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Abstract: Chronic pain is a widespread disorder affecting millions of people and is insufficiently
addressed by current classes of analgesics due to significant long-term or high dosage side effects.
A promising approach that was recently proposed involves the systemic inhibition of the voltage-
gated sodium channel Nav1.7, capable of cancelling pain perception completely. Notwithstanding
numerous attempts, currently no drugs have been approved for the inhibition of Nav1.7. The task
is complicated by the difficulty of creating a selective drug for Nav1.7, and avoiding binding to the
many human paralogs performing fundamental physiological functions. In our work, we obtained a
promising set of ligands with up to 5–40-fold selectivity and reaching 5.2 nanomolar binding affinity
by employing a proper treatment of the problem and an innovative differential in silico screening
procedure to discriminate for affinity and selectivity against the Nav paralogs. The absorption,
distribution, metabolism, and excretion (ADME) properties of our top-scoring ligands were also
evaluated, with good to excellent results. Additionally, our study revealed that the top-scoring ligand
is a stereoisomer of an already-approved drug. These facts could reduce the time required to bring a
new effective and selective Nav1.7 inhibitor to the market.

Keywords: in silico drug discovery; analgesia; voltage-gated sodium channel; selectivity; paralogs;
pore blocking; ADME; chronic pain; monogenic pain disorders

1. Introduction

According to a 2016 estimate, approximately 50 million individuals in the United States
suffer from chronic pain, representing 20.4% of the adult population, a figure which likely
extends to hundreds of millions globally [1]. Although the majority of these individuals
are able to achieve reasonable pain suppression with current analgesics, the long-term
side effects are significant. A 2006 study found that 40% of chronic pain sufferers had
insufficient pain management and 19% had persistent pain of moderate to severe intensity,
which had a significant impact on the patient’s personal life and ability to work [2].

Currently available analgesics include natural and synthetic opioids, paracetamol and
non-steroidal anti-inflammatory drugs (NSAIDs), some gabaergic drugs, some steroidal
compounds and some antidepressants. However, all these classes of drugs have restric-
tions on their use due to their metabolism and/or significant side effects. In this context,
inhibiting a new biological pathway associated with pain would be extremely beneficial
in therapy, with the added benefit of hypothetically allowing for combined approaches,
but new receptors representing new targets for drug design and development of molecu-
lar compounds are needed. Recently, the utilization of genes that cause rare monogenic
disorders as therapeutic targets has sparked considerable interest and is expected to be a
promising strategy [3].

In this context, it was observed that individuals carrying a mutation in the voltage-
gated sodium channel alpha subunit 9 (SCN9A) gene (ID 603415), which results in a voltage-
gated sodium channel (Nav) 1.7. loss-of-function, suffer from congenital insensitivity
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to pain (CIP) (OMIM #243000), a rare autosomal recessive disorder in which affected
individuals are unable to perceive pain from birth to death. CIP insensitivity to pain
and comorbid anosmia are the only manifestations of the condition. On the contrary, an
excessive Nav1.7 activity, as occurs in erythermalgia (OMIM #133020), results in an acute
burning sensation in response to modest heat, further confirming the role of Nav1.7 in pain
sensitivity. This makes Nav1.7 an intriguing target for the development of novel analgesic
agents and it has been speculated that targeting and inhibiting wild-type Nav1.7 by a
ligand should theoretically completely and safely relieve pain while avoiding serious side
effects [4,5].

Nav1.7 is a member of the Nav family of large membrane proteins that regulate
potential initiation and propagation in excitable cells: under stimulus, these proteins
allow Na+ to enter the cell, resulting in depolarization. Structurally, the proteins of this
family are composed of a pore-forming α subunit (260 kDa) coupled with one or more β

subunits (33–36 kDa) [6]. Nine α subunit isoforms (Nav1.1–1.9) have been identified and
functionally characterized [7]; another closely related isoform, Nav2.1 or Nax, is a Na+
channel that has lost its voltage-gated character during evolution, acquiring a concentration-
sensitive mechanism [8]. Nav1.7 is expressed specifically in the involuntary nervous system,
precisely in nociceptive dorsal root ganglion (DRG) neurons and sympathetic ganglion
neurons at the nociceptor nerve endings. Stimulation of these endings induces a transient
depolarization of the neuronal membrane that is amplified by the Nav1.7 channel up to a
certain threshold, causing the neuron to fire [9]. Recently, it was shown [10] that analgesia
caused by Nav1.7 deletion is dependent on the inhibition of neurotransmitter release, and
the lack of Nav1.7 does not impair peripheral excitability, while it greatly reduces synaptic
transmission from central nociceptors in the spinal cord. This central mechanism is opioid-
dependent, can be reversed by central application of opioid antagonists (i.e., naloxone),
and involves analgesia only, with anosmia being opioid-independent. For this reason,
a synergistic combination of highly specific Nav1.7 antagonists with opioids has been
suggested [11,12]. It should be noted, however, that the above mechanism might not
be universally accepted as other researchers were able to achieve a virtually complete
analgesia by using a Nav1.7 inhibitor compound that has only peripheral effects [13].

The design of a compound that binds the Nav1.7 isoform may be of great value in
therapy; however, the structural similarity of the isoforms may result in the cross-binding
of non-specific compounds possibly leading to serious side effects. The members of this
family that are expressed in the central nervous system appear to regulate a neuronal
balance and it was recently postulated that Nav1.1 and Nav1.6 constitute two opposing
sides of a neuronal balance between inhibition and activation [14]. In Dravet Syndrome
(DRVT) (OMIM #607208), a severe form of drug-resistant epilepsy, the loss of function
mutations of the SCN1A gene affect Nav1.1 and lead to a lack of neuronal inhibition in
GABAergic interneurons resulting in neuronal hyperactivity. In a preclinical DRVT model,
this could be treated either by Nav1.1 selective activators or Nav1.6 selective inhibitors, in
order to restore the delicate neuronal balance [14]. In this regard, we anticipate here that
the lead compound identified in this work exhibits a higher than 30-fold selectivity against
the likelihood of inhibiting Nav1.1, as shown in the Results section. Another crucial and
delicate isoform is Nav1.5, the isoform responsible for the initial upstroke of the action
potential in cardiac tissue [15,16]. Similarly, significant suppression of this isoform would
be unacceptable, and also in this case, we anticipate a high selectivity by the lead compound
identified in this work against such a possibility.

Several previous attempts to develop effective analgesic drugs by inhibiting Nav1.7
have been made, but none has been licensed for human use. Some of these are listed below.

• JNJ63955918 is a synthetic version of a tarantula venom peptide that shares portions
of its structure. Highly selective for Nav1.7, it has shown profound pain inhibition
efficacy at well-tolerated doses in rats [17], and is unique because it binds the closed
form of the protein.
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• DS-1971a, a powerful and selective Nav1.7 inhibitor characterized by a sulfonamidic
moiety, has shown strong effectiveness in animal models (i.e., mice and cynomolgus
monkey) of neuropatic pain in preclinical studies [18]. Safety pharmacology and
chronic toxicity studies, conducted in vivo by up to 1000 mg/Kg and up to nine
months DS-1971a administration, demonstrated that the compound did not induce
any adverse effects. Human safety and tolerability [19] and dose study [20] trials were
performed but the results have not yet been published.

• Ralfinamide [21] differs from the two compounds above by acting on multiple re-
ceptors, including Nav1.7, and is therefore not selective for Nav1.7. Ralfinamide has
already successfully completed the phase 2 clinical trial [22]; however, it subsequently
failed phase IIb/III trial due to back pain [23]. A phase 3 trial for neuropathic pain is
still ongoing [24] and seems promising based on animal studies [23,25].

• An epigenetic approach to Nav1.7 inhibition was attempted [26] by using CRISPR-dCas9
and zinc fingers to epigenetically repress Nav1.7 in animal models, it was possible to
obtain long-lasting analgesia, reduce thermal hyperalgesia, and reverse chemotherapy-
induced chronic pain, without observable changes in motor function.

• Spider toxin µ-theraphotoxin-Pn3a is a selective inhibitor of Nav1.7 [11] whose anal-
gesic effect was verified by Mueller et al. [12] using a mouse model, both with local and
systemic administration. The toxin demonstrated strong anti-allodynic effects in acute
post-surgical pain, and showed a superadditive effect with both the opioid oxycodone
and the agonist GABA-B Baclofen, while naloxone inhibited its effects, demonstrating
involvement of the endogenous opioids in the functioning of µ-theraphotoxin-Pn3a.

• In one paper [13], some benzoxazolinone aryl sulfonamides related to Nav1.7 and
selective against Nav1.5 were tested in vitro and in vivo. The in vivo mouse test for the
authors’ compound number 17 demonstrated strong and virtually complete inhibition
of pain in a formalin paw assay, both for subcutaneous and oral administration,
although the dose required to achieve such inhibition appears to be high. Notably, the
compound was peripherally restricted and therefore had no effect on the CNS.

These promising earlier works appear to indicate that approaching analgesia through
the inhibition of Nav1.7 is indeed possible.

2. Results

In order to facilitate a sequential reading of this article, we will briefly summarize
here some concepts from the Materials and Methods and Discussion sections that may be
useful for interpreting the results. For this research, we applied a novel differential virtual
screening procedure to selectively block the Nav1.7 target for analgesia purposes. The
virtual screening target was selected as the pore of the Nav channel proteins 1.1, 1.2, 1.4,
1.5, 1.7 with the first four serving as Negative Targets and Nav1.7 as Positive Target for the
differential screening. For each ligand, the numerical affinity results obtained by docking
against these structures are compared to obtain a measure of selectivity. From the affinity
and selectivity measurements, we derive AS_score with a formula that is approximately
−affinity×selectivity, a quantity that is used as a ranking in this research work to find
ligands that simultaneously have good affinity and good selectivity, giving equal weight to
the two features. An ADME analysis is also performed for the top-scoring ligands. Given
the complexity of the procedure followed, we refer to the Materials and Methods and
Discussion sections for details.

Tables 1 and 2 report the final results for the virtual screening calculation, showing the
best 20 ligands found.

The affinity against the five targets, the best negative target (NT) affinity, the selectivity
and the AS_score (see the Discussion section for the definitions), of the best ligands from our
computation are listed in Table 1. Table 2 contains the SMILES strings for such compounds.

The 20 top scoring ligands are represented in Figure 1.
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Table 1. Final virtual screening results. Measurement units for columns 3 to 9 are kcal/mol, last
column is in kcal2/mol2. Columns 3–6 report the affinity values of the compounds against the
Negative Targets Nav1.1, Nav1.2, Nav1.4, Nav1.5; Column 8 is the affinity value of the compounds
against the Positive Target Nav1.7; Column 7 is the best value from columns 3–6; Column 9 is the
difference between Column 8 and Column 7; Column 10 is the AS_score approximately equal to
−col8×col9 (see Discussion section for the proper definition). Ranking is by AS_score.

Rank Nav1.1aff Nav1.2aff Nav1.4aff Nav1.5aff Best_NT_aff Nav1.7aff Selectivity AS_Score

ZINC000004073908 1 −9.267810 −9.861835 −10.271330 −9.100430 −10.271330 −11.295949 −1.024619 −11.574045
ZINC000026500865 2 −10.124042 −10.160164 −10.167982 −9.642671 −10.167982 −11.000865 −0.832883 −9.162432
ZINC000097978320 3 −10.151968 −10.040705 −10.318269 −9.648543 −10.318269 −11.066463 −0.748195 −8.279869
ZINC000066054853 4 −9.406034 −9.650142 −9.669319 −8.468196 −9.669319 −10.457479 −0.788159 −8.242159
ZINC000551876670 5 −9.570515 −9.702531 −9.458369 −8.799217 −9.702531 −10.417365 −0.714834 −7.446689
ZINC001065149093 6 −7.405717 −7.432326 −7.980913 −7.507424 −7.980913 −8.726273 −0.745359 −6.504209
ZINC000333566284 7 −5.905749 −5.838212 −5.908603 −5.783346 −5.908603 −6.843217 −0.934615 −6.395771
ZINC000143460179 8 −8.608278 −8.117563 −8.810167 −8.102057 −8.810167 −9.464184 −0.654016 −6.189732
ZINC000136328316 9 −8.542331 −9.541473 −9.553011 −9.110066 −9.553011 −10.160188 −0.607177 −6.169030
ZINC000388914704 10 −8.134428 −7.945611 −7.901132 −7.809019 −8.134428 −8.829168 −0.694740 −6.133979
ZINC000004721063 11 −8.705332 −8.725003 −8.970100 −8.721251 −8.970100 −9.594739 −0.624639 −5.993244
ZINC000306588188 12 −6.317635 −6.545392 −6.513891 −6.546165 −6.546165 −7.347348 −0.801182 −5.886565
ZINC000307048803 13 −6.024336 −6.224265 −6.000527 −6.266380 −6.266380 −7.089138 −0.822757 −5.832639
ZINC000257345886 14 −8.598330 −8.502018 −8.803064 −8.814258 −8.814258 −9.409009 −0.594751 −5.596021
ZINC000306451241 15 −6.462030 −6.415341 −6.642433 −6.582372 −6.642433 −7.395166 −0.752733 −5.566587
ZINC000688277778 16 −7.826337 −8.124866 −8.148812 −8.006941 −8.148812 −8.777143 −0.628330 −5.514944
ZINC000038957963 17 −9.130526 −10.320339 −9.946248 −9.225662 −10.320339 −10.827887 −0.507547 −5.495666
ZINC000540981613 18 −7.828243 −7.830225 −8.068832 −8.116579 −8.116579 −8.744275 −0.627696 −5.488747
ZINC000529947512 19 −8.800838 −9.008982 −8.924126 −8.730454 −9.008982 −9.580667 −0.571685 −5.477122
ZINC000691799119 20 −6.776092 −6.853613 −6.591362 −6.814666 −6.853613 −7.567987 −0.714374 −5.406370

Table 2. SMILES for the compounds in Table 1.

Rank SMILES

ZINC000004073908 1 C[C@]12CC[C@@H]3[C@@H](C=CC4=CC(=O)CC[C@@]43C)[C@H]1CC[C@@]21CCC(=O)O1
ZINC000026500865 2 C[C@]12CC[C@@H]3[C@@H]([C@H]4C[C@H]4C4=CC(=O)CC[C@@]43C)[C@H]1[C@@H]1C[C@@H]1[C@@]21CCC(=O)O1
ZINC000097978320 3 C[C@]12CC[C@@H]3[C@@H]([C@H]4C[C@H]4C4=CC(=O)CC[C@@]43C)[C@H]1[C@@H]1C[C@@H]1[C@@]21CC[C@H](O)O1
ZINC000066054853 4 O=C1c2cc(Br)ccc2C[C@@]12CCc1ccccc1C2
ZINC000551876670 5 N#C[C@]1(NC(=O)[C@@H]2CC3CCC2CC3)CCc2ccccc2C1
ZINC001065149093 6 CC(C)(C)C(=O)[NH+]1CC[C@H]2CC[C@@H](C1)[NH+]2c1ccncc1C#N
ZINC000333566284 7 N=C1C[C@H]([NH3+])C(=O)[C@@H](O)[C@H]1O
ZINC000143460179 8 C[C@H]1C[C@]2(Cc3ccc(Br)cc3C2=O)C[C@@H](C)C1=O
ZINC000136328316 9 C[C@]12CC[C@H]3[C@@H](C[C@H](O)[C@H]4CC(=O)CC[C@@]43C)[C@@H]1CCC2=O
ZINC000388914704 10 CC1(C)CCC[C@](C#N)([C@@H]2C=CCCCCC2)C1=O
ZINC000004721063 11 C[C@]12CC[C@H]3[C@@H](C[C@H](O)[C@@H]4C[C@H](O)CC[C@]34C)[C@@H]1CCC2=O
ZINC000306588188 12 C[C@]1(O)[C@@H](O)[C@@H](O)[C@@H](O)[C@H](O)[C@H]1O
ZINC000307048803 13 O=C1[C@H]2CCCC[C@@H]1[C@@H](O)CCC2
ZINC000257345886 14 C[C@]12CC[C@@H](O)[C@@H](C[C@H]3[C@@H]1CC[C@@]1(C)CCC[C@H]31)C2=O
ZINC000306451241 15 C[C@]12C=CC[C@]13CCC[C@H]3CC2=O
ZINC000688277778 16 [NH3+][C@H]1CC2(CCC(F)(F)CC2)Oc2ccccc21
ZINC000038957963 17 CC1=C[C@H]2[C@@H]3CCC(=O)[C@@]3(C)CC[C@@H]2[C@@]2(C)CCC(=O)C=C12
ZINC000540981613 18 C[NH+](C(=O)N=c1cc[nH]cc1[N+](=O)[O-])C1CCC(C(C)(C)C)CC1
ZINC000529947512 19 CC1(C)[C@H](c2ccc(F)cc2)CC[NH+]1C(=O)c1n[nH]c2c1CCC2
ZINC000691799119 20 N#C[C@@H]1CCC[C@@H]1[C@]1(C(=O)[O-])CCCCC1=O

After the first few positions, the AS_score of the ligand decreases drastically, and
in fact for the ligands beyond the fifth ranked, we expect that a rather advanced ligand
optimization work would be required in order to obtain affinity and selectivity scores
sufficient for commercialization.

The first four ranked ligands have zero rotatable bonds; from the fifth, i.e.,
ZINC000551876670, we begin to notice the presence of rotatable bonds (the fifth with two,
the sixth with one). However, the group of zero rotatable bonds numerically dominates our
20 best ranked ligands. As expected, the least flexible ligands are among the most selective.

On average, these ligands have 3.5 rings, but they are predominantly non-aromatic
(0.45 aromatic rings on average in the best 20 ligands). The number of aromatic rings
increases in the first ranked positions reaching about 0.67 aromatic rings per ligand. The
average molecular weight is 282.51, but it is higher in the first ligands, reaching an average
of 337.18 for the first six ligands. Apart from a few compounds, the majority of them
contain nitrogen and/or oxygen atoms essential for H-bond interactions at the binding site.
However, hydrophobic interactions appear to predominate over polar interactions in the
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chemical structure of the selected compounds, thus suggesting the interaction of the ligands
with lipophilic pockets inside Nav1.7 protein. Indeed, the narrowest location within the
Nav1.7 protein pore, and thus the best location for blocking it, is the terminal part of the
pore at the intracellular side, a location where the protein surface is highly hydrophobic,
as will be shown later in this chapter.
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Figure 1. Best molecules at the end of computation.

Most of our lead compounds have good to excellent ADME properties.
Figure 2 depicts the SwissADME BOILED-Egg [27] diagram for our top 20 compounds.

The ligands are labeled according to their rank in Table 1 (note that compound 1, scarcely
visible, is superimposed to 2 and of the same color). With the exception of compounds
7 and 12, all are predicted to have high intestinal absorption, and with the exception of
compounds 6, 7, 12, 18 and 20, all are expected to cross the blood–brain barrier (BBB) and
exert their action on the central nervous system (CNS), in addition to peripherally.

Among those that do cross the BBB, compounds 1, 2, 8, 10, 13, 14, 15 and 17 are
projected to be non-p-glycoprotein substrates, i.e., unlikely to be eliminated from the CNS
via the membrane-bound ATP-driven p-glycoprotein pump, and this should reduce the
estimated systemic dose required to obtain therapeutic CNS concentrations.
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Table 3 summarizes the main physicochemical properties and predictions by Swis-
sADME. The full SwissADME analysis csv file for our top 20 ligands is available in Supple-
mentary Materials (the SMILES will appear different from those of Table 2, as they are due
to being rewritten by the internal SwissADME engine, but are equivalent).

Table 3. Physicochemical properties as computed by SwissADME. Most columns are unmodified
SwissADME columns, and in particular the BBB-permeant and Pgp (p-glycoprotein) substrate values
are the same values as can be inspected from the BOILED-egg diagram. The “Drug-likeness Score” in
this table is computed as the number of predictors that score positively for a certain molecule among:
Lipinski, Ghose, Veber, Egan and Muegge. The “Cytochrome inhibitions” represents the number of
Cytochrome P450 enzymes expected to be inhibited among CYP1A2, CYP2C19, CYP2C9, CYP2D6
and CYP3A4.

Molecule MW Csp3
Fraction MR TPSA XLOGP3 ESOL

Log S
GI

Absorption
BBB

Permeant
Pgp

Substrate

Cyto-
Chrome

Inhibitions

log Kp
(cm/s)

Drug-
Likeness

Score

Bio-
Availability

Score

Lead-
Likeness

#Violations

Synthetic
Accessibility

1 340.46 0.73 97.35 43.37 2.68 −3.64 High Yes No 1 −6.47 5 0.55 0 5.46
2 366.49 0.83 103.21 43.37 2.47 −3.67 High Yes No 0 −6.78 5 0.55 1 5.63
3 368.51 0.88 104.17 46.53 3.40 −4.27 High Yes Yes 0 −6.13 5 0.55 1 6.04
4 327.22 0.28 83.88 17.07 4.56 −5.19 High Yes Yes 3 −5.06 4 0.55 1 3.41
5 308.42 0.60 90.50 52.89 4.09 −4.32 High Yes Yes 2 −5.28 5 0.55 1 4.18
6 314.43 0.61 98.61 62.63 2.34 −3.26 High No Yes 0 −6.56 4 0.55 0 4.17
7 159.16 0.67 38.92 109.02 −2.46 0.72 Low No No 0 −9.02 3 0.55 1 3.00
8 321.21 0.50 78.66 34.14 3.52 −4.28 High Yes No 3 −5.76 5 0.55 1 3.86
9 304.42 0.89 86.03 54.37 2.26 −3.15 High Yes Yes 0 −6.55 5 0.55 0 4.00
10 259.39 0.76 78.56 40.86 4.79 −4.40 High Yes No 1 −4.48 5 0.55 1 3.92
11 306.44 0.95 86.99 57.53 2.35 −3.22 High Yes Yes 0 −6.50 5 0.55 0 4.19
12 194.18 1.00 40.66 121.38 −3.52 1.17 Low No Yes 0 −9.98 3 0.55 1 3.69
13 182.26 0.91 52.12 37.30 1.77 −2.09 High Yes No 0 −6.16 4 0.55 1 3.42
14 276.41 0.94 81.03 37.30 1.77 −2.09 High Yes No 0 −6.16 4 0.55 1 3.42
15 176.25 0.75 52.66 17.07 2.70 −2.63 High Yes No 1 −5.46 4 0.55 1 4.57
16 254.30 0.57 66.66 36.87 2.67 −3.35 High Yes Yes 0 −5.96 5 0.55 0 3.41
17 298.42 0.70 88.73 34.14 2.71 −3.40 High Yes No 1 −6.20 5 0.55 0 5.02
18 335.42 0.65 96.29 95.48 3.50 −3.98 High No No 1 −5.86 5 0.55 0 4.13
19 328.40 0.47 95.58 50.19 3.29 −4.09 High Yes Yes 0 −5.97 5 0.55 0 3.38
20 234.27 0.77 59.90 80.99 2.30 −2.61 High No No 0 −6.10 5 0.56 1 3.08
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All our top 20 compounds score positively for lead-likeness predictions on Lipinski,
Veber, and Egan rules, and all except compounds 4, 6, 7, 12, 13, 14, 15 also score positively
for Ghose and Muegge. Regarding lead-likeness by Teague et al. [28], 8 compounds are
positively predicted and 12 negatively predicted.

Figure 3 reports the radar plots for oral bioavailability of our top 20 ligands by
SwissADME. There is a minimal violation in compounds 4 and 15 for POLAR, and a
more significant violation in compounds 7 and 12 for LIPO. All other oral bioavailability
parameters are in range for all compounds.
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Overall, ADME predictions appear favorable for our top 20 ligands, and are partic-
ularly promising for our lead ligand ZINC000004073908, which is the first ligand in the
AS_score ranking in Table 1, and which also scores positively for all mentioned Swis-
sADME predictions: high GI absorption, positive BBB crossing, not a p-glycoprotein
substrate, all properties in range for oral bioavailability, zero violations in drug-likeness
predictions for Lipinski, Veber, Egan, Ghose and Muegge, and positive prediction for
Teague et al. lead-likeness.

Our best result is the ligand ZINC000004073908, which has a high affinity against Nav1.7
(∆G = −11.295949 kcal/mol) and which is a highly selective (∆∆G = −1.024619 kcal/mol).

The molar activity for ligand ZINC000004073908 at 25 ◦C can be calculated with the
equations and meaning of terms as described in the Materials and Methods. Here, we
apply Equations (14)–(16), substituting the following value from Table 1

∆G(ZINC000004073908) = −11.2959 kcal/mol (1)

resulting in
Kd(ZINC000004073908, 25 ◦C) ~= 5.248 × 10−9 (2)

At 25 ◦C, the Kd molarity equals 5.248 × 10−9; therefore, this is a 5.2 nanomolar
compound, officially in the low-micromolar, almost nanomolar range (nanomolar at 25 ◦C
would require ∆G ~= −12.3 kcal/mol).

Its selectivity expressed as the ratio of the Ka constants (selectivity coefficient) can be
calculated via (19) and (20), taking the following value from Table 1

sel_∆∆G(ZINC000004073908) = −1.024619 (3)

resulting in
sel_as_Ka_ratio(ZINC000004073908, 25 ◦C) ~= 5.637 (4)

thus, the ligand is at least 5.637 times more affine to Nav1.7 than to any of the other four
Nav sodium channel proteins; 5.637 being the worst case, which is for Nav1.4.

The selectivity coefficients against all the four negative target (Nt) protein channels
can likewise be evaluated explicitly by (17) and (18), substituting all the needed values
from Table 1, we obtain

∆∆G(ZINC000004073908, Nav1.1) = −2.028139 (5)

∆∆G(ZINC000004073908, Nav1.2) = −1.434114 (6)

∆∆G(ZINC000004073908, Nav1.4) = −1.024619 (7)

∆∆G(ZINC000004073908, Nav1.5) = −2.195519 (8)

and then
sel_as_Ka_ratio(ZINC000004073908, Nav1.1, 25 ◦C) ~= 30.665 (9)

sel_as_Ka_ratio(ZINC000004073908, Nav1.2, 25 ◦C) ~= 11.252 (10)

sel_as_Ka_ratio(ZINC000004073908, Nav1.4, 25 ◦C) ~= 5.637 (11)

sel_as_Ka_ratio(ZINC000004073908, Nav1.5, 25 ◦C) ~= 40.675 (12)

Coefficients of selectivity range between 5.637 times and 40.675 times. Specifically,
the important Nav1.5 isoform responsible for the initial upstroke of the action potential in
cardiac tissue [29,30] is well protected with an over 40-fold difference between the binding
ratio and molar activity.

While it is likely that even with these values it would not be possible to skip the ligand
optimization phase, we believe these values to be an excellent starting point.
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Figure 4A,B, respectively, show the LigPlot+ [31] depiction of the ligand ZINC000004073908
interactions, and the analogous visualization with ChimeraX [32] (cross-eye stereoimage),
in which we mapped the interactions as detected by PLIP [33].
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as detected by PLIP shown in ChimeraX 3D cartoon and stick representation (cross-eye stereoimage).

A large amount of hydrophobic interactions are detected by both software programs.
Since the hydrophobic interactions result from entropic changes rather than attractive forces
between atoms [34], these interactions are substantially broad and do not strictly depend
on the position of the side chain at any given instant, and thus they provide the compound
with considerable stability. LigPlot+ also detects an additional hydrophobic interaction
with Glu406 not detected by PLIP. There are no other types of interaction detected other
than hydrophobic, for this molecule.
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In the mapping that we have carried out towards ChimeraX of the PLIP output, it is
possible to precisely see the 15 nonbonded interactions. The amino acids that it interacts
with are: LEU398, ALA402, GLU406 (detected only by LigPlot+), PHE963, LEU964, LEU967,
LEU968, ILE1453 (2 times), ILE1457 (2 times), TYR1755, ILE1756, ILE1759 (3 times).

The cross-eye stereoimages shown in Figure 5A,B illustrate the ligand location relative
to the protein surface, depicted with hydrophobicity coloring, and the PLIP-detected
interactions as shown in Figure 4B. As can be noticed, the terminal section of the pore
exhibits a highly hydrophobic surface (gold color), which is leveraged by this ligand to
form such a high number of hydrophobic contacts.
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Figure 5. First-ranked ligand in its binding site as seen from outside the pore (A), from inside the
pore using a section plane in light gray color (B), laterally by sectioning the pore using a section plane
in light gray color (C), and as surface representation to confirm complete blocking of the pore (D)
(cross-eye stereoimages).

In Figure 5C, the positioning of the ligand within the pore is shown from the side via a
longitudinal section of the pore: the ligand is substantially facing the exit at the intracellular
side, while the rear part of the ligand shows a preference for arranging itself towards the
hydrophobic zone, avoiding the limited hydrophilic area available.

Figure 5D was used to assess the complete blockage of the Nav1.7 pore. The figure
shows the voltage-gated sodium channel pore-forming alpha subunit with the docked
ligand, both rendered in surface mode: the surface smoothly transitions from the protein to
the ligand without forming cavities that could indicate imperfect blocking. Color coding:
protein in grayscale, ligand with by-atom-type coloring.

3. Discussion
3.1. Minimization

Minimization has a significant impact on docking.
The presence of gravely incorrect positions of the atoms at the resolutions of our

source PDBs (around 3.00 Å) with numerous atomic clashes detected by modeling software,



Int. J. Mol. Sci. 2022, 23, 6793 11 of 20

results in unrealistically narrow spaces in some points of the protein surface, preventing
ligands from positioning themselves during docking, and excessively wide spaces in other
points, allowing poses of the ligand which would not be possible in reality.

In addition to this, proteins are highly flexible structures [35,36]; hence, the pres-
ence of any ligand in the coordinates acquisition phase, and therefore in this case of the
toxin Tetrodotoxin in 6J8I and of 9Z9 that is (3beta,14beta,17beta,25R)-3-[4-Methoxy-3-
(methoxymethyl)butoxy]spirost-5-en in most negative targets, generate short and long
range electrostatic changes in proteins, which are not suitable for another ligand, and if the
so-altered coordinates were used for a virtual screening skewed energies for the ligands
would result, skewed positively or negatively depending on the similarity of the ligand in
question with Tetrodotoxin or 9Z9.

All of the above artifacts generate ∆G energy skews that would be particularly nefari-
ous in this work, where we quantitatively measure the ligands’ selectivity through a ∆∆Gs
energy difference in these ligands against couples of receptors (between Nav1.7 and each
of the negative target proteins).

For these reasons, after removing all toxins and other ligands (9SR, NAG, 9Z9, Na+,
6OU) and keeping only the pore-forming alpha subunits, a deep minimization with infinite
cutoff was performed so that the overall structure of the five protein pores could be restored.

3.2. Docking

All dockings in this work were carried out using practically the same parameters,
except for a few cases explained here and in the Materials and Methods section.

As mentioned, our study aimed to find ligands with a high affinity and selectivity
against Nav1.7. In terms of affinity (∆G against Nav1.7), the score used is that of Smina,
which is identical to Vina, in the unit of measurement kcal/mol. Regarding the selectivity,
our method consists of computing the ∆∆G difference in affinity of a ligand between the
∆G against Nav1.7 and the ∆G against the negative targets. Due to the four negative targets,
there are four possibilities for ∆∆G: in this work, we choose the worst case (best Negative
Target ∆G, which results in the worst ∆∆G) among the 4 available, for each ligand. The
selectivity reported in this work is, hence, an upper bound (a lower bound in absolute
value). Note that the selectivity as defined by us has increasingly better values towards the
most negative values.

The quantity that is optimized in this work is the following product “−affinity× selectivity”,
defined for a ligand L as:

AS_score(L) =

{
−affinity(Nav1.7) · selectivity(L) if(affinity(Nav1.7, L) < 0) ∧ (selectivity(L) < 0)

0 otherwise
(13)

For the ligands of interest, AS_score is negative and is maximally negative for the
most interesting ligands, similarly to affinity and selectivity. For the cases of the ligands of
interest, AS_score is defined to give equal weight to affinity and to selectivity during the
ranking operations. For ligands with positive affinity or positive selectivity, AS_score is
defined to be zero, effectively excluding such non-interesting ligands from further searches
and refinements.

The ligands that had a high ranking obtained at low exhaustiveness, due to the fact
that a low exhaustiveness could produce unreliable affinity and selectivity, were refined
at a very high exhaustiveness level to prevent the presence of false positives among the
first ranked.

Regarding the choice of a different size of the docking boxes for the positive target
Nav1.7 as compared to the four negative targets (Nav1.1, Nav1.2, Nav1.4, Nav1.5), this
depends on the conservative approach that has been used in our work. It was not possible
to extend the docking box against the positive target up to 20 Å laterally, otherwise the
great majority of the best poses for all ligands would have been detected about midway
into the pore, where the sequences are less conserved, but, unfortunately, in that position,
the Nav proteins pores are very wide and a reasonably sized ligand fails to block the pore
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completely. The other possibility for making the two boxes equal was to restrict the docking
box against the negative targets to 7.5 Å laterally as it is for the positive target: in this
case, we would have risked obtaining falsely good results. This is due to the fact that
the docking software could have detected poor energies for a ligand against the negative
targets potentially because some atoms could not exactly fit into the narrow box in the
case of the negative targets; in this case, a good negative pose would have been discarded,
even though such a pose could acceptably block the pore, and a falsely high selectivity
(falsely good result) would have been registered. This would have required us to manually
validate a large amount of the top results to verify that those were not falsely good. Our
conservative approach, as described here, can instead potentially discard good results
(falsely bad ligands), but does not allow falsely good results to be produced. Apart from
the above reason for using two different box sizes, the docking boxes chosen are virtually
the largest boxes that could meaningfully be created in order to target the pore.

3.3. ADME Analysis

We believe the SwissADME radar plots can benefit from an additional explanation
beyond the one supplied by [37].

The pink region in the radar plots is the area for expected high oral bioavailability
of the molecule, and is declared to be plotted according to the following rules (taken
from [38,39] as originally cited in [37]):

• LIPO(Lipophilicity): −0.7 < XLOGP3 < +5.0;
• SIZE(Mol.Weight): 150 g/mol < MW < 500 g/mol;
• POLAR(Polarity): 20 Å2 < TPSA < 130 Å2;
• INSOLU(Insolubility): log_S > −6;
• INSATU(Insaturation): Csp3 fraction > 0.25;
• FLEX(Flexibility): num. rotatable bonds < 9.

However, the INSATU spoke as displayed in the plot appears to be the reciprocal of
the declared formula, 1/Csp3_fraction, so to transform the greater-than inequation in a
less-than inequation; this results in the pink region for INSATU being relocated towards
the center of the plot. Similarly, INSOLU plotting appears to have the signs flipped as
−log_S < 6 so to bring the pink region to the inside again.

Regarding the LIPO spoke, the depiction of the pink region is ambiguous because
it is highly discontinuous between the clockwise side of LIPO and the counterclockwise
side of LIPO, the counterclockwise side being much more tolerant to small values of LIPO
than the clockwise side of it. The correct reference pink region for LIPO is the one at the
clockwise side of LIPO (the strictest one). The pink region is again discontinuous and
hence ambiguous at POLAR; in this case, the clockwise side is tolerant to small values.
In the case of POLAR, the correct pink region to be used for reference is the one at the
counterclockwise side of POLAR (again the strictest one).

3.4. Further Insights on Methodology and Results

A further discussion of some intermediate or final results of the calculation is
presented below.

Figure 6A,B are scatterplots of affinity (against Nav1.7, implied) versus selectivity.
The best ligands are located at the lower left. Figure 6A (left) shows the scatterplot for
the dockings before the similarity search, while 6B shows it after the similarity search.
Red color represents refined values, which are always present for ligands with negative
selectivity and occasionally present for some ligands with positive selectivity. There are two
reasons for the presence of red dots in the positive selectivity zone: (1) because following
refinement, some ligands that had negative selectivity were recalculated as having positive
selectivity (due to new good poses found for the negative targets), and (2) because the
ligands in the negative selectivity zone were less than 1000; hence, our algorithm selected
additional points to refine, which were randomly located since AS_score is non-ordered
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in the positive selectivity zone. Such points mostly remain in the positive selectivity zone
after refinement.
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In pre-similarity docking, the presence of some interesting ligands is already appar-
ent, most notably a ligand with affinity approximately −11 (in fact −11.000865 is the
value from Table 1) and selectivity approximately −0.8 (in fact −0.832883). This ligand is
ZINC000026500865 which has AS_score −9.162432 ranked #2 in the final scoring.

The Tanimoto similarity search manages to interpose the ligands ranked #1
(ZINC000004073908), #3 (ZINC000097978320) and #4 (ZINC000066054853) in an already
good ranking before #5 (ZINC000551876670) which was already present pre-similarity with
ranking #2.

The majority of the ligands concentrate at affinity around −7 and positive selectivity.
Average positive selectivity was expected and derives from the fact of being unfavorably
unbalanced, as the selectivity formula is a min( ) of the affinities against the four negative
targets, selecting the best affinity against any negative target (four negative targets), which,
on average, is a better affinity than that against the positive target (one positive target).
Indeed, the median for the selectivity is 0.574040, while the two quartiles are 0.186466 and
1.121636, respectively, showing a clear bias towards positive values.

The histogram in Figure 7 approximately displays the improvement in affinity against
the positive target Nav1.7 occurring before and after the similarity search; this essentially
indicates the effectiveness of the similarity-based selection of the ligands over the random
selection used in the earlier dockings.

It can be noted that low affinity ligands improve across the similarity search better
than high affinity ligands, and that there is a peculiar aggregation towards an affinity of
−6.8, which, however, is a value too low to be of interest. Among the best energies, there
is a distinct improvement at affinity around −11, which is what allowed us to discover
significantly better lead ligands by leveraging the similarity search compared to what was
possible without it.

Figure 8 shows the forcefield energy during receptors minimization: the energy
decreases rapidly in the initial minimization cycles, but beyond 2000 conjugate gradient
cycles, obtaining further appreciable improvements would have required an enormous
computational effort.

The energy of the five proteins appears to converge towards two distinct asymptotes:
the first cluster has final energy at: Nav1.7 = −3.1365 × 104 and Nav1.2 = −3.1473 × 104;
while the other cluster is at: Nav1.1 = −3.2433 × 104, Nav1.4 = −3.2274 × 104 and
Nav1.5 = −3.2329 × 104 (kcal/mol). We are currently unsure on how to explain this spon-
taneous clustering, as the amino acid sequence in the 5 proteins differs significantly.
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3.5. Patentability

We performed a patent search for our lead ligand ZINC000004073908.
According to the Patentscope [40] search engine by WIPO [41], the lead molecule

presented in this work ZINC000004073908 matches 10 patents when chirality informa-
tion is omitted, while it results in zero patent matches when full chirality information
is specified. Indeed, the matches appear to be intended for Canrenone, a stereoisomer
of ZINC000004073908, a steroidal antimineralocorticoid drug related to spironolactone
currently marketed as a diuretic. Canrenone itself with complete chirality information
matches 59 patents.

The fact that ZINC000004073908 is a stereoisomer of a marketed drug indeed suggests
that its tolerability in humans is likely (though not certain) to be high, its toxicity likely to
be low, the half-life acceptable, and it is expected to have a good bioavailability, similar to
that of Canrenone. These facts could significantly shorten the research and experimentation
for this Nav1.7 channel blocker.
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On the downside, it would be necessary to ensure that patents targeting Canrenone
without chirality information and possibly related molecules are circumvented during the
ligand optimization phase.

The canonical SMILES for ZINC000004073908 and for Canrenone are, respectively,
the following:

C[C@]12CC[C@@H]3[C@@H](C=CC4=CC(=O)CC[C@@]43C)[C@H]1CC[C@@]21CCC(=O)O1

C[C@]12CC[C@H]3[C@@H](C=CC4=CC(=O)CC[C@@]43C)[C@@H]1CC[C@@]21CCC(=O)O1

after removing the chirality information, they both become

CC12CCC(=O)C=C1C=CC1C2CCC2(C)C1CCC21CCC(=O)O1

Figure 9 shows a 2D depiction of ZINC000004073908 and Canrenone side-to-side, with
and without chirality information.
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We also tested Canrenone by docking it against Nav1.7, but the affinity of Canrenone
resulted to be much lower than that of its stereoisomer ZINC000004073908. The affinity of
Canrenone was computed as −8.868431 kcal/mol, i.e., 2.427518 kcal/mol worse than for
ZINC000004073908, which implies a required molar concentration 60.171 times higher than
that required by our lead, making it impractical for any use against Nav1.7. Furthermore,
Canrenone is not selective for Nav1.7.

4. Materials and Methods
4.1. Targets and Coordinate Files

For the positive target, we used the 6J8I PDB coordinates from RCSB by Shen H. et al. [42],
showing the protein voltage gated sodium channel Nav1.7 in complex with Tetrodotoxin
and ProTx-II, year 2019, version 2, resolution 3.20 Å.

The following RCSB coordinate files were used as negative targets (NT):

• 7DTD for Nav1.1: year 2021, resolution 3.30 Å, version 1;
• 6J8E for Nav1.2: year 2019, resolution 3.00 Å, version 2;
• 6AGF for Nav1.4: year 2018, resolution 3.20 Å, version 2;
• 7DTC for Nav1.5: year 2021, resolution 3.30 Å, version 1;

of which the PDB versions were used. All files consist of Cryo-EM coordinates.
For our work, all ligands were removed from the five proteins and only the pore-

forming alpha subunit was retained in each.
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4.2. Minimization

For the minimization phase, the five proteins were prepared for the Amber [43]
simulator, in implicit solvent igb = 5 with pbradii mbondi2 [44], forcefield ff14SB [45]. The
calculation of the energy contribution by the solvent accessible surface was activated.

With these settings, a deep minimization was performed on the CPU with the
100 steepest descent cycles followed by 2000 cycles of conjugate gradient minimization
with infinite cutoff.

The minimized versions of the five proteins were used for the docking as described below.

4.3. Ligand Dataset

Six hundred thousand (600 k) ligands equally distributed between zero, one and two
rotatable bonds were downloaded from the Zinc database [46] by means of a direct https
query. The ligands were selected exclusively from the “for sale” set in order to ensure that
the leads found were synthesizable and available for purchase and were not molecules of
unknown synthesizability, theoretical, or possibly of natural origin.

We confirmed that by downloading the ligands with a direct https query, the ligands
were fetched in a random order from the pool of ligands present in the online Zinc database.

The 600 k ligands thus downloaded were used in the subsequent phases as described below.

4.4. Docking Runs

The virtual screening was accomplished by means of a series of docking runs perform-
ing incremental searches and incremental refinements from the available ligand pool. The
software used for all docking runs is Smina [47], a derivative of Vina [48]. We confirmed
that Smina provided identical poses and energies to Vina, at least in the case of a launch
with high exhaustiveness.

Firstly, a random set of 10 k ligands was selected for an initial docking run from the
600 k ligands pool described above, i.e., 1/60 of the total available.

The docking box was created differently for the positive target than for the negative
targets. For the positive target, Nav1.7, a cuboid of 7.5 × 7.5 × 44 Å was created, while
for the negative targets, the cuboid was 20 × 20 × 44 Å. In both cases, it was aligned as
centered on the pore and slightly protruding at both ends. Regarding the reasons for which
we had to choose different docking box sizes for the positive and negative targets, see the
Discussion section.

The exhaustiveness was set to 4 (low).
The best 1000 ligands from the above docking runs as ranked by AS_score

(−affinity × selectivity, see Discussion section) were selected for a refinement run, where
they were docked with exhaustiveness set to 32, but otherwise similarly to before. An
exhaustiveness of 32 is among the highest used in the literature.

The top 40 ligands from the above refinement run were chosen as seeds for the
Tanimoto-based similarity search as described below, which produced a set of 10 k ligands
which were further docked.

The new set of 10 k similarity-based ligands was docked similarly to the above, with
exhaustiveness set to 4 (low).

Finally, the best 1000 ligands from the above docking run, ranked by AS_score, were
again selected for a refinement docking run using a high exhaustiveness, set to 32. This
formed the final result for our computation, again ranked by AS_score.

4.5. Similarity Search

The 40 seed ligands generated from the early docking runs, as described above, were
used to conduct a similarity search across the 600 k ligands of the pool. For each of the seed
ligands, 250 ligands in decreasing order of similarity were selected, totaling 10,000 ligands.
The similarity score was calculated using rdkit [49] fingerprints and Tanimoto similarity.

For each seed ligand, 250 ligands were selected based on the similarity score, accord-
ing to a distribution that is denser to the side of 1.0 (most similar) but reaches down to
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0.0 (least similar). The distances between the selected points were derived from a geometric
progression. In doing this, the seed ligand was forcibly selected for slot number 1, ensuring
that the output from the similarity search included the 40 best ligands from the input.

The similarity search output was used for further dockings as described above.

4.6. ADME Analysis

The absorption, distribution, metabolism, and excretion (ADME) analysis was per-
formed using the widely known SwissADME [37] service. The input consisted of the
SMILES strings corresponding to the top 20 compounds identified during the docking
process, ordered by AS_score.

4.7. Kd and Selectivity Calculations

For a ligand L, once the ∆G(L) affinity value against the positive target Nav1.7 is
known, the following formula can be used to calculate the dissociation constant Kd

Kd(L, T) = exp(∆G(L)/(R*T)) (14)

where
R = 0.0019872 kcal/(K*mol) (gas constant) (15)

T = 298.15 K (25 ◦C) (16)

The target of the ligand in this work is implicitly assumed to be the positive target
Nav1.7 when not specified.

The selectivity of a compound towards Nav1.7 compared to a negative target Nt can
be expressed as the ratio of the Ka constants (selectivity coefficients), once the required ∆G
affinities are known

sel_as_Ka_ratio(L, Nt, T) = exp(∆∆G(L, Nt)/(−R*T)) (17)

∆∆G(L, Nt) = ∆G(L, Nav1.7) − ∆G(L, Nt) (18)

In this work, we refer to “selectivity” of a ligand L without specifying either the
positive target or the negative target when the positive target is Nav1.7 and the negative
target is the most affine of Nav1.1, Nav1.2, Nav1.4, and Nav1.5. In this case, the above
formula is written as:

sel_as_Ka_ratio(L, T) = exp(sel_∆∆G(L)/(−R*T)) (19)

where

sel_∆∆G(L) = ∆G(L, Nav1.7) −min{∆G(L,Nt) : Nt ∈ {Nav1.1, Nav1.2, Nav1.4, Nav1.5}} (20)

5. Conclusions

In this work, we have shown how it is possible to obtain leads of considerable affinity
and selectivity that can be used for pain therapy by exploiting a different pathway from
those used by current analgesic drugs. This could result in drugs that may be combined
with or replace currently available analgesics, allowing for increased combined dosage at a
tolerable amount of side effects.

Despite the close similarity of paralogous proteins found in humans and forming
unwanted targets, our work demonstrates good success for affinity and selectivity against
our target protein channel Nav1.7, finding a set of high-scoring ligands.

In addition, this work evaluated the ADME characteristics for the top-scoring ligands
presented, showing on average very good scores for predicted oral availability, GI absorp-
tion, BBB crossing, non-substrate for p-glycoprotein and drug-likeness, and fair results
for lead-likeness. Our lead ligand, in particular, achieves very high scores in ADME and
predicts positively for all mentioned characteristics simultaneously.
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Interestingly, our lead ligand happens to be a stereoisomer of a marketed drug, and
although we have verified that the marketed drug in question is not usable in place of
our lead, the similarity between the two molecules is a further indication that our lead is
expected to have good bioavailability and low toxicity.

These findings should hopefully reduce the time required to market a novel analgesic
drug based on Nav1.7 inhibition.
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