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Abstract: Despite human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 being retroviruses
closely related at a genomic level, HTLV-2 differs from HTLV-1 in terms of pathogenicity in both
single infection and coinfection contexts. Moreover, the HTLV-2 association with clinical outcomes
is still debated and several mechanisms underlying HTLV-2 infection remain unexplored as well.
Cellular miRNAs are key factors in the post-transcriptional regulation of gene expression and they
are known to be potential targets for several pathogens to control the host microenvironment and,
in particular, escape immune responses. Here, we identified a HTLV-2-related signature of eight
miRNAs (miR-125a-3p, miR-381-3p, miR-502-5p, miR-708-5p, miR-548d-5p, miR-548c-5p, miR-1-3p,
and miR-511-5p) in both HTLV-2 infected PBMC and BJABGu cell lines. Altered miRNA expression
patterns were correlated with the impairment of Th cell differentiation and signaling pathways driven
by cytokines and transcriptional factors such as the Runt-related transcription factor (RUNX) family
members. Specifically, we demonstrated that the RUNX2 protein was significantly more expressed in
the presence of Tax-2 compared with Tax-1 in an in vitro cell model. To the best of our knowledge,
these data represent the first contribution to elucidating the HTLV-2 mediated alteration of host cell
miRNA profiles that may impact on HTLV-2 replication and persistent infection.

Keywords: HTLV-2; miRNA; Tax; RUNX; host-virus interactions; cell signaling pathways

1. Introduction

MiRNAs are non-coding regulatory RNAs that act at a post-transcriptional level in
various cellular processes (i.e., cellular development, differentiation, and death) by inhibiting
the gene expression via targeting the specific sequences of mRNAs [1]. Given these properties,
the host cell miRNA expression is profoundly altered by viruses to favor their own survival [2].
Furthermore, miRNAs have been reported to contribute to the carcinogenesis triggered by
oncoviruses, including human retroviruses [3]. At first, miRNAs emerged as cellular factors
involved in the defense against retroviral infections, but they have also been proven to be
targeted by viruses in order to overwhelm immune responses [4–6]. Specifically, HIV-1 and
the human T-cell leukemia virus type 1 (HTLV-1) were found to engage host miRNAs to
modify the behavior of infected cells and neighboring uninfected cells in order to promote
viral replication and counteract immune responses [7,8].

Among the four types of HTLVs identified so far, HTLV-1 and type 2 (HTLV-2) are
the most prevalent ones worldwide [9,10]. HTLV infection is lifelong and is primarily
transmissible through breastfeeding, sexual intercourse, injection drug use, and blood
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transfusion [11]. Even though HTLV-2 is closely related to type 1 through a similar ge-
nomic organization, including long terminal repeat (LTR); gag, pol, and env genes; and
regulatory and accessory elements [12], they significantly diverge in clinical manifesta-
tions. HTLV-1 causes severe adult T-cell leukemia/lymphoma (ATLL) and tropical spastic
paraparesis/HTLV-1 associated myelopathy (TSP/HAM) in up to 6–7% of infected individ-
uals [13], whereas HTLV-2 has not yet been linked to T-cell malignancy [12,14]. HTLV-2
infection has been associated with peripheral neuropathy, but the debate is still open
because of contrasting data in the literature [15,16]. However, it has been generally ac-
cepted that HTLV-2 could negatively interfere with HIV-1 replication, leading to a delayed
progression toward AIDS [17,18]. As the alteration of miRNAs expression triggered by
HTLV-2 infection might deeply affect its interaction with HIV-1, investigating the miRNA
signature in the contest of HTLV-2 infection may open a new perspective in the study of
HIV-1 disease progression.

Both HTLV-1 and HTLV-2 survive through a persistent clonal expansion of infected
cells; however, unlike HTLV-1, HTLV-2 exhibits a predominant transformation of the
CD8+ T cell subset, which harbors the majority of HTLV-2 proviral load [19]. Cellular
immortalization in vivo, as well as viral pathogenesis, are primarily mediated by Tax-1 and
Tax-2 transactivating proteins, whose effects on the cellular pathways are divergent [20–24].
Although Tax-1 and Tax-2 show an amino acid similarity of 85%, Tax-2 differs in recruiting
host co-activators to enhance LTR transcription and signal transduction compared with
Tax-1 [12]. Several cellular pathways are deregulated by Tax proteins, involving AP1,
CREB/ATF, Serum response factor (SRF), and NF-kB factors [25]. By investigating the Tax
mediated NF-kB activation, we and others identified a number of host factors recruited
in complexes with the viral proteins highlighting the differences between the Tax-1 and
Tax-2 host factor interactions [26–30]. In addition, Tax-2 shows a primarily cytoplasmic
distribution, while Tax-1 is abundant in the nucleus [31–33]. Among the four serotypes of
HTLV-2 (a-d) that have been identified so far, Tax-2b is the closest to Tax-1 [34].

While MiRNA profiling has been extensively investigated in the context of HTLV-1
infection [5,28,35–39], evidence of HTLV-2’s impact on the miRNA expression is almost
absent, except for only one study, which reported a profile of eight miRNAs common to
both CD4+ T cells from HTLV-2 and HIV-1 mono-infected patients [40]. In the case of
HTLV-1, alteration of the miRNA expression has been shown to be associated with the
development of ATL and HAM/TSP disorders [5].

Here, we identified a unique signature of miRNAs related to HTLV-2 infection that
might correlate with known molecular pathways critical for the persistence of HTLV-2
replication and the interactions with coinfected pathogens such as HIV-1.

2. Results
2.1. Identification of Distinct miRNAs Expression Profiles in PBMCs from Mono-HTLV-2 Positive
Subjects and in BJABGu Cells

The expression levels of 377 miRNAs were determined in a pool of PBMCs from
six HTLV-2-mono-infected subjects and in the BJABGu cell line, both harboring HTLV
strains belonging to the subtype 2b. The MiRNA expression analysis was conducted using
real-time quantitative PCR and the 2−∆∆Ct method to calculate the relative changes in
expression between the infected and uninfected samples.

We found 226 dysregulated miRNAs in at least one of two infected samples (Log10
not equal to 0.00) (Figure 1). Hierarchical clustering analyses evidenced pairs of miRNAs
that showed striking similarities in the altered expression (i.e., miR-409-5p/miR-203, miR-
203/miR-325, miR-579/miR-29c, miR-576-3p/miR-146b-5p, miR-484/miR-16, miR-584-
3p/miR-204, and miR-379/miR-337-5p), whereas miRNAs (i.e., miR-520e, miR-886-5p,
miR-502-5p, miR-34a, miR-100, miR-143, and miR-155) differed significantly within each
infected sample (Figure 1a).
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dysregulated miRNAs. (b) The heat map of miRNAs whose expression levels varied by at least 1 
log10 (fold change (FC)) in HTLV-2-infected PBMCs (first column) and profile of corresponding 
miRNAs altered in BJABGu (second column). (c) The heat map of miRNAs with [log10 (FC) > |1|] 
in BJABGu (first column) and the profile with miRNAs modulated in the HTLV-2-infected PBMCs 
(second column). Each colored block represents the expression of 1 miRNA (labeled on the right) in 
the indicated sample. PCR expression signals are converted into color (green, high signal; red, low 
signal). Color intensities are proportional to the variation of expression, as indicated in the scale bar: 
values ranged from −2 to + 2 (z score). 

By applying a fold change (FC) threshold greater than 1 log10 in both directions (up 
and down) 30 and 46 miRNAs in HTLV-2-infected PBMCs and BJABGu cells, respectively, 

Figure 1. Dendrogram and heat maps of the differentially expressed miRNAs. (a) The hierarchical
clustering dendrogram shows the similarities between the expression profiles of the 226 dysregulated
miRNAs. (b) The heat map of miRNAs whose expression levels varied by at least 1 log10 (fold
change (FC)) in HTLV-2-infected PBMCs (first column) and profile of corresponding miRNAs altered
in BJABGu (second column). (c) The heat map of miRNAs with [log10 (FC) > |1|] in BJABGu (first
column) and the profile with miRNAs modulated in the HTLV-2-infected PBMCs (second column).
Each colored block represents the expression of 1 miRNA (labeled on the right) in the indicated
sample. PCR expression signals are converted into color (green, high signal; red, low signal). Color
intensities are proportional to the variation of expression, as indicated in the scale bar: values ranged
from −2 to + 2 (z score).

By applying a fold change (FC) threshold greater than 1 log10 in both directions (up
and down) 30 and 46 miRNAs in HTLV-2-infected PBMCs and BJABGu cells, respectively,
were found. Figure 1 displays the heat map of 30 miRNAs whose expression levels varied
by at least 1 log10 (FC) in HTLV-2-infected PBMCs compared with BJABGu (Figure 1b)
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and the heat map of 46 miRNA with at least 1 log10 (FC) in BJABGu compared with
HTLV-2-infected PBMCs (Figure 1c).

Eight miRNAs were significantly altered in both infected cell populations, suggesting
a potential signature related to HTLV-2 infection. Three were similarly upregulated (miR-
125a-3p, miR-381-3p, and miR-502-5p) in both samples, while five miRNAs (miR-708-5p,
miR-548d-5p, miR-548c-5p, miR-1-3p, and miR-511-5p) were differentially modulated in
infected PBMCs and BJABGu (upregulated and downregulated, respectively).

2.2. Exploring miRNA Target Genes

We focused on miRNAs that were more considerably [log10 (FC) > |1|] modulated in
infected PBMCs and BJABGu cell lines. Then, their corresponding validated target genes
were identified by examining the miRTarBase.2020 database. To achieve more consistent
results, we only considered the target genes that were validated by strong experimental
evidence, such as being functional and non-functional, which was used as the first selection
criterion. In addition, after performing the gene ontology (GO) analysis, we filtered out
miRNAs whose target genes were related to non-statistically significant GO terms in more
than one category. Figure 2 represents the number of related target genes after filtering out
overlapping target genes. Infected HTLV-2 PBMCs showed a large number of upregulated
genes (554), while BJABGu exhibited a higher number of downregulated targets (377)
(Figure 2a,b). The intersection of target mRNAs for downregulated and upregulated
miRNAs showed a total of 33 and 56 genes attributed to infected PBMCs and BJABGu,
respectively. Furthermore, by comparing these two gene lists, eight target genes were
shared by both cell models (AGO1, CXCL12, IGF1R, IL6R, MYC, PTEN, SP1, and VEGFA).
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Figure 2. Target genes of deregulated miRNAs. The Venn diagram indicates the target genes of
differentially expressed (down or upregulated) in HTLV-2-infected PBMCs (a) and BJABGu (b). The
target genes that are common between the two groups are listed in the boxes.

With regard to miRNAs belonging to the HTLV-2 putative signature, miR-548c-5p did
not have validated targets, while the other four (miR-511-5p, miR-381-3p, miR-502-5p, and
548d-5p) did not meet inclusion criteria related to GO categories. Therefore, only the target
genes of miR-125a-3p, miR-708-5p, and miR-1-3p were considered for further analyses.

2.3. Top Enriched Pathways Related to miRNAs Affected by HTLV-2 Were Driven by Mediators of
Cell Activation and Differentiation

Potential cellular mechanisms affected by miRNAs with [log10 fold change (FC) > |1|]
were found by querying both KEGG and Reactome databases through separate analyses of
the target genes of both up regulated and downregulated miRNAs. Separate enrichment
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analyses of differentially expressed miRNA target genes have been demonstrated to identify
the pathways that might more accurately reflect phenotypic differences [41].

Firstly, we investigated the functional aspects of the target genes through KEGG
analysis and reviewed the enriched terms (FDR < 0.001), focusing on those referring to
retrovirus infection, signaling pathways, and immune cell maturation (Figure 3). The anal-
ysis revealed that all targeted gene panels shared several selected KEGG terms, including
HTLV-1 and HIV-1 infections; Th17 differentiation; and signaling pathways regulated by
PD-L1/PD-1, PI3k–Akt, p53, NF-kB, FoxO, and HIF-1. In this regard, considering the
number of genes enriching each category, in combination with the significance level and
the fold enrichment fold (strength), PI3k–Akt signaling seemed to be a key target pathway
among the crucial ones affected by miRNA alteration in both HTLV-2-infected samples.
Similarly, Th17 differentiation was found to be significantly overrepresented in all groups.
Interestingly, the cytokine signaling pathway was the only one enriched in all target gene
sets was that driven by IL-17.
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Figure 3. Bubble plot of the KEGG pathway enrichment of the target genes. The strength of the
enriched signaling pathways associated with the target genes of the downregulated (DW) miRNAs
(left panel) and upregulated (UP) miRNAs (right panel) in HTLV-2 infected PBMCs (upper panel)
and BJABGu cells (bottom panel). The size and color of each bubble represent the number of target
genes in each pathway and its corresponding p-value, respectively.

To gain additional insight into the activators, regulators, and adaptor molecules and
their correlation with the cellular pathways affected by HTLV-2-deregulated miRNAs, we
performed a Reactome enrichment analysis. The enrichment of pathways, including the
interleukins and PI3k–Akt network, as well as the RUNXs family members, was confirmed
(Table 1). Interestingly, the results of the HTLV-2-infected PBMC and BJABGu cells enrich-
ment analyses showed differences between the cell types. Among the interleukins, IL-1,
IFN-γ, and IL-17 were significantly overrepresented only in the infected PBMCs, while IL-2,
TNF, and IL-10 were exclusively associated with BJABGu cells. PI3k activation by both
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NTRK3 and erythropoietin was found only in the BJABGu cells. Different pathways were
found to be associated with RUNX3 modulation between infected PBMCs and BJABGu.

Table 1. Comparative analysis of selected signaling pathways gathered from the Reactome source.

Reactome Terms Down miRNAs in
Infected PBMCs

Up miRNAs in Infected
PBMCs Down miRNAs in BjabGu Up miRNAs in BjabGu

Regulation of RUNX1 Expression
and Activity 1.61 *; 0.0018 ** 1.14 *; 0.00055 ** 1.21 *; 0.0009 ** n.d. ‡

Transcriptional regulation
by RUNX2 n.d 0.83 *; 1.89 × 10−9 ** 0.89 *; 9.55 × 10−9 ** 0.9 *; 0.008 *

Transcriptional regulation
by RUNX3 1.11 *; 0.00067 ** 0.73 *; 0.0001 ** 0.8 *; 8.8 × 10−5 ** 1 *; 0.0023 **

RUNX2 regulates genes involved
in cell migration n.d. n.d. 1.45 *; 0.00066 ** n.d.

RUNX3 regulates WNT signaling 1.81 *; 0.0071 ** 1.32 *; 0.0025 ** n.d. n.d.

RUNX3 regulates
CDKN1A transcription n.d. n.d 1.41 *; 0.0057 ** n.d

RUNX3 regulates p14-ARF n.d. n.d. 1.31 *; 0.0103 ** n.d.

Interleukin-6 signaling 1.67 *; 0.0133 ** 1.18 *; 0.0068 ** 1.32 *; 0.0018 ** 1.56 *; 0.0226 **

Interleukin-4 and
Interleukin-13 signaling 1.44 *; 4.86 × 10−15 ** 1.08 *; 1.7 × 10−22 ** 1.13 *; 1.25 × 10−20 ** 1.37 *; 8.07 × 10−16 **

Interleukin-37 signaling 1.39 *; 0.0487 ** n.d. n.d. n.d.

Interleukin-3, Interleukin-5 and
GM-CSF signaling 1.16 *; 0.0372 ** n.d. 0.82 *; 0.0128 ** n.d.

Interleukin-1 family signaling 0.88 *; 0.0296 ** n.d. n.d. n.d.

Regulation of IFNG signaling n.d. 1.08 *; 0.0143 ** n.d. n.d.

Interleukin-17 signaling n.d. 0.75 *; 0.00066 ** n.d. n.d.

Interleukin-2 family signaling n.d. n.d. 0.87 *; 0.0078 ** n.d.

TNF signaling n.d. n.d. 0.79 *; 0.04 ** n.d.

Interleukin-10 signaling n.d. n.d. 0.78 *; 0.0439 ** n.d.

Interleukin-12 signaling n.d. n.d. n.d. 1.16 *; 0.0075 **

PI3k cascade: FGFR1 1.61 *; 0.00018 ** n.d. n.d. n.d.

PI3k cascade: FGFR3 1.58 *; 0.0021 ** n.d. n.d. n.d.

PI3k cascade: FGFR4 1.54 *; 0.0029 ** 0.92 *; 0.041 ** n.d. n.d.

PI3k cascade: FGFR2 1.47 *; 0.0044 ** n.d. n.d. n.d.

PI3k events in ERBB2 signaling n.d. 1.02 *; 0.0211 ** 1.06 *; 0.0443 ** 1.52 *; 0.0028 **

AKT-mediated inactivation
of FOXO1A 1.4 *; 0.0461 ** 1.53 *; 0.0217 ** 2 *; 0.0029 **

Negative regulation of the
PI3K/AKT network 1.03 *; 0.0018 ** 0.87 *; 1.28 × 10−10 ** 0.93 *; 8.3 × 10−10 ** 1.07 *; 1.58 × 10−5 **

PI5P, PP2A and IER3 Regulate
PI3K/AKT Signaling 0.99 *; 0.0099 ** 0.83 *; 4.31 × 10−8 ** 0.89 *; 7.46 × 10−8 ** 1.01 *; 0.00057 **

CD28 dependent
PI3K/Akt signaling n.d. 1.14 *; 3.68 × 10−5 ** 1.09 *; 0.0026 ** 1.48 *; 0.00045 **

Activated NTRK3 signals
through PI3K n.d. n.d. 1.36 *; 0.0439 ** n.d.

Erythropoietin activates
Phosphoinositide-3-kinase (PI3K) n.d. n.d. 1.42 *; 1.87 × 10−5 ** n.d.

AKT phosphorylates targets in
the cytosol n.d. n.d. 1.29 *; 0.00043 ** 1.58 *; 0.0019 **

AKT phosphorylates targets in
the nucleus n.d. n.d. n.d. 1.73 *; 0.00072 **

* Fold enrichment, ** FDR p-value, ‡ not determined

By applying gene enrichment analysis (GEA) to the target genes of miRNAs belonging
to the signature (Table 2), we observed that miR-125a-3p was associated with Th17 differ-
entiation and signalling pathways driven by IL-4 and IL-13. Additionally, miR-1-3p and
miR-708-5p were correlated with RUNX3 and RUNX2, respectively.
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Table 2. Pathways enriched in the gene list of HTLV-2-related miRNA signature.

miRNAs
HTLV-2+

vs.
Uninfected

BJABGu
vs.

BJAB
Targets KEGG GEA Reactome GEA

125a-3p 2.07 (FE) 2.59 (FE)
GPC4, MTA1, PRDM1, RHOA,

FYN, IL23R, GIT1, VEGFA,
IRF4, XBP1, EZH2, BRCA1,

IL6, NRG1

EGFR tyrosine kinase inhibitor resistance
(1.73 *; 0.0055 **)

Inflammatory bowel disease (1.67; 0.0497)
Th17 cell differentiation (1.62; 0.0077)

ERBB2 signaling (1.92; 0.0387)
IL-4 and IL-13 signaling (1.72; 0.0163)

Interleukins signaling (1.2; 0.0435)

708-5p 1.04 (FE) −3.13 (FE)

BMI1, ZEB2, BIRC5, AKT2,
CD44, TMEM88, EYA3, NNAT,
AKT1, CCND1, MMP2, EZH2,
PARP1, BCL2, CASP2, CD274,

CNTFR, SMAD3,
IKBKG, KDM1A

Pancreatic cancer (1.83; 1.8 × 10−6)
Chronic myeloid leukemia (1.81; 1.8 × 10−6)
AGE-RAGE signaling pathway in diabetic

complications (1.78; 3.21 × 10−7)

AKT-mediated inactivation of FOXO1A (2.69; 0.0161)
RUNX2 regulates genes involved in cell migration

(2.39; 0.0362)
Activation of BAD and translocation to mitochondria

(2.29; 0.0016)

1-3p 2.07 (FE) −2.36 (FE)

CEBPA, MEF2A, GATA4,
HCN4, HDAC4, FOXP1,

HCN2, PTMA, PTBP1, MET,
CAND1, ANXA2, HAND2,

IGF1, TMSB4X, KCNJ2, GJA1,
XPO6, POGK, TAGLN2,

LASP1, ADAR, KCNE1, BDNF,
G6PD, SOX6, ATP6V1B2,

LARP4, CNN3, PNP, KIF2A,
HSPD1, HSPA4, PIM1,

CALM3, PPP2R5A, PAX3,
TWF1, TWF2, FN1, NOTCH3,

SLC8A1, EDN1, PRKCE,
FABP3, SNAI2, SOX9, PGD,

SRF, IL11, YWHAZ, CCND1,
MYOCD, TKT, CCL2, CDK4,

SP1, ETS1, FASN, PIK3CA, TH,
MPL, API5, SPRED1, ASPH,

ND1, COX1, FRS2, FZD7,
AGO1, KRAS, NAIP, VEGFA,

RARB, BAG4, ABCB1, TWIST1,
TNKS2, CXCL12

Pentose phosphate pathway (1.41; 0.0039)
AGE-RAGE signaling pathway in diabetic

complications (1.4; 7.86 × 10−9)
Bladder cancer (1.38; 0.00071)

RUNX3 regulates p14-ARF (1.92; 0.0123)
Signaling by FGFR3 fusions in cancer (1.87; 0.0126)

Signaling by FGFR4 in disease (1.83; 0.0128)

* fold enrichment, ** FDR p-value.

2.4. RUNX2 Is Deregulated in Presence of Tax Proteins

The reciprocal activation of RUNX2 and PI3k–Akt axis is known to cooperate in cell
transformed and not-transformed proliferation [42]. Further, RUNX2 has been demon-
strated to play a role in T-cell lymphoma, acute myeloid leukemia, and multiple myeloma
and to facilitate the response to viral infection through the control of Interferon Regulatory
Factor 7 (IRF7) [43–45]. Despite this evidence, RUNX2 has never been studied in the context
of HTLV infection, until now. Based on the results of the enrichment analyses, which suggest
PI3k–Akt signaling and RUNX transcription factors as putative targets of the HTLV dereg-
ulated miRNAs, we analyzed the RUNX2 protein expression in HEK293T cells transfected
with Tax-1 or Tax-2 recombinant vectors. Interestingly, in presence of Tax-2 but not Tax-1,
the RUNX2 protein was significantly more represented compared with the non-transfected
cells (Figure 4). We performed qPCR to analyze the same transfected cell samples for
the relative expression of miR-1-3p and miR-708-5p, which were found to be correlated
with the RUNX-enriched pathway (Table 2). In agreement with previous studies [46], our
analysis evidenced the expression of both miRNAs in HEK293T cells and their expression
was modulated after the transfection of Tax-1 and Tax-2 (Supplementary Figure S2).

2.5. Multiple Overlapping Pathways in Different Single Node Networks Revealed Potential Strong
Functional Relationships

Protein–protein interactions (PPIs) were mapped using the STRING v. 11 database by
setting the confidence score to the highest value (0.900) in order to visualize the most specific
and strengthened associations within each panel of miRNA target genes. As many of the
genes targeted by modulated miRNAs were common in different pathways, corresponding
proteins were found to be highly interconnected in a central module, as observed in all
networks (Supplementary Figure S1 and Table S1), highlighting how processes triggered
by virus replication may occur as a cascade of overlapping events. As HTLVs have been
proven to interfere with HIV-1 replication in co-infected patients [15], the following analysis
of PPIs was addressed to identify PPIs associated both with HTLV-1 and HIV-1 (Figure 5).
HTLVs and HIV-1 infections resulted were correlated with genes common among different
signalling pathways such as PI3k/AKT, MAPK, IKB, CDK, and NF-kB. Pathways related
to co-receptor CXCR4 and caspases (i.e., CASP3/-8/-9) were only annotated with both
HTLV-2 and HIV-1.
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3. Discussion

Increasing evidence has demonstrated that retroviruses orchestrate cellular dynamics
by altering miRNA expression and, in turn, miRNA target gene functionality, in an attempt
to achieve successful replication [47].

Our study identified a potential HTLV-2-related miRNA signature composed of eight
miRNAs whose expression was modified in both infected PBMCs and BJABGu cell lines.
Additionally, this fact pointed out that the signature was independent of possible coinfect-
ing pathogens in patients. Remarkably, three of the eight miRNAs have been proven to be
involved in hindering the development of several cancers, such as thyroid carcinoma (miR-
125a-3p), colorectal (miR-381-3p), and ovarian and bladder cancers (miR-502-5p) [48–50],
suggesting that their modulation induced by the virus might contribute to hampering
cell proliferation. We observed a general upregulation in the expression of miRNAs in
HTLV-2-infected PBMCs. Since several studies have demonstrated HTLV-2 patients having
a low activation status [51], we speculated about a potential correlation between miRNA
upregulation and a low activation profile, in accordance with previous evidence of a global
miRNAs downregulation upon T cell stimulation [52].

The KEGG and Reactome analyses of the selected altered miRNAs revealed that
HTLV-2 infection may affect common biological mechanisms through modulation of cy-
tokines/chemokines, transcriptional signaling pathways, and Th cell differentiation, in-
cluding Th17 differentiation in particular. Recently, higher levels of Th17 cells, which are
primarily located in the mucosal tissues and expressing HIV receptors and co-receptors
(CD4, α4β7, CCR5, and CXCR4), were found to be positively correlated with more protec-
tive T-cell responses against HIV-1 [53]. Furthermore, Th17 CD4+ T cells are supposed to
be long-living viral reservoirs in patients receiving antiretroviral therapy [54]. Taking into
account these recent findings, our preliminary data may open up a new intriguing scenario
for studying HTLV-2/HIV-1 co-infection as a model for discovering novel strategies to curb
HIV-1 persistence.

Our evidence in favor of distinct PI3K/AKT/mTOR pathways in different cell types
is in agreement with previous reports strengthening PI3ks role in affecting T and B cell
differentiation in combination with different mediators [55], suggesting that HTLV-2 may
adopt multiple strategies to prolong its own viral replication and delayed apoptosis. In
this regard, both Tax-1 and Tax-2, in particular Tax-2b, have been shown to abrogate the
suppressor activity of p53 in T cells [22]. Remarkably, while it has been found that the
TGFβ signaling pathway is promoted by Tax-1 through Smad transcription factors, as
well as by HBZ, there was no evidence of it being modulated to Tax-2 and APH-2 [56].
In contrast, our data led us to hypothesize a potential ability of HTLV-2 to affect TGF-β
immunomodulatory signaling.

Besides the already mentioned transcription factors, compelling evidence of the RUNX-
3- and RUNX-2-signalling pathway association with the HTLV-2 miRNA signature (in
particular to miR-1-3p and miR-708-5p, respectively), has pointed out the potential involve-
ment of RUNXs in achieving successful HTLV-2 replication. Accumulating previous data
may suggest possible explanations for the contribution of RUNXs contribution. Activat-
ing RUNX-3 signaling has been demonstrated to cooperate in the function of cytotoxic T
cells [57]. Similarly, RUNX-2 has been proven to be critical for the persistence of T cell
mediated responses (i.e., CD8+ memory T cells) during chronic viral infection [58,59].
The enrichment pathway results shown in the present study are supported by previously
reported data demonstrating that miR-1-3p and miR-708-5p are involved in the activation
of the PI3k–Akt signaling pathway and that the RUNX2 and PI3k–Akt axis participate re-
ciprocally in their activation [42,60,61]. The overexpression of RUNX2 has been reported in
several tumors, including T-cell lymphoma, acute myeloid leukemia [43,44], and, recently,
T-cell acute lymphoblastic leukemia (T-ALL) [62]. In mouse models, upregulation of Runx2
has also been shown to induce the repression of myeloid differentiation [44]. The pivotal
role of RUNX2 expression in T-cell lineage development has also been demonstrated by
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the ectopic expression of RUNX2, which caused significant deregulation of thymocyte
maturation and an increase in the expression of immature CD8 cells [63].

MiRNAs deregulated by HTLV-1 have been identified in recently published stud-
ies [5,28,35–39]. Interestingly, none of the eight miRNAs identified in our study were
described to be deregulated in the presence of HTLV-1 or in subjects with ATL. Further-
more, the fact that we found three out of eight miRNAs altered by HTLV-2 infection in
both T and B cell populations made us more confident in the consistency of our findings.
The differences in miRNA expression in the two infected cell populations might mainly
be attributed to their different activation status. Future analysis and validation will be
required to address the regulatory mechanisms and biological effects of these miRNAs.
This study is limited to a small number of subjects, but represents the first contribution
to define the effect of HTLV-2 infection on the aberrant expression of miRNAs and their
molecular role in viral persistence and coinfection.

4. Materials and Methods
4.1. Primary and Immortalized Cells

Six Italian HTLV-2 mono-infected individuals and six healthy volunteer donors were
recruited at ASMN of Reggio Emilia, Italy. Infected patients belonged to a cohort of
(Caucasian; 5 male and 1 woman; with a mean (SD) age of 49.7 (5.2)) HIV-1 seronegative
subjects with high-risk behaviors, drug abuse, and unprotected sexual intercourse. The
uninfected subject group was matched by sex, age, and ethnicity. The infected subjects
were diagnosed as HTLV-2 seropositive in 2005 and were followed up over the years
to monitor the occurrence of clinical symptomatology and virological parameters. The
enrolled infected patients harbored HTLV-2 subtype 2b, as demonstrated by sequencing
of the long terminal repeat region of the viral isolates. These six infected patients were
selected for study because of their high proviral load, ranging from 2994 cp/105 cells (mean
proviral load of 4183 cp/105 cells) at the time of enrolment. The BJABGu was established
by growing the HTLV-2-Gu isolate [62] in the Epstein–Barr-negative B cell line BJAB [51]
and was found to harbor 1.8 copies of provirus per cell by determining the Tax-2 gene
copies number through real-time PCR.

Blood samples from both HTLV-2 positive patients and controls were pooled separately.
PBMCs were isolated from the two pools through Ficoll density gradient centrifugation
and were stored in RNAlater at 80 ◦C or were directly processed for miRNA extraction
using the mirVana miRNA isolation kit (Ambion, Austin, TX, USA).

This research was conducted according to the guidelines of the Declaration of Helsinki
and was approved by the Provincial Ethics Committee of the Santa Maria Nuova Hospital
and the Reggio Emilia Local Health Authority (Ref. number 0025318, 13 September 2010).
Written informant consent was obtained from the subjects involved in the study.

The small sample size of participants was deemed appropriate because of the ex-
ploratory nature of this research and the low prevalence of HTLV-2 infection among HIV-1
negative subjects [33].

4.2. miRNA Expression Analysis

The miRNA expression was determined by applying the Megaplex Pools protocol (Ap-
plied Biosystems, Waltham, MA, USA) and using the Human Pool A contains RT primers
for 377 unique microRNAs and 4 endogenous controls. In total, 100 ng RNA/samples were
converted into cDNA using the TaqMan® MicroRNA Reverse Transcription Kit and the
Megaplex™ RT Primers. The following RT reaction protocol was used: 40 cycles at 16 ◦C for
2 min, 42 ◦C for 1 min, and 50 ◦C for 1 s followed by 1 step at 85 ◦C for 5 min. The obtained
cDNAs (2.5 µL/sample) were then subjected to PCR using a TaqMan PreAmp Master Mix
kit and Megaplex PreAmp Primers Pool A (Applied Biosystems, Whaltam, MA, USA). The
following thermal-cycling conditions were applied: denaturation for 10 min at 95 ◦C, 1 step
at 55 ◦C for 2 min followed by 2 min at 72 ◦C, and 12 cycles (95 ◦C for 15 s, 60 ◦C for 4 min)
to synthesize single-stranded cDNA from the total RNA samples. The preamplified cDNA



Int. J. Mol. Sci. 2022, 23, 7583 11 of 15

products were added to TaqMan Universal PCR Master Mix, No AmpErase UNG, and were
loaded onto the TaqMan MicroRNA Array A for PCR amplification using the following
protocol: 50 ◦C for 2 min, 94.5 ◦C for 10 min, and 40 cycles at 97 ◦C for 30 s and 59.7 ◦C for
1 min. All of the reactions mentioned above were conducted on a 7900HT Fast Real-Time
PCR system (Applied Biosystems, Whaltam, MA, USA).

Data analysis was performed using Relative Quantification Manager 1.2 software
(Applied Biosystems) and comparative Ct method (∆∆Ct). The amplification signal was
checked for each sample using SDS Version 2.3 software (Applied Biosystems, Whaltam,
MA, USA). Undetermined raw Ct values were set to 40. The RNA extracted from the pool
of healthy donors was used as the calibrator, whereas the small noncoding MammU6 RNA
was tested as the housekeeping gene.

Hierarchical clustering of the samples was obtained by loading the miRNA fold—change
expression on http://www.heatmapper.ca (accessed on 1 June 2022) [63] and by applying
‘Average Linkage’ and ‘Euclidean’ as the clustering and distance methods, respectively.

4.3. Functional Analysis of miRNAs Target Genes

MiRNA targets were extracted from miRTarBase v. 9 released on 15 September 2021.
We only filtered out validated targets that were annotated with miRNA–target interactions
(MTIs), supported by strong experimental evidence, such as those obtained by Report
Assay, Western blot, pPCR, and both Report Assay and Western blot.

GO annotation data were obtained using the Gene Ontology website (http://geneontology.
org/ (accessed on 1 June 2022)).

Pathway annotations were provided by Reactome (version 13 October 2021) and
KEGG (version 1 October 2021) databases [64]. Only enriched terms with a significant
p value less than 0.05 as a statistical threshold were retained for functional consideration.
Interacting proteins were further found out using the STRING (version 11.5) tool to perform
the PPI network analysis. A confidence score of 0.900 (the highest) was set as a threshold.

4.4. Cell Lines and Transfection

HEK293T cells were maintained in Dulbecco’s modified Eagle’s Medium (DMEM)
supplemented with 10% fetal calf serum (FCS), L-glutamine (2 mM), and Penicillin G
(100 U/L)/Streptomycin (100 mcg/L). Cells were grown at 37 ◦C in a humidified atmo-
sphere with 5% CO2. For analysis of the protein content, 4.5 × 105 cells were seeded
in six-well plates and, after 24 h, transfected using TransIT-LT1 transfection reagent (cat.
MIR2300, Mirus Bio LLC, Madison, WI, USA), following manufacturer’s protocol.

4.5. Plasmids

HEK293T cells were transfected with 1 µg of pJFE-Tax-1, pJFE-Tax-2 (both previously
described in [28] or mock-transfected with the empty pSGM vector.

4.6. Protein Extraction

HEK293T cells were harvested 24 h after transfection with 1 µg of each vector. Cells
were washed two times using ice-cold PBS and then lysed using RIPA buffer (50 mM Tris
HCl pH 7.5, 150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS) supplemented
with a protease inhibitors cocktail. The lysates were then incubated in ice for 30 min, frozen
at −80 ◦C for at least 1 h, and then centrifuged for 30 min at 14,000 rpm at 4 ◦C.

4.7. Western Blotting

The total protein concentration in the cell lysates was determined by Bradford Coomassie
brilliant blue assay (Sigma-Aldrich, St. Louis, MO, USA). Equal amounts of cellular proteins
were resolved in SDS polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to
a PVDF membrane (Cytiva life sciences, Marlborough, MA, USA). Membranes were first
saturated in TBS solution containing 5% non-fat milk and 0.1% Tween20, and then incubated
with specific primary and secondary antibodies. Anti-β-tubulin was used as a loading control.

http://www.heatmapper.ca
http://geneontology.org/
http://geneontology.org/
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Bound antibodies were revealed using WesternBrightTM ECL (cat. K-12045-D50, Advansta,
San Jose, CA, USA), according to the manufacturer’s instructions. Densitometry analysis of the
Western blot protein bands was performed using the Fiji-ImageJ software [65] and statistical
analysis was performed through ordinary one-way ANOVA using GraphPad Prism 7 software
(GraphPad Inc., La Jolla, CA, USA).

4.8. Antibodies

Rabbit monoclonal anti-RUNX2 (1:1000, cat. 8486, Cell Signaling, Danvers, MA,
USA), rabbit polyclonal anti-β Tubulin (1:400, cat. sc-9104, Santa Cruz, Santa Cruz, CA,
USA), mouse monoclonal anti-Tax-1 derived from hybridoma 168-A51 (1:2, AIDS research
and Reagent Program, National Institutes of Health), and rabbit polyclonal anti-Tax-2
(1:1000, previously described in [66]) were used as primary antibodies for Western blotting.
Horseradish peroxidase-conjugated anti-rabbit (1:10,000 cat. 31460, Thermo Fisher Scien-
tific, Waltham, MA, USA) and anti-mouse (1:10,000, cat. 31430, Thermo Fisher Scientific,
Waltham, MA, USA) were used as secondary antibodies.

4.9. RT-qPCR Analysis

RNA was reverse transcribed using the TaqManTM Advanced miRNA cDNA Synthesis
Kit (cat. A28007, Applied Biosystems, Waltham, MA, USA) according to the manufacturer’s
instructions. RT-qPCR reactions were performed using TaqMan™ Fast Advanced Master
Mix (cat. 4444557, Applied Biosystems, Waltham, MA, USA), as described by the manufac-
turer’s instructions. Specific miRNAs probes (cat. A25576, Applied Biosystems, Waltham,
MA, USA) were applied for the expression level analysis of miR- miR-1-3p and miR-708-5p.
The qPCR was performed using a CFX Connect Real-Time PCR System (Bio-Rad Labo-
ratories, Hercules, CA, USA). The samples were incubated in a 96-well plate at 95 ◦C for
20 s, followed by 40 cycles of 95 ◦C for 1 s and 60 ◦C for 20 s. The gene expression was
normalized to the mean of the reference miRNA miR-195-5p to be used as the reference
miRNA and as the endogenous control to quantify miRNAs [67]. Relative quantification of
the miRNA expression was calculated according to the ∆∆Ct method [68]. Each measure-
ment was carried out in triplicate in three different experiments. Differences in the relative
expression levels were analyzed via ordinary one-way ANOVA test using GraphPad Prism
7 software (GraphPad Inc., La Jolla, CA, USA).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23147583/s1.
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