagnosed with GD 3 and progressive stimulus-
sensitive myoclonus, as well as bulbar signs, was studied. The patient showed widespread
focal intraparenchymal Gaucher cells in cerebral cortex, mostly evident in lamina 4, as
well as in the granular cell layer of the cerebellum. GFAP immunoreactivity indicating
astrogliosis was increased in lamina 4 and, to a lesser extent, in lamina 2 in cortical samples,
where mild to moderate neuronal loss was also evident. The pons, medulla oblongata,
and substantia nigra (SN) all showed glial scars. In addition, severe loss of neurons and
astrogliosis in the dentate nucleus and some loss of Purkinje cells were observed. Brain
GlcCer levels were elevated both in the frontal cortex and cerebellum. While the clinical
diagnosis was reported as GD3, the authors concluded that the neuropathological findings
were a combination of the patterns expected in GD2 and GD3, highlighting the phenotypic
spectrum in nGD [30].

Several studies of patients with GD3 have suggested that the dentate nucleus is the
region most severely affected [29,32]. An autopsy report of a child with severe GD3 with
a progressive generalized stimulus-sensitive and action myoclonus and cerebellar ataxia
showed selective neurodegeneration of the cerebellar dentate nucleus and dentatorubroth-
alamic pathway [32]. The remaining neurons of the dentate nucleus showed signs of



Int. J. Mol. Sci. 2022, 23, 5842 5 of 11

pyknosis and nuclear condensation. Loss of myelin and axonal profiles were also present in
this neuronal population, along with a reduced number of fibers extending from the dentate
nucleus. The fiber loss was selective to the superior cerebellar peduncle which includes
the dentatorubrothalamic pathway [32]. Interestingly, neuronal populations in other brain
regions, including the cerebral and cerebellar cortices, thalamus, basal ganglia, and inferior
olivary nucleus, did not show evidence of decline or damage. There was only one focal
ependymal lesion with infiltration of Gaucher cells observed, and specifically no loss of
Purkinje cells. The authors concluded that the restricted dentate damage supports a central
role of this nucleus in myoclonus. Furthermore, Alzheimer’s type 2 astrocytes were located
in the basal ganglia, substantia nigra, and inferior olivary nucleus, implicating a systemic
metabolic disorder [32]. In another early case report of a patient with stimulus-sensitive
myoclonus, cerebellar ataxia, and general seizures, Winkelman and colleagues reported
somewhat similar neuropathological findings, where the deep nuclei of the cerebellum
were most severely affected. While there was no loss of Purkinje cells, mild astrogliosis
was observed in the molecular layer of the cerebellar cortex. However, in this case signs of
neuronophagia in the brainstem and multiple perivascular aggregates of Gaucher cells in
the subcortical white matter were evident [33].

Burrow et al. performed a thorough neuropathological evaluation of a twelve-year-old
child with GD3 who had been treated with enzyme replacement therapy for 11 years.
Clinically, the child developed a cerebellar tremor, myoclonus, progressive ataxia, and
generalized tonic–clonic seizures. At autopsy, isolated and nodular clusters of CD68
positive macrophages were seen throughout the cerebrum, often compressing arterioles.
These perivascular clusters were also found in the basal ganglia, brainstem, hippocampus,
cerebellum, and thalamus. Again, neuronal loss was prominent in the cerebellar dentate
nucleus. A marked loss of Purkinje cells was noted. Diffuse astrogliosis was observed, often
surrounding engorged macrophages. Phosphorylated Tau was identified in neuronal soma
and processes in the hippocampus, basal ganglia, and cerebellum. In addition, rare cells
in the cortex and hippocampus showed enhanced α-syn immunoreactivity. Thus, despite
the patient’s young age, there were markers suggestive of a potential neurodegenerative
disorder [29].

GD3 includes the “Norbottnian” subtype, named for a geographic isolate in northern
Sweden where it was first described. This subtype, which is generally associated with
GBA1 genotype L444P/L444P, is characterized by infantile or juvenile onset, with slow
progression of CNS involvement [34]. Conradi et al. conducted a morphological and
biochemical analysis of five GD3 brains from this cohort, demonstrating Gaucher cells in
each case. In two cases, loss of neurons and myelin near the Gaucher cells was observed.
Varying degrees of neuronal loss, satellitosis (clustering of glia around neurons) [35], and
neuronophagia were noted in all five patients. Light microscopy demonstrated lipofuscin
with simple and complex lipids, but not glycolipids. Inclusion bodies were seen in both
cerebral and cerebellar neurons, the dentate nucleus, and pons. GlcCer accumulation was
present in these cases, although the levels varied. They tended to be higher in patients who
had undergone splenectomy and were affected by the generalized lipid storage processes
in specific individuals. Higher levels of GlcSph were noted in cases with more advanced
nerve cell loss. This led to the suggestion that the accumulation of lipid substrates may act
to prime a neurodegenerative process [22,34], which is one hypothesis proposed regarding
why some patients with GD develop LBD [36].

5. Neuropathology of Gaucher-Associated Parkinsonism

The unanticipated link between the monogenetic disorder GD and the multifactorial
neurodegenerative disorder PD has blurred the boundaries between genetic and sporadic
Lewy body disorders (LBDs). Similar to sporadic LBD (sLBD), patients with GD who de-
velop parkinsonism (GD-LBD) have a wide spectrum of phenotypes, ranging from slowly
progressing L-DOPA responsive PD to rapidly progressive dementia with Lewy bodies
(DLB) presentations [37]. While, on an individual basis, patients with LBD carrying GBA1
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mutations are clinically indistinguishable from those with sporadic disease, as a group, pa-
tients with parkinsonism who are either homozygous or heterozygous for GBA1 mutations,
have an earlier age of onset, faster progression, and more pronounced cognitive decline
than those without mutations [37–39]. While the literature describing the neuropathology
of heterozygous GBA1-carriers is expanding [40–42], there are only a few published neu-
ropathological evaluations describing findings in homozygous patients with both disorders
(summarized in Table 1). Unlike some of the other familial PD-related genes, at autopsy
patients with GBA1-LBD regularly exhibit Lewy body (LB) pathology, mirroring a core
neuropathological feature in PD and DLB [43]. LBs are neuronal perikaryal deposits mainly
composed of misfolded α-syn. In addition, more than 80 different proteins, membranes,
lipids, and distorted organelles have also been identified in these aggregates [44,45]. There
are two subtypes of LBs, the classical brainstem type and the cortical type, each with a
different localization, as well as a different microstructure, which affects the likelihood of
their identification during the neuropathology examination [46]. Since GBA1-LBD shares
essential histopathological features of LBD, the histopathological signature in GD-LBD
could potentially provide insights into pathophysiology relevant to a larger group of
affected patients.

Table 1. Autopsy studies of patients with both Gaucher disease (GD) and parkinsonism.

Report Gender/
Age of Death

Gaucher
Diagnosis Genotype Neuronal Loss

in SN LB Pathology Clinical Features

Wong et al.,
2004 [22] F/62 GD1 N370S/unknown Yes Diffuse cortical

LB
Parkinsonism
and dementia

Wong et al.,
2004 [22] F/53 GD1 D409H/L444P

+duplication Yes
Brainstem LB in

hippocampal
CA2–4

Parkinsonism
and dementia,
supranuclear

gaze palsy
Wong et al.,

2004 [22] M/75 GD1 N370S/N370S Yes Brainstem LB in
SN

Parkinsonism
and dementia

Wong et al.,
2004 [22] M/54 GD1 N370S/N370S Yes

Brainstem LB in
hippocampal

CA2–4

Parkinsonism
and dementia

Adler et al.,
2017 [42] F/73 Unknown N370S/N370S Unknown Unknown Parkinsonism

and dementia
Blauwendraat
et al., 2019 [47] F/~90 Un-diagnosed N370S/N370S Yes No Parkinsonism

Sklerov et al.,
2017 [48] ?/63 Un-diagnosed N370S/N370S Yes No

Orthostasis,
parkinsonism,

cognitive deficits

In the early 2000s, Tayebi et al. published a case series describing patients with
GD-LBD, suggesting that GCase deficiency may cause patients to be more vulnerable to
parkinsonism. Brief neuropathological descriptions were included for four of the cases.
Each exhibited a loss of dopaminergic neurons in the substantia nigra pars compacta (SN),
the pathological hallmark for PD, as well as LB pathology, although the distribution of
LBs varied among the patients. Specifically noted by the authors were brainstem-type LBs
in the hippocampal regions CA2–4, sparing CA1 [10]. As noted above, these regions are
specifically affected in GD. One year later, Wong et al. published additional neuropatholog-
ical description of the same patients. Each of the GD-LBD cases exhibited astrogliosis in
hippocampal areas CA2–4, the calcarine cortex layer 4b and the cerebral cortex layer 5, as re-
ported in GD1 cases without parkinsonism. The SN showed neuronal loss, brainstem-type
LBs, and gliosis. Two of the cases also had brainstem-type LB pathology in hippocampal
pyramidal neurons, and in a third, brainstem-like LBs were limited to the SN. The fourth
case had both brainstem and widespread cortical LBs consistent with diffuse LBD (Figure 2).
The included cases had different GBA1 genotypes, indicating that no specific mutation
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predisposes patients to LBD. Of the two homozygous N370S patients, only one had hip-
pocampal LB involvement [22]. Even though neuropathology is the gold standard for the
diagnosis of neurodegenerative disorders, there is, to date, no neuropathological criterion
separating DLB from PD with dementia (PDD) [49,50]. DLB cases tend to have a larger LB
burden, especially in the temporal lobe and CA2 region of the hippocampus, as well as
elevated Alzheimer’s disease-related pathologies compared to PDD [51–53]. The degree of
Lewy pathology in the hippocampal CA2 region has also been linked to cholinergic deple-
tion and dementia development in PD [54]. It is tempting to correlate the involvement of
Lewy pathology in hippocampal regions in GD-LBD with the more pronounced cognitive
decline seen in GBA1-PD patients, but in asmuch as since hippocampal involvement is also
observed in LBD without GBA1-mutations, more cases need to be examined to conclude
whether the spread of LB pathology differs from sporadic cases [55].

Figure 2. Intraneuronal inclusions similar to brainstem-type Lewy bodies identified in hippocam-
pal neurons in regions CA2 (A) and CA3 (B) in a patient with both GD and parkinsonism
H&E, 400× magnification. Scale bars (A) 35 µm; (B) 38 µm. Reprinted with permission from
Wong et al., 2004, Elsevier Inc. [22].

Another source of neuropathological studies of GD-LBD now results from the inclu-
sion of cases of GD in large autopsy series performed on subjects with PD. After genetic
screening of a pathology cohort of more than 1200 patients with neurodegenerative disease,
Blauwendraat et al. identified one case who was homozygous for GBA1 N370S, as well
as heterozygous for LRRK2 G2019S. The patient presented clinically with PD and showed
neuronal loss in the SN but exhibited no Tau or LB pathology [47]. Neuropathological
reports of LRRK2 G2019S carriers have heterogeneous results with regards to LB pathology,
possible explaining the lack of LB pathology in this case [43]. Furthermore, Adler et al.
examined 12 GBA1-carriers with PD looking to establish the neuropathological differences
between GBA1-PD and sPD. This series included one case with genotype N370S/N370S,
and hence GD-PD, but no individual information regarding neuropathological findings or
comorbidities in this subject was reported [42].

It is still unclear whether there are histopathological differences between GD-LBD and
sLBD. Several studies suggest a more widespread cortical LB burden in GBA1-PD, although
this remains under debate [40–42,52,56]. While, as mentioned, there was one report of
increased α-syn in both the hippocampus and cortex in a 12-year-old patient with GD3,
no α-syn pathology was detected in five infants with GD2 who had widespread Gaucher
cells in the CNS. This indicates that α-syn can accumulate early but suggests that GD
disease burden does not directly correlate with α-syn pathology [29,57]. Since incidental
LB pathology is found in approximately 10% of healthy people above 60 years old, α-syn
accumulation in single cases should be interpreted with caution as no clinical features of
parkinsonism were detected [58]. On a molecular level in a small cohort, Goker-Alpan et al.
showed that GCase was present in LBs specifically in GBA1-LBD. In patients with GD-LBD
over 80% of LBs stained positive for GCase, 33–90% in heterozygote carriers and <10% in
sPD [59]. This suggests a role for mutant GCase in LB formation in GBA1-related disease,
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but as mentioned above, a large number of proteins have been found in LBs, many without
a documented role in the pathophysiology. Furthermore, the variability in heterozygotes
implicates additional individual stressors and/or protective factors. Unlike in nGD, in the
few cases of GD-LBD investigated, as well as in heterozygous GBA1-carriers, no significant
GluCer or GlcSph accumulation was observed in the CNS [10,60]. Slightly increased GluCer
has been reported in the SN in sPD, although the significance of this finding is unclear [61].

The rare synucleinopathy multiple system atrophy (MSA) is marked by α-syn inclu-
sions in oligodendrocytes as opposed to neurons. Whether there is a link between GBA1 and
MSA development is still not settled [48,62,63]. Interestingly, one case of autopsy-verified
MSA was incidentally found to be homozygous for N370S but was never diagnosed with
GD during life. Examination showed atrophy with neuronal loss and gliosis of the basal
ganglia and cerebellum, indicating a mix between the major subtypes of MSA, MSA-P
(parkinsonian), and MSA-C (cerebellar). The patient had glial cytoplasmic inclusions with
α-syn, indicative of MSA, and rare neurofibrillary tangles, seen in Alzheimer’s disease, but
no LB pathology was evident [48].

6. Discussion and Conclusions

The appreciation of the link between GBA1 and the LBDs has stimulated an up-
surge in GBA1-related research activity. However, the field is hampered by the dearth of
well-documented autopsy studies, and the full spectrum of neuropathological findings
associated with GD has yet to be established. Many of the reported cases exhibit astrogliosis
in cortical layers 3 and 5 and in hippocampal regions CA2–4. Selective neuronal loss is
described in neuronopathic GD. Rare autopsy studies of GD3 show limited depletion of
neurons in the dentate nucleus. Findings regarding loss of Purkinje cells are conflicting,
as is the degree of Gaucher cell infiltration. The variability in pathological findings likely
reflects the recognized clinical heterogeneity in GD. However, it should be noted that these
pathological patterns are based on very few cases and certainly do not cover the entire
phenotypic spectrum of GD. Furthermore, the specific brain regions examined, and the
staining techniques used vary among publications, limiting direct comparisons.

Brain accumulation of GlcCer and GlcSph in nGD has been observed. While generally
seen as toxic and causative of neurodegeneration, this does not provide an explanation
regarding the selective neurodegeneration which occurs as a response to the systemic
increase. In control brain, Wong et al. demonstrated increased levels of GCase localized to
brain regions specifically affected in nGD [22]. Studies investigating the causes of the cell
type specific vulnerability could increase our understanding of the role of the implicated
lipids in LBD and other neurodegenerative diseases, including Alzheimer’s disease.

Several of the original neuropathological studies in GD patients were published before
the link to LBD was known, and therefore, many of the cases were not specifically examined
for α-syn pathology. Interestingly, the GD-affected hippocampal areas CA2–4 have also
been specifically involved in GD-LBD. Hippocampal involvement is common in sPD ac-
cording to Braak staging [55]. Recently, the question of whether Braak staging is applicable
to all subtypes of PD has been raised, and hence, more studies of various well-defined
PD cohorts are needed [64,65]. While neuropathological assessments of GD-LBD are quite
limited, the similar LB pathology reported suggests that GD-LBD might provide a relevant
model to understand cellular pathways generally relevant to LBD. Careful GBA1 geno-
typing of brain bank PD series could potentially lead to the identification of further cases.
However, without a better understanding of GD-related pathology, potentially important
subtle differences between GD-LBD and sPD that could provide critical mechanistic clues
might be overlooked.
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