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Abstract: Lithium–sulfur batteries (LSBs) are one of the most promising candidates for next-generation
high-energy-density energy storage systems, but their commercialization is hindered by the poor
cycling stability due to the insulativity of sulfur and the reaction end products, and the migration
of lithium polysulfide. MXenes are a type of emerging two-dimensional material and have shown
excellent electrochemical properties in LSBs due to their high conductivity and large specific surface
area. Herein, several synthetic strategies developed for MXenes since their discovery are summarized
alongside discussion of the excellent properties of MXenes for LSBs. Recent advances in MXene-based
materials as cathodes for LSBs as well as interlayers are also reviewed. Finally, the future development
strategy and prospect of MXene-based materials in high-energy-density LSBs are put forward.
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1. Introduction

The global warming and energy crisis caused by the use of fossil fuels has brought us
into the era of clean energy revolution. Lithium-ion batteries (LIBs) have developed rapidly
since their invention in the 20th century and are widely used in convenient electronic
devices and electric vehicles, and dominate the market [1,2]. With the development of
science and technology, the growing demand for electronic devices has gradually increased
the requirements for battery energy density. The scarcity of transition metal oxide cathodes
leads to a high price and limited availability. In addition, the theoretical capacity of a
graphite negative electrode is low. Considering the above factors, LIBs are no longer able
to meet the future development trend for electronic devices. Therefore, it is necessary to
explore high-energy-density electrochemical energy storage systems to respond the market
demand [3–5]. In this case, lithium–sulfur batteries (LSBs) which have an energy density
of 2567 Wh·kg−1, about six times that of commercially available LIBs have attracted the
attention of researchers. New energy vehicles equipped with LSBs have a longer range on
a full charge than the currently commercialized LIBs. Moreover, sulfur has the advantages
of low pollution, large reserves and low price. The development of LSBs with high energy
density is of great significance [6–9].

Energy density and power density are key factors in measuring the potential of an
energy storage system, which is often presented in the form of a “Ragone plot” [10]. In
Figure 1, we compare the mass energy density and power density of several energy storage
systems. It is clear that the internal combustion engine has the highest energy density
and power density. Unfortunately, the internal combustion engine converts energy by
burning fossil fuels to do work, and the shortage of fossil fuels and the pollution they
cause has forced us to turn our attention to other new energy devices. Supercapacitors
have a very high power-density, but their energy density is extremely low, so they cannot
provide a longer driving range for cars. Fuel cells have the highest energy density but
cannot be charged and discharged as quickly as supercapacitors. LIBs are being widely
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used commercially as energy storage devices with balanced energy density and power
density. As a potential energy storage device, LSBs exceed LIBs in both energy density and
power density, and can meet the future needs of human beings for energy storage systems.
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Unfortunately, multiple reasons such as the serious shuttle effect inside the battery
have prevented the large-scale commercial application of LSBs. Firstly, the electronic
insulation of sulfur (S8) and lithium sulfide (Li2S) hinder the redox reaction, and the
reduced utilization rate of sulfur leads to poor rate performance [11]. Secondly, the density
difference between the final insoluble product, Li2S (1.67 g·cm−3), formed by discharge
and S8 (2.03 g·cm−3) is large, resulting in nearly 80% fluctuation of electrode volume after
multiple charge and discharge processes [9,12]. Furthermore, the repeated stripping of the
lithium anode leads to the formation of lithium dendrites, which can easily puncture the
separator causing a fatal cell short circuit. Most importantly, the discharge intermediate
lithium polysulfide (LiPSs) dissolves in the electrolyte and forms a shuttle effect, which
leads to rapid decay of battery capacity and greatly reduces the cycling stability [13,14].

In order to solve these problems, researchers have carried out work in many as-
pects and adopted various strategies to enhance the cyclic stability of LSBs. For exam-
ple, materials with high electrical conductivity and chemical adsorption properties were
used as sulfur hosts [15,16], functional interlayers were constructed between cathode
and separator [17–19], optimized electrolytes and built advanced lithium anodes were
researched and developed [20–22]. Rational design of sulfur host materials was one of
the first widely studied strategies. Since Nazar et al. used CMK-3 as a sulfur host ma-
terial and obtained excellent performance in 2009 [23], combined with the discovery of
two-dimensional (2D) material graphene by Geim et al. in 2004, carbon-based materials
have been widely used in sulfur cathodes by researchers. Although carbon-based materials
make up for the lack of cathode conductivity, they can only be physically encapsulated
into LiPSs, which usually leads to poor long-period stability due to their non-polar defects.
Then, researchers tried to design polar/nonpolar composites as a sulfur host [24–26] or
properly use doped carbon materials (such as N, S and B) [27–33]. For example, Sgroi et al.,
Rao et al. and Vélez et al. investigated the interaction of heteroatom-doped graphene with
LiPSs using the first principle and showed that the introduction of heteroatoms enhanced
the adsorption energy between the electrode material and LiPSs [34–36]. A large number
of reasonable materials have been used repeatedly in sulfur cathode hosts and functional
separators. Many researchers have summarized the research progress of carbon-based ma-
terials in LSBs. In our previous work, we summarized the research progress of graphene in
the field of sulfur cathode in detail, including heteroatom doping of graphene, compound-
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ing of graphene with metal compounds and compounding among carbon materials [37].
Zhang et al. summarized the application of carbon materials in more detail from the three
fields of LSBs cathode, separator and anode [38]. Although there are so many 2D materials,
2D materials that simultaneously possess high electrical conductivity, high chemisorption,
easy production and high yield are still lacking for LSBs.

MXene is a new 2D material composed of transition metal group carbonitrides. It is
considered as one of the more competitive candidates for LSBs due to its high electrical
conductivity, strong interaction with LiPSs, and easy production. Gogotsi et al. prepared 2D
titanium carbide (Ti3C2) by hydrofluoric acid (HF) etching from Ti3AlC2 in 2011, marking
the advent of Mxene [39]. So far, the family members of Mxene have been expanding
continuously, and its etching methods have been successively developed from the previous
HF etching to alkali etching [40], electrochemical etching and so on [41]. Due to its excellent
properties such as metal conductivity and hydrophilicity, MXene have been widely used by
researchers in the fields of electrocatalysis [42], electromagnetism [43] and biomedicine [44].
In the field of energy storage, MXene also shows great potential in energy storage devices
such as LIBs [45,46], zinc-ion batteries [47,48], potassium-ion batteries [49,50] and super-
capacitors [51,52]. In 2015, Ti2C nanosheets were used as a sulfur host material for LSBs
for the first time by Nazar et al. The battery still had a specific capacity of 723 mAh·g−1

after 600 cycles at 0.5 C, which proved the availability of MXene in LSBs [53]. The review of
MXene-based LSBs has also been summarized by many researchers [54–56]. For example,
Zhao et al. and Xiao et al. summarized in detail the application of MXene materials in
cathode, interlayer and anode [57]. In particular, Xiao et al. described in detail a mechanism
study of the interaction of MXene terminal functional groups with LiPSs [58]. Up to now,
LSBs researchers are still experimenting with various MXene family members in cathodes,
anodes and separators. Due to the large number of MXene family members, the mechanism
of action of different MXene materials on LSBs varies, so a complete phased summary is
particularly critical and is expected to accelerate the development of MXene materials and
promote the performance improvement of LSBs.

In this review, we first summarize the different synthesis methods of MXene family
materials and analyze the differences in the properties of MXene prepared by different
methods. Secondly, the property requirements of LSBs for MXene nanomaterials are
also discussed. And most important of all, recent advances in MXene-based materials as
cathodes and interlayers for LSBs are also summarized in detail, including pure MXene
materials, modified MXene materials and MXene-based composites. Finally, we provide
an outlook on how to achieve high cycle life LSBs with respect to the latest advances in
MXene-based LSBs.

2. Synthesis Strategies and Properties of Nanostructured MXenes

It has been more than a decade since the first Ti3C2Tx (Tx represents surface termina-
tions) MXenes were invented. During this time, various methods have been developed for
the synthesis of MXenes and many new members of the MXene family have been created.
MXene has also been widely used in LSBs due to its superior properties. In this section,
we focus on summarizing the recent advances in the synthesis methods of MXenes and
theoretical advances in their performance for LSBs applications.

2.1. Synthesis Strategies

MXenes are a general term for transition metal carbides or nitrides, which are pre-
pared by etching the A element in the MAX phase. The MAX phase is called ternary
layered compounds, where M represents the transition metal element, A represents an
element of the main groups 13 and 14, and X represents the C element or an N element
(Figure 2a) [59,60]. Since the binding force between M and X (covalent bond and ionic
bond) is greater than that between M and A (metal bond), the A layer is easily etched away,
and the rest is MXene [61]. In 2011, Ti3C2 MXene was first introduced [39]. Since then,
HF has become the primary etchant for MAX. However, because of the different bonding
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strengths between different M elements and different A elements, it is necessary to change
the etching conditions to control the synthesis of MXene, including the concentration of
HF, reaction time and ambient temperature. In this way, many MXenes are etched, such as:
Ti2AlC, Nb4AlC3, Ta4AlC3, V2AlC, etc [62–64].

After etching by HF, hydroxyl and fluoride ion reactive groups exist on the surface
of transition metal elements in MXene. These end groups play different roles in MXene,
resulting in widely varying properties. Experiments show that the MXene obtained under
the experimental conditions of a high temperature environment, high HF concentration and
sufficient etching time will endow more defects and thinner dimensions. Correspondingly,
MXene’s electrochemical performance will also be improved [65,66]. More precisely, the
variation of etching conditions still depends on the chemical properties of the precursor
MAX. When etched only with pure HF, it is still a multi-layer material at the nanoscale,
which is similar to an organ shape (Figure 2b). After extensive research, the use of organic
base solutions (urea, dimethyl sulfoxide, n-butylamine) as intercalating agents is an effective
way to obtain 2D MXene nanosheets [67].

Due to the danger of HF, other etchants must be found. In 2014, Gogotsi et al. used
lithium fluoride (LiF) and hydrochloric acid (HCl) as etchants to prepare Ti3C2Tx MXene for
the first time, and showed good electrochemical performance when using it as the electrode
material in pseudo-capacitors [68]. This important work sets a precedent for the study of
fluoride etchants. Liu et al. used LiF, NaF, NH4F and KF·2H2O as etchants to etch Ti3AlC2
and Ti2AlC with HCl, and studied the corresponding surface structures of MXenes etched
by different etchants [69]. The results show that after the precursor is etched, Li+, Na+

and K+ cations will remain on the surface of Ti3C2 and Ti2C, which forms a MXene with
new features. The residual mode and amount of these cations and how to use these new
MXenes reasonably are the topics that should be studied in the next step. Liu et al. obtained
2D V2C MXene by etching V2AlC with NaF and HCl at 90 ◦C, and it showed excellent
electrochemical performance in LIBs. This also demonstrates the availability of fluoride
salts as etchants [70]. At present, among all the methods for synthesizing MXene, the
LiF/HCl system is still the most used. Compared with the HF system, the LiF/HCl system
can not only improve the safety of the experiment but also enlarge the interlayer spacing
of MXene (lattice parameter of 40 Å), which is of great significance for the modification
of MXenes.

The above methods are all carried out in a fluorine-containing solution. In order
to seek a more environmentally friendly way, some fluorine-free etching methods have
been developed. Green et al. invented the electrochemical etching method, which is the
first report to achieve fluorine-free etching. Ti2CTx MXene was successfully prepared by
electrochemical etching in a Ti2AlC-HCl-platinum (Pt) electrolytic cell. Unfortunately, a
too long etching time or a too high cathode potential can easily cause both Al and Ti to be
etched away, so this method is not suitable for the preparation of high-purity, high-yield
MXene [71]. In contrast, the Ti3AlC2 two-electrode system designed by Feng et al. achieved
a single- and double-layer yield greater than 90% and the supercapacitor showed that its
performance was superior to that of the MXene electrode produced by the LiF/HCl system
(Figure 2c,d) [72]. Also using MXene as a supercapacitor electrode, Shi et al. designed
an iodine (I2)-assisted etching method. This method significantly increases the content
of oxygen (O) groups. Surprisingly, the environmental stability of the resulting MXene
is greatly increased [73]. Thence, the relationship between the stability of MXene and
the content of O functional groups is a worthy research direction. In addition, Li et al.
synthesized multilayer Ti3C2Tx MXene with 92% purity by an alkali-assisted hydrothermal
method. This approach increased the proportion of O functional groups and found TiO2
on the surface. However, due to the high NaOH concentration and the experimental
temperature of 270 ◦C, this is not a simple and safe preparation method [40]. Recently, a
number of research groups have reported a Lewis acidic molten salt replacement method
(Figure 2e,f). The A element in MAX is replaced by ZnCl2, KCl-LiCl2 or CuCl2 in the
molten state and the excess molten salt will be stripped from the replaced new MAX phase
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(Ti3ZnC2, Ti2ZnN, Ti2ZnC and V2ZnC) due to strong Lewis acidity [74–76]. Although
this method requires a high temperature, its green form is also worth popularizing. Most
importantly, the practical performance of MXene with new features resulting from different
surface terminations has made everyone full of longing.
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Thus far, Ti3C2Tx MXene is the most studied in the huge family of MXenes and there
are many undiscovered new members waiting to be researched. Although many methods
for synthesizing MXenes have been developed, they cannot be popularized due to the
difficulty and particularity of the methods. As the saying goes, a radish has a pit. Changes
in etching conditions mean that MXenes have different properties. Controlling the type and
quantity of functional groups is of great significance to the practical application of MXene.
For that, combining density functional theory (DFT) calculations with specific experiments
is an effective way to guide the synthesis of target MXene.

2.2. Superior Properties for LSBs

Since the MXene family is extraordinarily large, their properties vary enormously.
Even the Ti3C2Tx MXene, which is the most studied today, can have different properties
through the control of the surface terminations. In this section, we only discuss the
properties related to LSBs among the many properties of MXenes, while other properties
will not be discussed.

In LSBs, one of the most important indicators is the conductivity of the material. The
conductivity is directly related to the rate performance of LSBs. There have been numerous
reports demonstrating the excellent electrical conductivity of MXene. The conductivity of
the single layer Ti3C2Tx MXene was tested to be 6700 S·cm−1, which is sufficient to support
the kinetics of redox reactions in LSBs [77]. However, the conductivity of MXene prepared
by different methods varies. The conductivity of the same Ti3C2Tx MXene film was
5.25 × 105 S·m−1 prepared by spin coating and 1.51 × 106 S·m−1 by scratch coating [78,79].
Furthermore, for the same MXene, the composition of its surface terminations is a key
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determinant of conductivity, as confirmed by Vladislav et al. through the synthesis of
Nb2CTx with different surface terminations [75].

The difference in density between Li2S and S8 leads to a high degree of volume
expansion in LSBs. Therefore, good mechanical properties are also one of the requirements
for the electrode material of LSBs. MXene has excellent mechanical strength due to a
strong covalent M-X bond. The use of MXene-based electrodes ensures that LSBs do not
cause structural collapse during charging and discharging. DFT calculations show that the
mechanical strength of M2X is greater than M3X2 and M4X3 [80]. The mechanical properties
of different MXenes need to be studied. Hollow cylinders made up of 5 µm thick Ti3C2Tx
paper can support objects 4000 times heavier than themselves, and with 10% polyvinyl
alcohol reinforcement this figure can reach 15,000 [81]. This clearly demonstrates the
potential of MXene in LSBs.

In addition to these properties, it is important that the shuttle effect is suppressed
by strong interactions with LiPSs. The surface terminations of MXene are the key to the
adsorption of LiPSs. The type and number of functional groups and their specific mecha-
nisms to inhibit shuttling of LiPSs are the focus of study. Lu et al. investigated the effect of
interaction between Ti2C without surface terminations and LiPSs [82]. The DFT calculations
revealed that a strong Ti-S bond formed by the S element in LiPSs and the Ti element in
Ti2C hindered the reversible reaction. The introduction of terminations Ti2CF2, Ti2C(OH)2
and Ti2CO2 enhanced the performance of LSBs by weakening the strong Ti-S bond. Thus, it
is sufficient to see the importance of MXene surface terminations. Ti2CO2 and Ti3C2O2 MX-
enes with -O terminations exhibit a dual adsorption mechanism in LSBs, Li-O adsorption
and Ti-S adsorption. The negatively charged O atom at the end combines with the positively
charged Li+ in the LiPSs, resulting in a binding energy of around 1–2 eV [83]. Specifically,
the presence of Li-O bonds weaken the Li-S interactions in higher-order LiPSs, causing
them to convert to lower orders and accelerating the reaction process. The anchoring
behavior of O/F-functionalized Ti2C MXene on LiPSs was investigated using DFT calcula-
tions by Chung et al. [84]. They suggested that neither a single O-functionalized surface
nor an F-functionalized surface is as strong as multiple functional group-functionalized
MXene for the adsorption of LiPSs. The elimination of surface functional group vacancies
is a more effective measure. In addition, Ti2CS2 MXene with -S terminations exhibits a
stronger anchoring ability to LiPSs than O/F surface-terminated MXene (Figure 3a). The-
oretical calculations on single-layer Ti2C and Ti2CS2 without adsorbed LiPSs show that
Ti2CS2 retains metallic properties and thus promotes the electrochemical activity during
charging and discharging [85]. In addition, titanium nitride MXene (Ti2N) is also consid-
ered as a promising cathode host material for LSBs. Lin investigated the interaction of
O-functionalized and F-functionalized Ti2N with LiPSs using first-principle calculations.
The results showed that both Ti2NO2 and Ti2NF2 have moderate adsorption energies with
LiPSs [86]. New developments have also been made in the interaction of members other
than Ti-based MXenes with LiPSs. The anchoring behavior of six -O termination MXenes to
LiPSs (Cr3C2O2, V3C2O2, Nb3C2O2, Hf3C2O2, Zr3C2O2 and Ti3C2O2) was investigated by
Fan et al. [87]. The results show that Cr3C2O2 has the strongest anchoring effect on Li2S4
and Li2S8 (Figure 3b,c). It is worth noting that due to the considerable number of MXene
family members, exploring the ability of the different surface ends of different MXene
species to interact with LiPSs remains an important challenge.

In summary, MXenes possess advantageous properties, such as metallic conductivity,
mechanical toughness, structural diversity and adsorption of LiPSs. This not only promotes
redox reaction kinetics through high electron mobility, but also suppresses shuttle effects
through functionalized MXene terminations. Most importantly, its partially functionalized
terminations allow MXene to retain metallic properties that two-dimensional materials
such as graphene cannot possess. Thus, MXenes are extremely promising in LSBs.
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3. MXenes in Li–S Batteries
3.1. MXenes as Sulfur Hosts

As mentioned above, MXenes have excellent conductivity, diverse functional termina-
tions and are a reasonable material choice for LSBs cathodes. In this section, we summarize
the research progress of MXene-based LSBs sulfur hosts from three aspects: pure MXenes,
modified MXenes and MXenes composites.

3.1.1. Pure MXenes as Sulfur Hosts

Layered Ti3C2 (L-Ti3C2) was used as a sulfur host for the first time by Zhao et al. [88]
Due to the low specific surface area (SSA) of L-Ti3C2 (7.8 m2·g−1), the sulfur cathode
(S/L-Ti3C2) had only 57.6% sulfur loading. Nevertheless, the S/L-Ti3C2 cathode still
provided an initial discharge capacity of 1291 mAh·g−1 at a current density of 200 mA·g−1

and still had 970 mAh·g−1 remaining after 100 charge–discharge cycles. Subsequently,
after the LiF/HCl method had matured, Nazar et al. synthesized Ti2C with an SSA of
67.9 m2·g−1 and obtained a 70% sulfur loading cathode (70S/Ti2C) with a remaining
discharge capacity of 723 mAh·g−1 at 0.5 ◦C after 650 cycles [53]. These two studies show
that Ti3C2 and Ti2C are full of endless potential in the field of cathodes for LSBs.

Due to its excellent mechanical properties and two-dimensional morphology, Ti3C2Tx
can be extracted into thin films and be directly used as a sulfur host substrate for LSBs.
Ti3C2Tx flakes are self-stacked into thin films with excellent electrical conductivity, eliminat-
ing the need for traditional slurry coating processes, reducing the use of collectors, binders
and conductive agents, and reducing costs. Wang et al. soaked freestanding Ti3C2Tx
films in hydrazine monohydrate and obtained Ti3C2Tx foams by the hydrothermal method
(Figure 4a) [89]. The SSA of the hydrothermally-reacted Ti3C2Tx foam was 182.9 m2·g−1,
which was much larger than that of the Ti3C2Tx film (26.3 m2·g−1). Thus, the sulfur loading
of the Ti3C2Tx foam cathode could reach 5.1 mg·cm−2 after compounding with sulfur in
carbon disulfide solution (S/CS2). Even at high sulfur loading, the Ti3C2Tx foam cathode
showed excellent rate capability (Figure 4c) and stable long-cycle capability (Figure 4d).
Loading sulfur nanoparticles on Ti3C2Tx thin films by physical vapor deposition (PVD) is
also an effective strategy. The Ti3C2Tx/S paper prepared by this method possesses excellent
mechanical properties and is one of the perfect candidates for flexible LSB cathodes [90]. In
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addition, the direct preparation of Ti3C2Tx/S cathodes is also a reasonable strategy [91].
Sulfur was directly compounded in the process of MXene film formation to generate a
Ti3C2Tx/S cathode in one step. In detail, the Ti3C2Tx nanosheet solution was mixed directly
with sodium polysulfide (Na2S4) solution and then formic acid solution (HCOOH) was
added dropwise to make the sulfur nanoparticles adhere uniformly to Ti3C2Tx, which
eventually formed the S@Ti3C2Tx cathode directly (Figure 4b). S@Ti3C2Tx with 70% sulfur
loading showed only 0.048% capacity decay per cycle in 800 cycles at 0.2 C rate (Figure 5a).
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Enhancing the SSA and electron transfer rate of MXene by changing its morphol-
ogy can be an effective method to enhance the electrochemical performance of LSBs.
Wang and co-workers prepared flower-like porous Ti3C2Tx as a sulfur host material
(FLPT-S) (Figure 5b) [92]. An ultrahigh volumetric capacity of 2009 mAh·cm−3 was ob-
tained for the FLPT-S cathode without adding any carbon conductive agent. Subse-
quently, they also reported that the Ti3C2Tx nanodots were uniformly dispersed on Ti3C2Tx
nanosheets (TCD-TCS) to enrich the polar sites of the cathode, and the TCD-TCS/S cath-
ode with 13.8 mg·cm−2 surface density exhibited an ultrahigh volumetric capacity of
1957 mAh·cm−3 (Figure 5c) [93].
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3.1.2. Modified MXenes as Sulfur Hosts

Chemical modification of the sulfur host material is thought to be effective in inhibiting
the shuttling of LiPSs. The doping of elements such as N and O into the surface of nonpolar
carbon materials can greatly strengthen their interactions with sulfur [29,94]. This also
applies to polar MXene. The synergistic adsorption of LiPSs by heteroatoms and MXene
surface terminations is a more effective way to enhance the electrochemical performance
of LSBs.

The N element is one of the most studied elements among all doped systems. The
chemisorption of pyridinic N to LiPSs should not be underestimated. Wang et al. synthe-
sized crumpled nitrogen-doped Ti3C2Tx nanosheets (N-Ti3C2Tx) by a one-step thermal
treatment method using melamine as the nitrogen source (Figure 6a) [95]. The crumpled
structure allowed for better physical encapsulation of the sulfur nanoparticles (Figure 6b,c).
The decomposition of melamine during annealing increased the SSA of Ti3C2Tx nanosheets
to 385 m2·g−1, which was sufficient to give a higher sulfur loading to the cathode host
material (N-Ti3C2Tx/S). Pyridinic N accounted for 34.18% of all N content, enhancing
the interaction of polar Ti3C2Tx with LiPSs. The N-Ti3C2Tx/S cathode still had a specific
capacity of 610 mAh·g−1 after 1000 cycles at a high rate of 2 C (Figure 6d). For a high sulfur
loading cathode of 5.1 mg·cm2, it still had a good performance. Moreover, for N-Ti3C2Tx,
Sun et al. obtained porous N-doped Ti3C2 (P-NTC) using the melamine formaldehyde (MF)
template method (Figure 6e) [96]. MF microspheres disappeared after thermal annealing
and the sulfur nanoparticles occupied the MF microspheres. So, they were successfully
encapsulated in the P-NTC to form a sulfur host cathode (S/P-NTC). This cathode achieved
a capacity decay rate of 0.033% at 2 C (1200 cycles) (Figure 6f). The electrochemical prop-
erties exhibited by the above two examples are comparable. Meanwhile, this implies a
high-quality potential for heteroatom-doped MXene.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 10 of 23 
 

 

 
Figure 6. Preparation of crumpled N-Ti3C2Tx/S cathode (a), SEM images (b,c) and its 1000 cycles test 
at 2C (d) [95]. Copyright 2018, John Wiley and Sons. Synthesis diagram of P-NTC (e) and 1200 cycles 
of S/P-NTC test at 2C (f) [96]. Copyright 2020, Elsevier. 

In addition to non-metal elements, metal elements have been used as catalysts to pro-
mote the kinetics of redox reactions. For example, nickel (Ni) atoms were introduced into 
the graphene skeleton as electrocatalysts to accelerate the liquid–solid phase transition 
among polysulfides [97]. Iron (Fe) atoms were introduced into the N-doped graphene 
skeleton to form Fe-N bonds and promote the deposition of solid-state Li2S2 and Li2S [98]. 
In the MXene skeleton, the doping of metal atoms could be achieved using the Lewis 
acidic molten salt replacement method mentioned in the previous section on the synthesis 
strategy. Molten zinc chloride (ZnCl2) displaced the Al atoms in Ti3AlC2 to form single 
atom zinc implanted MXene (SA-Zn-MXene) (Figure 7a) [99]. Attributed to the electro-
negativity of Zn, the binding energy of SA-Zn-Mxene to all LiPSs was higher than that of 
pure Ti3C2Tx to all LiPSs (Figure 7c). In particular, the potentiostatic nucleation profile 
analyses of SA-Zn-MXene and MXene showed that MXene with Zn atom doping (red re-
gion in Figure 7b) possessed higher Li2S precipitation capacity than pure MXene (blue 
region in Figure 7b), which revealed that SA-Zn-MXene accelerated the nucleation process 
of solid Li2S2/Li2S. The electrode with SA-Zn-MXene as the sulfur host still had a specific 
capacity of 706 mAh·g−1 at 1 C for 400 cycles, which was much better than the pure MXene 
electrode (Figure 7d). 

 
Figure 7. (a) Synthesis of SA-Zn-MXene@S cathode. (b) Potentiostatic nucleation profiles of 
Li2S2/Li2S on SA-Zn-MXene and MXene at 2.05 V. (c) Binding energies between LiPSs and SA-Zn-

Figure 6. Preparation of crumpled N-Ti3C2Tx/S cathode (a), SEM images (b,c) and its 1000 cycles test
at 2C (d) [95]. Copyright 2018, John Wiley and Sons. Synthesis diagram of P-NTC (e) and 1200 cycles
of S/P-NTC test at 2C (f) [96]. Copyright 2020, Elsevier.

In addition to non-metal elements, metal elements have been used as catalysts to
promote the kinetics of redox reactions. For example, nickel (Ni) atoms were introduced
into the graphene skeleton as electrocatalysts to accelerate the liquid–solid phase transition
among polysulfides [97]. Iron (Fe) atoms were introduced into the N-doped graphene
skeleton to form Fe-N bonds and promote the deposition of solid-state Li2S2 and Li2S [98].
In the MXene skeleton, the doping of metal atoms could be achieved using the Lewis acidic
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molten salt replacement method mentioned in the previous section on the synthesis strategy.
Molten zinc chloride (ZnCl2) displaced the Al atoms in Ti3AlC2 to form single atom zinc
implanted MXene (SA-Zn-MXene) (Figure 7a) [99]. Attributed to the electronegativity
of Zn, the binding energy of SA-Zn-Mxene to all LiPSs was higher than that of pure
Ti3C2Tx to all LiPSs (Figure 7c). In particular, the potentiostatic nucleation profile analyses
of SA-Zn-MXene and MXene showed that MXene with Zn atom doping (red region in
Figure 7b) possessed higher Li2S precipitation capacity than pure MXene (blue region
in Figure 7b), which revealed that SA-Zn-MXene accelerated the nucleation process of
solid Li2S2/Li2S. The electrode with SA-Zn-MXene as the sulfur host still had a specific
capacity of 706 mAh·g−1 at 1 C for 400 cycles, which was much better than the pure MXene
electrode (Figure 7d).
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All the above examples demonstrate the adsorption as well as the catalytic con-
version ability of heteroatom-modified MXene on LiPSs. Although different functional
groups have been available on the surface of MXenes to adsorb LiPSs, the study of other
heteroatom-modified MXenes cannot be ignored. Both theoretical studies and experimental
demonstration of the application of modified MXene in LSBs are still lacking.

3.1.3. MXene-Based Composites as Sulfur Hosts

Despite the strong chemisorption of MXene terminations to LiPSs, it is not negligible
that van der Waals interactions cause the monolayer MXene sheets to restack, leading to
a significant loss of their SSA as well as a decrease in termination utilization. Therefore,
compounding of MXene with other materials is needed to reduce its tendency for restacking.
Among many materials, the conductive carbon material has the advantage of a large SSA
and strong mechanical stability that can load more sulfur as well as ease the expansion of
the electrode, even though its interaction with LiPSs is limited. Moreover, the insertion
of the conductive carbon material into the MXene interlayer channel effectively prevents
its restacking.

Graphene, as a representative of carbon-based 2D materials, is an excellent choice
for composite materials. The Ti3C2Tx solution after HF etching was washed by graphene
oxide (GO), and then Ti3C2Tx and reduced graphene oxide complex (Ti3C2Tx/rGO) were
obtained by reduction with hydrazine hydrate and sonication. The capacity of the sulfur
cathode obtained after liquid-phase carbon disulfide (CS2) dissolution of sulfur at 0.5 C for
300 cycles was only reduced to 265.8 mAh·g−1, which was much better than that for the
restacked Ti3C2Tx cathode [100]. Secondly, graphene can be utilized as 2D nanosheets. By
hydrothermal reaction, GO solution can be reduced to rGO aerogel. rGO aerogel with a 3D
porous structure was a good sulfur host. It was difficult for MXene to form a 3D structure
alone. With the advantage of the 3D rGO aerogel, Ti3C2Tx was compounded with GO
to make Ti3C2Tx nanosheets uniformly stacked on rGO to form MXene/rGO composite
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aerogel (Figure 8a). The cell with this as the sulfur cathode decayed only 0.07% per cycle
on average over 500 cycles of 1 C (Figure 8b) [101].
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Figure 8. Preparation of MX/G aerogel sulfur cathodes (a) and their testing at 1 C for 500 cycles (b) [101].
Copyright 2019, Royal Society of Chemistry. (c) SEM image of N-Ti3C2@CNT microspheres [102]. Copy-
right 2019, Springer. SEM image of hollow Co-CNT@MXene microspheres (d) and the fabrication process
of their supported sulfur cathodes (e). The adsorption test of LiPSs by hollow Co-CNT@MXene micro-
spheres, after 60 min the LiPSs solution of hollow Co-CNT@MXene microspheres became obviously
clearer than the LiPSs solution of graphene (f) [103]. Copyright 2020, Elsevier.

Futhermore, carbon nanotube (CNT) additives are highly conductive carbon materials
that prevent MXene from restacking. Wang et al. synthesized microspherical MXene/CNT
host material by spray drying and one-step pyrolysis [102]. CNTs were uniformly grown
on the surface of MXene during pyrolysis and interspersed in the MXene nanosheets.
To enhance the chemisorption of the material, N atoms were also doped in the material
using melamine as the nitrogen source to form N-doped MXene and CNTs microspheres
(N-Ti3C2@CNT). The microspheres were internally connected by N-Ti3C2 and N-CNT to
form a 3D porous conductive structure, which increased the electron transfer rate and SSA.
LiPSs was confined within N-Ti3C2@CNT microspheres during the redox reaction, and
their sulfur electrodes exhibited an initial discharge specific capacity of 1399.2 mAh·g−1 at
0.1 C. Also using MXene as a scaffold for the microsphere structure (Figure 8c,d), Zhao and
co-works prepared CNT@MXene precursors by growing zeolitic imidazolate frameworks
(ZIF) on N-MXene material and the precursors were successfully prepared as hollow
cobalt-doped CNTs and Ti3C2Tx composites (hollow Co-CNT@MXene) after pyrolysis
(Figure 8e). The Co nanoparticles encapsulated within the CNT synergistically adsorbed
LiPSs with the Ti3C2Tx terminations, which made the Li2S8 solution clear quickly (Figure 8f).
Meanwhile, the Co-CNT@MXene/S shows a capacity retention of 85.8% after 170 cycles
at 0.2 C (Figure 9a) [103]. The above two examples of CNT@MXene were not enough to
guarantee the success rate of CNT-limited MXene restacking, and the advantage of its
better performance might be derived from the doping of N or Co atoms and its unique
microsphere structure. Specifically, the surface curvature of CNT was high enough that
it interspersed with the MXene nanosheets and effectively limited the amount of MXene
restacking. Carbon fiber (CF) could overcome this disadvantage. A 10µm diameter CF
compounded with MXene could better limit its stacking tendency. In addition, CF has
high fiber ductility and is able to maintain the integrity of the electrode structure. In
terms of performance, the cathode with 4 mg·cm−2 sulfur loading (Ti3C2@CF-S) shows
a first discharge specific capacity of 1175.2 mAh·g−1 at 0.5 C, which was better than that
of CNT [104].
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Recently, the compounding of MXene with transition metal sulfides and oxides has
received increasing attention. Sulfides provide corresponding chemisorption sites for LiPSs,
which has long been studied in graphene-based sulfur cathodes [26,107], but has just begun
in MXene-based sulfur cathodes. Guo et al. investigated the performance of MXene and
molybdenum disulfide (MoS2) composite sulfur cathode (MXene/1T-2H MoS2-C-S) in a
soft-pack battery [105]. The prepared MoS2 was nanoflower-like, which was uniformly
attached to the surface of MXene and rich in defects (Figure 9b,c). The active sites generated
by these defects were the main reason for the inhibition of the diffusion of LiPSs. The
soft-pack battery with MXene/1T-2H MoS2-C-S cathode shows an initial discharge capacity
of 1014.1 mAh·g−1 at 0.5 C and maintains 799.3 mAh·g−1 after 300 cycles, showing excellent
cycling stability (Figure 9d). In the oxide direction, there are many studies on titanium
dioxide (TiO2). TiO2 has shown inhibition of LiPSs in several system studies [108,109].
It is well known that Ti3C2Tx MXene is easily oxidized to TiO2 in air. Thus, Wu et al.
successfully constructed irregular MXene/TiO2 heterostructures by in situ oxidation of
Ti3C2 nanosheets. After loading sulfur by a simple melt-diffusion method (MXene/TiO2/S),
sulfur was uniformly attached to the MXene/TiO2 heterostructure. The MXene/TiO2/S
cathode maintained a capacity of 774.7 mAh·g−1 at 2 C and recovered 1174.8 mAh·g−1

after returning to 0.1 C (Figure 9e), demonstrating excellent multiplicity performance [106].
Du et al. encapsulated sulfur in TiO2 hollow spheres and embedded them into Ti2C inter-
layers, this electrode maintained a capacity of 227.3 mAh·g−1 after 200 cycles at 5C [110].
Wen et al. used NH4BF4 /HCl etching to grow AlF3 nanoparticles on MXene and then
introduced Ni(OH)2 nanosheets as a physical baffle to hinder LiPSs; this cathode exhibited
an extremely low capacity decay rate in 1000 cycles of 1C (0.048% per cycle) [111].

Covalent organic frameworks (COFs), a new class of two-dimensional materials with
high specific surface area, have been extensively investigated in LSBs in recent years. A
novel two-dimensional sulfur host material (CTF/TNS) was constructed by Meng et al.
using the ordered porous structural characteristics of a COF and compounding it with
MXene. This material was able to maintain 94% capacity after 100 cycles at a high sulfur
loading of 5.6 mg·cm−2. This demonstrates that the CTF/TNS heterostructure plays an
exceptionally critical role in promoting Li+ diffusion and adsorption of LiPSs [112].

All the above studies showed that building sulfur hosts around MXene was an effective
strategy to boost the electrochemical performance of LSBs. The superior conductivity of
MXene enabled the cells to exhibit high-rate performance. Furthermore, its effective
terminations can effectively capture LiPSs. The disadvantage of the easy stacking of MXene
can also be solved to a great extent by introducing carbon materials or metal compounds.
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However, modified MXene has received little attention. Even Ti-based MXene, which
has been widely studied nowadays, has rarely been studied in doping. The electrical
conductivity of modified MXene with different atoms and the adsorption ability of the
surface terminations have not yet been clearly explained. Theory and experiments are
urgently required to demonstrate their potential.

3.2. MXenes as Interlayers

The separator, a key component in preventing internal short circuit and facilitating
ion diffusion, also affects the performance of the cell. Most of the separators used in
laboratory assembly of LSBs are polypropylene separators (PP), but their poor permeation
effect leads to slow kinetics of LiPSs. Introducing an interlayer between the cathode
and the separator for trapping LiPSs is an effective strategy to enhance the performance.
Independent interlayer films, double-layer cathodes and functional separators are examples
of interlayer applications. Some progress has been made in using MXene-based materials
as the interlayer materials of LSBs.

Pure MXene can be used as an interlayer due to the high conductivity and high adsorp-
tion terminations of MXene. The dispersion of Ti3C2Tx and ethanol was attached to the PP
separator by vacuum filtration to obtain an interlayer with a loading of 0.1 mg·cm−2. The
initial discharge capacity of LSBs with sulfur–carbon (S/C) material, with a sulfur loading
of 1.2 mg·cm−2, as the cathode reached 1246.3 mAh·g−1 at 0.2 C [113]. Subsequently, an
all-MXene-based integrated electrode (a-Ti3C2-S/dTi3C2/PP) was designed by Dong et al.
(Figure 10a). MXene was used as both the sulfur host and the interlayer and no Al collector
was used for the cathode. The functional separator was also prepared using the vacuum
filtration method with a loading of 0.4 mg·cm−2. The all-MXene-based integrated electrode
cell showed an excellent rate capacity of 288 mAh·g−1 at 10 C (Figure 10b) [114].
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Pure MXene shows limited adsorption ability on LiPSs. Its composite with nonpolar
carbon showed better performance in the sulfur host cathode. For the interlayer, Ti3C2Tx
and GO were vacuum filtered to obtain Ti3C2Tx/GO free-standing membranes. The ad-
dition of GO provided physical restriction for LiPSs and prevented the movement of Li+
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to the anode. Combining with the strong adsorption of MXene terminations on LiPSs,
the Ti3C2Tx/GO system restricted the diffusion of LiPSs from both physical and chemical
aspects. Cells with a Ti3C2Tx/GO interlayer show an ultra-high initial discharge capacity
of 1621.5 mAh·g−1 at 0.1 C [119]. CNTs have also been applied in the interlayer of LSBs
as one of the carbon materials capable of avoiding the restacking of Ti3C2Tx nanosheets.
Moreover, CNTs had the ability to enhance the electrical conductivity in the cross-sectional
direction of the MXene layer. Li et al. prepared Ti3C2Tx/CNT functional separators with
a mass loading of 0.016 mg·cm−2. The Ti3C2Tx/CNT functional separators doped with
only 10% CNT significantly outperformed the undoped CNT separators in the 1 C cycle
performance (Figure 10c) [115]. In other work, the loading of Ti3C2Tx/CNTs was boosted
to 0.16 mg·cm−2 but the MXene content was 5% of the total mass. Again, this work showed
better performance in 1 C cycling performance (Figure 10d) [116]. Recently, Ti3C2Tx/CNT
modified separators with about 10% CNT were also designed by Yang et al. for inhibiting
LiPSs and accelerating Li+ diffusion. The difference from the two previous studies was
that the Ti3C2Tx flakes were treated with different concentrations of copper sulfate solution
(CuSO4) to obtain materials with different pore densities and sizes, and the loading was fur-
ther increased to 0.5 mg·cm−2. The PM (0.4 M)-CNT interlayer (0.4 M = Cu+ concentration)
did not show better long-cycle performance than the above work at 1 C (Figure 10e) [117].

TiO2/Ti3C2Tx composites have been widely noticed. By controlled oxidation of
Ti3C2Tx, the terminal F was replaced by O to form the TiO2-MXene heterostructure
(Figure 10f). TiO2 maintained the 2D structure in the heterostructure to provide a large SSA
and catalyzed the conversion of LiPSs. The TiO2-MXene heterostructure was mixed with
graphene to form the Ti3C2Tx(0,2,4,6,8h)-GN interlayer (0, 2, 4, 6, 8 h was the oxidation
time). LSBs with this as an interlayer exhibit a high capacity of 800 mAh·g−1 at 2 C and a
capacity decay rate of only 0.028% over 1000 cycles (Figure 11a) [118]. In addition, besides
controlled oxidation, sulfation of MXene has been investigated. The sandwich structured
TiS2-TiO2/Mxene interlayer (TOS/MX/TOS) was obtained by heating MXene membranes
and sulfur powder by inert gas in a tube furnace (Figure 11b). TiO2 acts as an adsorbent
for LiPSs. TiS2 acts as a catalyst for the redox reaction and MXene provides high electrical
conductivity and high SSA. LSBs with the synergistic effect of the three were up to 76.1%
capacity retention at 1 C for 500 cycles (Figure 11c) [120].
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In recent years, COFs based on guanidinium salts have attracted attention due to
their strong covalent bonds and abundant pore channels [108,109]. It has been proposed
that guanidinium salts could adsorb polysulfides due to electrostatic interactions [122].
Li et al. treated ionic covalent organic nanosheets (iCON) based on guanidinium salts
as composites to avoid Ti3C2 restacking and trapping LiPSs (Ti3C2@iCON) (Figure 11d).
Ti3C2@iCON was uniformly attached to the PP separator with a loading of 0.1 mg·cm−2 by
the vacuum filtration method. The LSBs with CNT/S as the cathode and Ti3C2@iCON-PP
as the separator exhibited lower charge transfer resistance (Figure 11e) and a capacity
decay rate of 0.006% at 2000 cycles at a large rate current of 2 C, with the capacity only
decaying from 810 mAh·g−1 to 706 mAh·g−1 (Figure 11f) [121]. This study demonstrates
that the development of ultra-long-life LSBs can be realized. Futhermore, polymers can
also be used as intercalation materials between MXene sheets to facilitate Li+ transport,
and the MXene/Nafion-modified separator designed by Wang et al. was able to provide
794 mAh·g−1 capacity at 3 C [123].

All of the above studies have shown that MXene materials can significantly improve
the electrochemical performance of LSBs whether they are used for sulfur hosts or inter-
layers (Table 1). Unfortunately, the MXene-based materials do not have much advantage
over the performance exhibited by carbon-based materials for sulfur hosts and interlayers.
Therefore, it is urgent to explore other MXene members that inhibit the shuttle effect more
significantly and catalyze the conversion of LiPSs more efficiently.

Table 1. Electrochemical performance of MXene-based cathodes and modified separators in LSBs.

Cathode Separator
Sulfur

Loading
(mg·cm−2)

Sulfur
Content
(wt.%)

Initial Capacity
(mAh·g−1)/Rate

Retain Capacity
(mAh·g−1)/Cycles/Rate

Rate Capacity
(mAh·g−1)/Rate Ref.

70S/d-Ti2C PP 1 70 1200/0.2 C 723/650/0.5 C 660/4 C [53]
S/L-Ti3C2 PP - 57.6 1291/200 mAh·g−1 970/100/200 mAh·g−1 620/3200 mA·g−1 [88]

Ti3C2Tx foam/S-1.5 PP 1.5 - 1226.4/0.2 C 375.8/1000/1 C 711/5 C [89]
Ti3C2Tx/S paper PP 1.88–2.26 - 1383/0.1 C 923.51/1500/1 C 1075/2 C [90]

S@Ti3C2Tx ink PP - 50 1350/0.1 C 1170/175/2 C 1161/2 C [91]
crumpled N-Ti3C2Tx/S PP 1.5 - 1144/0.2 C 610/1000/2 C 770/2 C [95]

S/P-NTC PP 1.4–1.6 80 1072/0.5 C 360.47/600/5 C 792/3 C [96]
S@SA-Zn-MXene PP 1.7 90 1136/0.2 C 706/400/1 C 517/6 C [99]

Ti3C2Tx/RGO PP 1.5 70.4 1190.2/0.2 C 878.4/300/0.5 C 750/5 C [100]
MX/G-30 PP 1.57 45 1259/0.1 C 596/500/1 C 977/1 C [101]

N-Ti3C2 MXene@CNTs/S PP 1.5 70 1339.2/0.1 C 775/1000/1 C 640.5/4 C [102]
Co-CNT@MXene/S PP 2–2.5 70 1210/0.2 C 401.85/840/1 C 765/1 C [103]

Ti3C2@CF-S PP 4 - 1512.7/0.1 C 459.6/1000/2 C - [104]
MXene/1T-2H MoS2-C-S PP 2–4 79.6 1194.7/0.1 C 799.3/300/0.5 C 677.2/2 C [105]

MXene@TiO2/S PP 1.2 75 1481.5/0.5 C 612.7/500/2 C 774.7/2 C [106]
S/CB MXene-PP 1.2 68 1046.9/0.2 C 550/500/0.5 C 743.1/1 C [113]

a-Ti3C2-S d-Ti3C2/PP 0.7–1 - 1062/0.2 C 632/50/0.5 C 288/10 C [114]
CNTs/S Ti3C2Tx/GO@PP 3–4 70 1621.5/0.1 C 575.7/200/1 C 640/5 C [119]

S/CNTs Ti3C2Tx/CNTs
10%-PP 1.2 70 ≈1100/0.1 C 640/200/1 C 640/2 C [115]

S/CNTs CNTs/MXene-PP 0.8–2.5 70 1415/0.1 C 614/600/1 C 728/2 C [116]
S/KB PM (0.4 M)-CNT 0.91 85 1105/0.1 C 535/500/1 C 677.6/2 C [117]

S/CMK-3 Ti3C2Tx (4 h)-GN 1.2 70 800/2 C 576/1000/2 C 663/2 C [118]
- TOS/MX/TOS - - 961.7/0.2 C 632.8/500/1 C 804.5/1 C [120]

CNT/S Ti3C2@iCON-PP 1.2 - 1417/0.05 C 706/2000/2 C 687/5 C [121]

4. Summary and Future Perspectives

MXenes have evolved rapidly in recent years and several synthetic methods have
been developed for etching MAX precursors. The etch-exfoliated MXenes show metal-level
conductivity and larger SSA, which endows MXene with multi-industry applications.
Unlike 2D carbon materials, 2D MXene contains abundant terminations, e.g., -O, -F, -OH,
etc. These functional groups have different advantages in different fields. In LSBs, surface
terminations of MXene show a strong trapping ability for LiPSs, which is significant in
suppressing the shuttle effect. When MXene is used as a cathode host for LSBs, its large
SSA can increase the load of sulfur. On the one hand, its metal conductivity improves the
utilization of sulfur, on the other hand, it realizes high-rate LSBs by providing a high-speed
electronic transmission network. When MXene is used as an intermediate layer, it shows
the effect of inhibiting LiPSs migration, the terminal functional groups block LiPSs within
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the cathode region by strong chemical bonding, which can suppress the notorious shuttle
effect. Chemically modified MXene or MXene composites can even catalyze electrochemical
kinetics. In view of the above properties, MXene-based LSBs have made good progress.
Nevertheless, they still face serious challenges to commercialization.

1. Various preparation methods have been developed for the most studied Ti-based
MXene so far, including HF etching, fluorine salt etching, electrochemical etching,
molten salt replacement, etc. The properties of MXene, such as conductivity, terminal
adsorption and structural diversity can be achieved by changing the preparation
route. Among the LSBs, only HF and LiF/HCl have been widely used. The remaining
etching methods lack profound studies on the modification of MXene properties,
especially for MXene surface termination properties, which have a significant impact
on the inhibition of the LSBs shuttle effect.

2. After exfoliation, the monolayer MXene is easy to oxidize due to the exposure of
surface metal atoms and will also self-restack due to van der Waals interaction forces.
Whether it is the cathode or the interlayer of LSBs, the preparation process is in-
dispensable to contact with air. The restacking of MXene results in a smaller SSA,
which leads to the agglomeration of the active material sulfur loaded on the MXene
sheet layer and the reduced sulfur utilization will directly lead to the reduction of the
battery cycle life.

3. The surface terminations of MXene, -OH, -F, -O and -Cl, have been shown to have the
ability to adsorb LiPSs as well as having catalytic activity. However, the principles of
their specific adsorption mechanisms are still under researched. Advanced techniques
such as theoretical calculations, in situ characterization and COMSOL simulations are
effective ways to solve these problems. Moreover, the precise control of the functional
groups during the synthesis of MXene is difficult. How to enhance the adsorption of
controllable terminations on LiPSs, without losing the high conductivity of MXene is
a more severe challenge.

4. Modified MXene is underused in LSBs. Modified carbon-based materials have been
shown to be effective in enhancing the electrochemical properties of LSBs. Heteroatom
modification makes the electrical conductivity, mechanical properties and easy oxida-
tion of MXene change to a certain extent. It interacts with LiPSs in a different way. It
is necessary to explore the mechanism of modified MXene in the sulfur host of LSBs
as well as in the interlayer.

5. The number of precursor MAX phases is up to more than 100, while only thirty kinds
of MXene have been successfully etched, and there are even fewer MXene that can be
exfoliated into monolayers; only Ti-based MXene has been widely studied in LSBs.
Thus, our current knowledge of the MXene family is only limited to the surface, and
there is still a very broad research space to be developed.

In conclusion, accelerating the application of other Ti-based Mxene preparation meth-
ods in LSBs, overcoming the oxidation as well as the restacking problems of MXene,
advancing the development of modified MXene and expanding new MXene members are
challenges that we should overcome. Therefore, the application of the MXene family in
LSBs is still in the preliminary stage, which is an extremely promising direction.

Finally, to realize the commercial application of high-energy-density LSBs, it is not
enough to limit the performance study to conventional buckle batteries in the laboratory.
In today’s lithium-ion battery market, soft-pack batteries are known for their high market
share, and soft-pack batteries can maximize the battery energy density. Consequently, it is
necessary to study the performance of soft-pack LSBs. Moreover, cost is also one of the most
important factors for the commercialization of LSBs. Accurate and detailed cost projections
for LSBs are necessary. Sgroi et al. previously conducted an extremely detailed analytical
study on the cost of each module component of direct methanol fuel cells (DMFC) in 2016,
and this study provided a detailed cost report for the large-scale production of DMFC,
which accelerated its commercialization process [124]. In the field of LSBs, a detailed
cell cost analysis report is also urgently needed to enhance their commercialization. It
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is worth noting that there is an extreme lack of LSB cost analysis studies. Based on this
situation, in terms of battery performance, a rational design of the cell structure is needed
to improve the cycle life and multiplier performance of LSBs from various aspects, such as
sulfur surface density, sulfur content, liquid-sulfur ratio and sulfur utilization. In terms of
cost, detailed prediction and evaluation of cathode sulfur loading, sulfur-to-carbon ratio,
anode lithium metal quality and electrolyte material costs are needed to better promote the
commercialization of LSBs.
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Abbreviations

LIBs lithium-ion batteries
LSBs lithium sulfur batteries
2D two-dimensional
DFT density functional theory
SSA specific surface area
PVD physical vapor deposition
GO graphene oxide
rGO reduced graphene oxide
CNTs carbon nanotubes
ZIF zeolitic imidazolate frameworks
CF Carbon fiber
COFs Covalent organic frameworks
PP polypropylene separators
S/C sulfur-carbon
iCONs ionic covalent organic nanosheets
DMFC direct methanol fuel cells
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