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Abstract: Lolium multiflorum is widely planted in temperate and subtropical regions globally, and
it has high economic value owing to its use as forage grass for a wide variety of livestock and
poultry. However, drought seriously restricts its yield and quality. At present, owing to the lack
of available genomic resources, many types of basic research cannot be conducted, which severely
limits the in-depth functional analysis of genes in L. multiflorum. Therefore, we used single-molecule
real-time (SMRT) and next-generation sequencing (NGS) to sequence the complex transcriptome of
L. multiflorum under drought. We identified 41,141 DEGs in leaves, 35,559 DEGs in roots, respectively.
Moreover, we identified 1243 alternative splicing events under drought. LmPIP5K9 produced
two different transcripts with opposite expression patterns, possibly through the phospholipid
signaling pathway or the negatively regulated sugar-mediated root growth response to drought
stress, respectively. Additionally, 13,079 transcription factors in 90 families were obtained. An in-
depth analysis of R2R3-MYB gene family members was performed to preliminarily demonstrate
their functions by utilizing subcellular localization and overexpression in yeast. Our data make a
significant contribution to the genetics of L. multiflorum, offering a current understanding of plant
adaptation to drought stress.

Keywords: Lolium multiflorum; SMRT-Seq; drought stress; PacBio; R2R3-MYB

1. Introduction

Drought is a periodic and growing natural disaster that impacts extensive subject
areas [1], including water resources [2,3] and crop yield [4–6], as well as a range of en-
vironmental systems [7], resulting in serious harm to ecological security and human so-
ciety [8,9]. Over the past half-century, drought has become more and more serious all
over the world [10], which has greatly reduced the productivity of grazing grasslands and
artificial mowed grasslands.

L. multiflorum is one of the most important forage grasses and is widely grown in tem-
perate and subtropical regions worldwide [11]. It is an excellent annual gramineous species
recommended for planting, and its forage yield and quality cannot be replaced by other
forage grasses at present [12]. It plays an important role in restoring degraded grasslands
and establishing artificial grasslands and has both high ecological value and high economic
benefit [12]. In recent years, its phytoremediation [13–15], bio-ethanol production [16] and
anti-inflammatory medicinal properties [17] have also been reported. L. multiflorum is a
highly self-incompatible plant, corresponding to the complex structure of its genome [18].
Meanwhile, the lack of available genomic resources hinders its improvement by breeders.
Thus, there is an urgent need to construct valuable gene data sets and screen key candidate
genes in L. multiflorum.
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At present, vast quantities of data have been generated through second-generation
high-throughput sequencing platforms. However, owing to the short reads generated by
these technologies, it is quite difficult to obtain full-length sequences, and such sequenc-
ing technologies cannot work well in complex regions [19], which limits the ability of
researchers to study gene function throughout the entire genome [20]. SMRT sequencing
is a third-generation sequencing technology, which is more and more used in full-length
sequencing [21,22]. It makes up for the deficiency from short reads and can generate
full-length cDNA sequences (4–8 kb on average) without assembly or a reference genome,
which greatly increases the potential for the discovery of genes and deeper studies of
cell transcription [23,24]. There are many examples of SMRT sequencing being used to
explore key genes or pathways to promote molecular breeding. In Iris halophila, metal ion
transporters were found to be involved in the response to Pb stress using SMRT sequenc-
ing [25]. A key synthase in the benzylisoquinoline alkaloid biosynthesis pathway, the main
active substance in Corydalis yanhusuo, was identified by SMRT sequencing [26]. SMRT
sequencing has become an ideal way to construct transcriptomes and analyze novel genetic
material, especially for species with no reference genomes.

We utilized SMRT sequencing data generated with the PacBio Sequel platform, which
produces long reads, to reveal full-length transcriptome information in L. multiflorum under
drought. Such SMRT sequencing data can be complemented by NGS short reads [27].
Then, high-quality full-length transcript and drought-regulated genes in multiple tissues of
L. multiflorum were obtained. On the basis of transcriptome data, we carried out functional
annotation, lncRNA prediction, coding sequence prediction, TF analyses and functional
validation of candidate genes by subcellular localization and overexpression in yeast. This
is the first time to use SMRT sequencing to generate full-length transcription data from
L. multiflorum under drought and is a very useful and important resource for further
research of this important forage. This research can be utilized to elucidate the mechanisms
of drought response of L. multiflorum and to create drought-tolerant, water-saving and
environmentally friendly forage.

2. Results
2.1. Assembly of the Sequence Datasets and Functional Annotation

We obtained a total of 60.89 Gb of raw data from PacBio ISO-Seq and generated
13,787,867 subreads with a total size of 30.72 Gb. Furthermore, by self-correcting mul-
tiple single-molecule sequencing sequences, we obtained 1,026,983 CCS sequences after
filtering. Based on their inclusion of 5′-primer, 3′-primer and poly-A tail sequences, CCS
sequences were divided into full-length and non-full-length reads. A total of 879,040 full-
length reads were found among the CCS sequences, and a total of 834,868 full-length
non-chimera (FLNC) reads were obtained through ICE. Finally, LoRDEC software was
used to identify sequencing errors, and the RNA-Seq short reads with high accuracy were
combined for further correction. A total of 385,645 error-corrected consensus reads were
obtained, with an average length of 2571 bp (Table 1, Figure 1C). Finally, CD-HIT software
was used to eliminate redundancy among consensus reads, and 385,645 full-length non-
redundant transcripts and 207,995 Unigenes of samples were obtained (Table 1). A total of
12,433 transcripts shared by the two samples were found by cluster analysis of transcripts
with redundant sequences between the two samples (Figure 1A).

To further investigate gene function, non-redundant sequences were annotated by
using CD-HIT. Overall, the transcripts with annotations corresponding to the Nr database
were most common, with a total of 182,952 (Figure 1B). Additionally, 77,258 transcripts
were annotated in all databases, and 189,898 transcripts were annotated in at least one
database (Table S1).
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Table 1. Summary of Lolium multiflorum single-molecule real-time sequencing results.

CK DR Total

Subreads base (G) 15.48 15.24 30.72
number 6,944,546 6,843,321 13,787,867

Average length (bp) 2229 2227 2228
N50 (bp) 2652 2694 -

CCS 488,868 538,115 1,026,983
5′-primer 456,294 489,188 945,482
3′-primer 462,375 501,744 964,119

Poly-A 458,539 497,870 956,409
Full length 424,911 454,129 879,040

FLNC 403,543 431,325 834,868

Before Correction After Correction Before Correction After Correction After Correction

Total nucleotides 469,861,260 471,334,422 519,052,371 520,093,777 991,428,199
Total number 184,267 184,267 201,378 201,378 385,645

Mean length (bp) 2550 2558 2578 2583 2571
Min length (bp) 192 193 200 197 193
Max length (bp) 14,449 14,437 14,422 14,348 14,437

N50 (bp) 2755 2759 2795 2798 -
N90 (bp) 1774 1778 1782 1784 -

Transcripts Length
Interval

Number of
Transcripts

Number of
Unigenes

Number of
Transcripts

Number of
Unigenes

<500 bp 1973 1086 418 211
500–1k bp 4402 3289 3408 2299

1–2k bp 46,268 17,602 50,843 25,263
2–3k bp 80,106 40,389 87,946 45,276
>3k bp 51,518 32,554 58,763 39,986
Total 184,267 94,920 201,378 113,035

To investigate whether drought stress affects AS in L. multiflorum, 26,169 non-redundant
transcripts (Table S2) were processed into 10,629 UniTransModels (Table S2), and 1243 AS
events (Table S2) were identified based on UniTransModels. Before and after drought
stress, the occurrence of AS events was essentially uniform in both type and quantity. In
descending order of quantity, the types can be ranked as follows: retained intron (RI),
alternative 3′ splice sites (A3), alternative 5′ splice sites (A5), skipped exons (SE), alternative
first exons (AF), and alternative last exons (AL).

2.2. Differentially Expressed Genes in L. multiflorum Leaves and Roots under Drought

To evaluate the reliability of the DEG analysis, Pearson correlation analysis was
performed for pairs of samples. The coefficients of determination (R2) among the three
biological replicates in each condition were at least greater than 0.97, confirming the high
correlation among biological replicates and the stability and reliability of the DEG anal-
ysis (Figure 2A). In leaves and roots of L. multiflorum under drought stress, 41,141 DEGs
(19,155 down- and 21,986 up-regulated genes) (Figure 2C) and 35,559 DEGs (17,402 down-
and 18,157 up-regulated genes) (Figure 2D) were found, respectively. All DEGs involved
in the response to drought stress were analyzed, and 12 significant profiles were obtained
by trend analysis (Figure 2B). Profile 15 represents 3955 genes up-regulated in response to
drought stress in both leaves and roots (Figure S1A, Table S3). Profiles 14 and 11 represent
3993 up-regulated genes only in leaves and 3397 up-regulated genes only in roots, respec-
tively (Figure S1B,C, Table S3). Profile 5 represents 4534 genes down-regulated in response
to drought stress in both leaves and roots (Figure S1D, Table S3). These results indicated
that there were more DEGs in L. multiflorum leaves under in vitro drought treatment and
that the response of leaves to stress was broader and more active. At the same time, the
trend analysis showed that more genes were down-regulated in both leaves and roots.
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Figure 1. Gene function annotation and gene structure analysis. (A) Venn diagram comparing
transcripts between control (CK) and drought (DR) conditions. (B) Summary of annotation results
across the seven databases. (C) Length distribution of transcripts. (D) Statistical summary of
alternative splicing (AS) events in the two samples. (E) UpSet graph showing lncRNA predictions for
CK conditions. (F) UpSet graph showing lncRNA predictions for DR conditions.
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Figure 2. Differentially expressed genes in L. multiflorum leaves and roots under drought. (A) Pear-
son correlation coefficients between all samples. CKL and CKR represent leaves and roots under
normal control conditions, respectively. DRL and DRR represent leaves and roots under drought
stress, respectively. (B) Profiles ordered based on the P-value of genes assigned versus expected
results. (C) Volcano plot of DRL versus CKL. (D) Volcano plot of DRL versus CKL. Green repre-
sents down-regulated expression, red represents up-regulated expression, and black indicates no
significant difference.

A comparison of differences between the two treatment groups in leaves and roots
(i.e., DRL versus CKL and DRR versus CKR) revealed that 11,940 DEGs responded to
drought treatment in both tissues (Figure 3A, Table S4). To explore the biological functions
of DEGs, GO and KEGG enrichment analyses were performed on all the differentially
expressed genes in the two treatment groups (Figure 3B,C, Table S5). Among molecular
function (MF) terms, ‘catalytic activity’ and ‘coenzyme binding’ were significantly enriched
in both the DRL versus CKL and DRR versus CKR comparisons, simultaneously. Among
cellular component (CC) terms, ‘membrane’, ‘1,3-beta-d-glucan synthase complex’, ‘inte-
gral component of membrane’, ‘intrinsic component of membrane’ and ‘membrane part’
were significantly enriched in the DRL versus CKL and DRR versus CKR comparisons,
simultaneously. No biological process (BP) terms were enriched in both comparisons.
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Figure 3. Biological function annotation of differentially expressed genes (DEGs). (A) Venn diagram
for DEGs in the leaves in control versus drought conditions (DRL versus CKL) and roots in control
versus drought conditions (DRR versus CKR) comparisons. (B) Gene Ontology (GO) enrichment
analysis for DRL versus CKL. (C) GO enrichment analysis for DRR versus CKR.

2.3. Transcription Factor Statistics and Identification of R2R3-MYB Family Members

Transcription factors play an important role in regulating gene expression and have
been an active research focus for decades. Full-length ryegrass transcriptome data were
analyzed using the iTAK database, and the transcripts of 6512 transcription factors in
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90 families were identified under CK conditions (Figure 4A, Table S6). A total of 6567 tran-
scription factors in 88 families were identified under DR conditions (Figure 4B, Table S6).
Under CK and DR conditions, the families represented by the most members were SNF2,
SET and FAR1 and FAR1, C3H and SNF2, respectively. Under CK and DR conditions
combined, four families ranked in the top ten in terms of the number of family members
represented, namely SNF2, FAR1, MYB-related and C3H.
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Figure 4. Summary of expressed transcription factor families. (A) Transcription factor families in CK.
(B) Transcription factor families in DR.Transcription factor families are shown along the x-axis, while
the corresponding numbers of different transcription factors are represented on the y-axis. Because of
the large number of transcription factor families, the histogram shows only those families with more
than 20 members.

Further identification of R2R3-MYB gene family members among MYB-related genes
revealed 29 R2R3MYB genes expressed in L. multiflorum, sequentially named LmMYB1
through LmMYB29. The ORF lengths of LmMYB members ranged from 720 to 2889 bp, and
the predicted protein lengths ranged from 239 to 962 amino acids, with molecular weights
ranging from 27.23 to 105.65 kDa, respectively (Table 2).
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Table 2. R2R3-MYB family members identified in Lolium multiflorum.

ORF Length (bp) No. of AA pI Mw (kDa)

LmMYB1 747 248 9.12 27.75
LmMYB2 984 327 5.1 35.71
LmMYB3 1155 384 6.68 42.41
LmMYB4 1056 351 9.35 37.45
LmMYB5 849 282 5.08 31.61
LmMYB6 927 308 5.75 31.45
LmMYB7 906 301 5.26 33.52
LmMYB8 783 260 6.37 29.02
LmMYB9 1059 352 5.21 38.58

LmMYB10 720 239 7.13 27.23
LmMYB11 978 325 5.46 34.48
LmMYB12 1371 456 5.06 50.54
LmMYB13 1095 364 5.19 40.74
LmMYB14 1860 619 6.97 67.38
LmMYB15 1287 428 6.19 47.15
LmMYB16 873 290 6.39 32.21
LmMYB17 756 251 6.09 28.21
LmMYB18 915 304 5.27 33.87
LmMYB19 2094 697 4.83 75.73
LmMYB20 1872 623 6.97 67.75
LmMYB21 1089 362 5.18 40.47
LmMYB22 2889 962 5.11 105.65
LmMYB23 2538 845 5.4 93.78
LmMYB24 1002 333 5.21 37.37
LmMYB25 1650 549 5.15 59.42
LmMYB26 846 281 5.34 31.49
LmMYB27 1065 354 5.16 39.49
LmMYB28 2556 851 5.48 94.47
LmMYB29 933 310 5.11 34.54

Note: ORF, open reading frame; No. of AA, number of amino acids; Mw, molecular weight; pI, isoelectric point.

2.4. Genetic Analysis of Members of the R2R3-MYB Gene Family

To investigate the phylogenetic relationships of the R2R3MYB family members of
L. multiflorum and Arabidopsis thaliana, a phylogenetic tree was constructed. Thus, R2R3MYB
members from the two species could be divided into 13 subgroups, numbered S1 to S13,
according to their phylogenetic relationships (Figure 5). In S1, there is only one gene family
member, LmMYB6, and it is distantly related to all other members. Meanwhile, S3 and S5
subgroups only have members in L. multiflorum. All other subgroups consist of members
in both L. multiflorum and A. thaliana.
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Figure 5. Phylogeny and distribution of R2R3-MYB transcription factors. The phylogenetic tree of
R2R3-MYB proteins shows family members from both Arabidopsis thaliana and Lolium multiflorum.
The tree was generated with MEGA 7.0 software using the neighbor-joining (NJ) method based on
the inferred amino acid sequences. R2R3-MYB members in L. multiflorum are labeled with red stars.
S1 to S13 represent each of the different subgroups.

2.5. The Expression Patterns of R2R3-MYB Family Members under Drought

In order to better understand the role of R2R3-MYB proteins in L. multiflorum in the
response to stress, the expression patterns of LmMYB genes were measured using qRT-PCR.
The samples of L. multiflorum under drought stress included nine time points (0 min, 15 min,
30 min, 1 h, 2 h, 3 h, 6 h, 12 h, 24 h). The experimental data are briefly summarized as
follows. The expression patterns of the 29 LmMYB genes can be roughly divided into
three categories: early response (ER), intermediate response (IR) and late response (LR)
(Figure 6). The ER genes (10 members) showed a very fast response to drought stress
and were significantly upregulated at 15 and 30 min. The IR genes (11 members) were
significantly up-regulated at 1–6 h, and some members were continuously upregulated.
The (LR) genes (eight members) were up-regulated to a significant level after 6 h and often
continued to be up-regulated under subsequent stress.
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in the heat map were determined by qRT-PCR and normalized based on the expression of eIF4A and
HIS3. Clustering was conducted by row.

2.6. LmMYB Transcripts Localized to the Nucleus Enhanced Abiotic Stress Tolerance in Yeast

The subcellular localization of LmMYB1, LmMYB8 and LmMYB9 in tobacco leaves was
further studied, revealing that all three genes were expressed in the nucleus, which was
consistent with the function of transcription factors (Figure 7A). To further characterize
the response of LmMYB1, LmMYB8 and LmMYB9 to stress, we cloned them, inserted them
into the pYES2 vector, and then heterologously expressed them in the INVScI yeast line.
All yeast-harboring empty vectors as well as factors containing LmMYB1, LmMYB8 and
LmMYB9 were able to grow normally on SD-URA (2 g/L galactose) medium (Figure 7B).
Only the INVScI strains with LmMYB1, LmMYB8 and LmMYB9 were able to grow on
SD-URA (2 g/L galactose) medium under 3 M sorbitol (Figure 7C) and 1.5 M NaCl treat-
ments (Figure 7D). This result indicated that overexpression of LmMYB1, LmMYB8 and
LmMYB9 could significantly improve the resistance of INVScI yeast strains to osmotic
stress compared with the strain harboring the empty pYES2 vector. This also suggests that
LmMYB1, LmMYB8 and LmMYB9 may be involved in the plant response to osmotic stress.
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Figure 7. LmMYB transcripts are localized to the nucleus and enhanced drought and salt tolerance in
yeast. (A) Subcellular localization of LmMYB1, LmMYB8 and LmMYB9; scale bar, 50 µm. (B–D) The
growth of yeast transformed with the empty vector pYES2 or with pYES harbouring LmMYB1,
LmMYB8 or LmMYB9 under control, 3 M sorbitol and 1.5 M NaCl conditions.

3. Discussion

As one of the most extensive forms of stress, drought has a huge impact on the survival
of grasses. L. multiflorum is a vanguard grass species in artificial grassland construction,
a preferred grass species for mowed grasslands and an important grass species for soil
restoration. Understanding its response mechanism to drought stress is of substantial
value for agricultural production, animal husbandry and ecological restoration. Currently,
there is little available genomic information on L. multiflorum, so SMRT sequencing and
NGS sequencing were used to construct a novel Unigene database for L. multiflorum under
drought stress in this study. This extensive and comprehensive unigene database provides
strong support for future research on the molecular mechanisms of drought responses in
L. multiflorum. We identified 207,955 Unigenes and 1243 AS events and further characterized
a number of key candidate genes involved in the response of L. multiflorum to drought
stress, which can be used to advance the breeding of L. multiflorum to better adapt to
increasingly arid environments.
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3.1. A More Extensive and Complete Transcriptome Dataset

Compared to other L. multiflorum transcriptome studies using the Illumina platform,
our results provide a more extensive and complete transcriptome dataset, with several
critical strengths. First, our full-length transcriptome can later be used as a reference
for annotating and assembling subsequent genomes of L. multiflorum and related species.
Second, 207,955 accurate and high-quality full-length sequences were obtained, providing
particularly valuable data for gene structure and gene function analyses. Third, the full-
length transcripts generated in this study can be used to study the response of L. multiflorum
to environmental changes with greater clarity. In this study, 207,955 Unigenes with an
average length of 2571 bp were obtained by PacBio SMRT-Seq. Through the combination of
Illumina and PacBio platform data, Unigenes are significantly increased in number and
length compared with previous studies (Figure S2) [28,29]. The average predicted lengths
of Unigenes using Illumina data were only 871 bp and 575.24 bp, respectively. The increase
in number and length greatly enriched the L. multiflorum unigene library, making it both
more extensive and more complete, thus providing solid data support for subsequent gene
function studies.

3.2. Alternative Splicing Plays an Important Role in Complex Transcriptional Regulation

Alternative splicing plays an important role in stress responses and could enhance
transcript diversity dramatically. The phospholipid signaling pathway is involved in
regulating plant growth and aging [30]. Additionally, phosphatidylinositol phosphate
5-kinase (PIP5K) is a key part of the phospholipid signaling pathway [31]. PIP5K proteins
play important roles in plants and have many functions. For example, AtPIP5K1 is involved
in responses to water stress and the abscisic acid signaling pathway in A. thaliana [32].
AtPIP5K4 is involved in regulating stomatal opening in A. thaliana [33]. In this study,
1243 AS events were identified, and some notable phenomena were found. LmPIP5K9
produced two different transcripts, i.e., CDS1 (i2_LQ_DE_c113853/f1p10/2988) and CDS2
(i3_LQ_DE_c41394/f1p1/3368), through alternative splicing of a retained intron (RI), each
of which may perform different functions in L. multiflorum (Figure 8A). Read counts of
the two transcripts indicated that the expression levels of CDS1 and CDS2 were low in
both leaf and root samples under normal growth conditions, which was consistent with a
recent study [34]. This finding implies that LmPIP5K9 is not required under normal growth
conditions. Additionally, CDS1 is rapidly upregulated, about four-fold, after induction by
drought stress, which is also corroborated by other studies [34,35]. However, the expression
of CDS2, which itself is low under normal growth conditions, is further down-regulated
and almost not expressed at all under drought stress. Thus, two transcripts of the same
gene have different expression patterns. Accordingly, LmPIP5K9 may up-regulate the CDS1-
mediated phospholipid signaling pathway to participate in the drought stress response. In
contrast, CDS2 interacts with a cytosolic invertase to negatively regulate sugar-mediated
root growth, as previously reported [36]. In future work, we will confirm the functions of
these two transcripts, initially in A. thaliana.

3.3. Key Distinctive Candidate Genes Involved in the L. multiflorum Drought Stress Response

Drought stress greatly affected gene expression in L. multiflorum, and the affected genes
exhibited different expression patterns. We combined differential gene analysis, alternative
splicing analysis and gene family analysis to identify some distinctive candidate genes
involved in the response to drought stress. Homeobox (HOX) genes have been identified
and characterized in many eukaryotes and are involved in regulating various aspects of
growth and development [37]. We found that HOX22 (i1_LQ_DE_c57408/f1p2/1087) and
HOX24 (i3_HQ_DE_c33357/f3p2/3113) had higher expression levels in DRL samples than
other samples (Figure 8B). At the same time, there was an enrichment of DEGs in the
Intrinsic/Integral component of Golgi membrane identified by GO analysis, suggesting
that HOX22/24 responds to drought stress by participating in the formation of the Golgi
apparatus. High-affinity K+ transporters (HAK) are present in all plants with known
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genomes, but not in animals [38]. These proteins play an important role in K+ uptake and
transport [39,40] and are also involved in osmotic regulation [41], stabilizing plants by
balancing K+ homeostasis during cell growth and drought stress responses. In the present
study, the expression of LmHAK7 in root tissues after drought stress was remarkably high
compared with leaf tissues (Figure 8C), which was consistent with a recent study [42].
Characterizing intense responses to drought stress (i.e., fold change DRR:CKR = 71.5) and
ultra-high expression in roots (i.e., fold change DRR:DRL = 9.45) will be important focuses
of our future work. In the present study, we also found that LmMYB1, LmMYB8 and
LmMYB9 were able to improve drought tolerance and salt tolerance in yeast (Figure 7),
suggesting that they might have the same function in plants. Future experiments will aim
to genetically transform A. thaliana and L. multiflorum for functional verification.
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Figure 8. The complexity of transcriptional regulation in the Lolium multiflorum drought response.
(A) The role of alternative splicing (AS) in the phospholipid signaling pathway. The black bars
represent sequences, and the grey dotted lines represent gaps. (B) The HOX gene family is highly
expressed in leaf tissues under drought and participates in intrinsic/integral components of the Golgi
membrane. (C) The plant-specific gene HAK was highly expressed in root tissue under drought and
is involved in K+ uptake. Red and green represent high and low expression, respectively, and the
number in each box represents the corresponding read count.
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4. Materials and Methods
4.1. Material Cultivation and Sample Collection

In this study, L. multiflorum cultivar ‘Chuannong No. 1′ was used. The experimental
subjects for transcriptional sequencing included 300 individual plants during their flower-
ing period, all of which were cultivated at the Ya’an research station of Sichuan Agricultural
University. In order to obtain more comprehensive full-length transcriptome sequence
information, roots, stems, leaves and flowers were collected from 30 randomly selected
individual plants in the control group (CK) and in vitro drought treatment group after
6 h (DR).

Samples for expression pattern analysis were planted in pots (25 × 19 × 6 cm) in a
growth chamber with day/night cycles of 16 h/8 h and 22/20 ◦C. When the number of
leaves on plants reached three or four, stress treatments were initiated. The 15% PEG6000
is used to simulate drought stress. The leaves were sampled at 0 h, 15 min, 30 min, 1 h, 2 h,
3 h, 6 h, 12 h and 24 h after drought stress. All tissues were immediately stored in liquid
nitrogen after sampling and then stored at −80 ◦C.

4.2. Illumina cDNA Library Construction and Next-Generation Sequencing

After RNA was extracted from all samples, 3 µg of RNA was used for Illumina
cDNA library construction. Total RNA was extracted by grinding tissue in TRIzol reagent
(Invitrogen, Carlsbad, CA, USA) on dry ice and processed following the protocol provided
by the manufacturer. For NGS, a total of 12 Illumina cDNA libraries were constructed by
using the Illumina Stranded RNA Library Prep Kit (New York, NY, USA). Six libraries were
constructed from root tissue and the other six were from leaf tissue. The cDNA library
samples were sequenced by Gene Denovo Biotechnology Co. (Guangzhou, China). The
quality control of the NGS raw data was conducted as follows: the sequenced raw reads
with the adapter and primer sequences and poly-N were filtered out. The clean data were
used to correct the PacBio sequencing data in the next step.

4.3. PacBio cDNA Library Construction and Single-Molecule Real-Time (SMRT) Sequencing

After RNA was extracted from all samples, 1 µg of RNA was used for PacBio cDNA
library construction. Total RNA was extracted from each sample by using TRIzol reagent
(Invitrogen, Carlsbad, CA, USA). We constructed two libraries, one from a mixture of roots,
stems, leaves and flowers under drought treatment, and the other from a mixture of roots,
stems, leaves and flowers under the control treatment. The SMRT sequencing library was
prepared with the Clontech SMARTer PCR cDNA Synthesis Kit and the BluePippin Size
Selection System protocol. The mRNA enriched by Oligo (dT) magnetic beads was reverse
transcribed into cDNA. Then, double-stranded cDNA was generated with the optimum
cycle number. In addition, >4 kb size selection was performed using the BluePippinTM
Size-Selection System. Then, large-scale PCR was performed for the subsequent SMRTbell
library construction. The SMRTbell library was sequenced by Gene Denovo Biotechnology
Co. (Guangzhou, China).

The PacBio Sequel sequencing platform, based on SMRT-Seq technology, was used
to generate full-length sequence data. The whole data processing process is carried out
based on SMRTlink 5.1 (https://www.pacb.com (accessed on 20 May 2020)). Circular
consensus sequence (CCS) data were generated from the subread BAM files. CCS.BAM
files that were output were then classified into full-length and non-full-length reads using
pbclassify.py. The non-full length and full-length fasta files produced were then fed into
the cluster step, which performs isoform-level clustering (ICE), followed by final Arrow
polishing. Additional nucleotide errors in consensus reads were corrected using Illumina
RNA-Seq data with the software LoRDEC. Any redundancy in corrected consensus reads
was removed by CD-HIT to obtain final transcripts for the subsequent analysis (Figure 9).

https://www.pacb.com
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4.4. Functional Annotation of PacBio Isoforms

To annotate the isoforms identified in the sequencing data, isoforms were BLASTed
against the NCBI non-redundant protein (Nr) database (http://www.ncbi.nlm.nih.gov
(accessed on 20 May 2020)), NCBI nucleotide (Nt) database, the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database (http://www.genome.jp/kegg (accessed on
20 May 2020)), the Swiss-Prot protein database (http://www.expasy.ch/sprot (accessed on
20 May 2020)) and the COG/KOG database (http://www.ncbi.nlm.nih.gov/COG (accessed
on 20 May 2020)) with the BLASTx program (http://www.ncbi.nlm.nih.gov/BLAST/
(accessed on 20 May 2020)) at an E-value threshold of 10−5 to evaluate sequence similarity
with genes of other species. GO annotation was analyzed using Blast2GO software [43] with
Nr annotation isoform results. Then, functional classification of isoforms was performed
using WEGO software [44].

4.5. Identification of Alternative Splicing Events and lncRNA Prediction

The non-redundant transcripts were processed with the Coding GENome reconstruc-
tion Tool [45]. Each transcript family was further reconstructed into one or more unique
transcript model(s) (referred to as UniTransModels). Error-corrected non-redundant tran-
scripts were mapped to UniTransModels. Splicing junctions for transcripts mapped to the
same UniTransModels were examined, and transcripts with the same splicing junctions
were collapsed. Collapsed transcripts with different splicing junctions were detected as
transcription isoforms of UniTransModels. Alternative splicing (AS) events were identified
with SUPPA (https://github.com/comprna/SUPPA (accessed on 20 May 2020)) [46].

We used the Coding-Non-Coding-Index (CNCI) [47], Coding Potential Calculator
(CPC) [48], Pfam-scan [49] and PLEK [50] software tools to predict lncRNA. CNCI pro-
files adjoin nucleotide triplets to effectively distinguish protein-coding from non-coding
sequences independent of known annotations. CPC mainly assesses the extent and quality
of the ORF in a transcript and searches the sequences in known protein sequence databases

http://www.ncbi.nlm.nih.gov
http://www.genome.jp/kegg
http://www.expasy.ch/sprot
http://www.ncbi.nlm.nih.gov/COG
http://www.ncbi.nlm.nih.gov/BLAST/
https://github.com/comprna/SUPPA
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to clarify the coding and non-coding transcripts. Each transcript was translated in all three
possible frames and mapped in the Pfam database using Pfam Scan. Any transcript with a
Pfam hit was excluded in the following steps. The PLEK support vector machine classifier
uses an optimized K-mer approach to construct the best classifier to assess the coding
potential for species that lack high-quality genome sequences and annotations. Default
parameters were used for four tools. Transcripts predicted with protein-coding potential
by any or all of the three tools above were filtered out, and those without any identified
coding potential were our candidate set of lncRNAs.

4.6. Quantification of Gene Expression Levels and Differential Expression Analysis

Reference sequences were mapped prior to the quantification of gene expression. The
reference sequence mapping used CD-HIT to identify the transcripts that are redundant
after generating the corrected consensus sequence. The clean reads from RNA-Seq were
mapped to the reference sequence. The process used RSEM software [51], and the parame-
ters for bowtie2 were end-to-end and sensitive mode. Default parameters were used for all
other settings.

The read count for each transcript was obtained from the mapping results. Differential
expression analysis of the two groups was performed using the DESeq2 R package (1.34.0)
(http://bioconductor.org/packages/release/bioc/html/DESeq2.html (accessed on 20 May
2020)). The resulting P-values were adjusted using Benjamini and Hochberg’s approach for
controlling the false discovery rate. Genes with an adjusted p-value < 0.05 as determined
by DESeq were identified as differentially expressed.

GO enrichment analysis of differentially expressed genes (DEGs) was conducted using
the GOseq R package (1.46.0) (http://bioconductor.org/packages/release/bioc/html/
goseq.html (accessed on 20 May 2020)). GO terms with corrected p-values < 0.05 were
considered significantly enriched among DEGs. KEGG enrichment analysis was conducted
as implemented in KOBAS 3.0 (http://kobas.cbi.pku.edu.cn/kobas3 (accessed on 20 May
2020)) with its default parameters.

4.7. Transcription Factor Analysis and Identification of R2R3-MYB Gene Family Members

Transcription factors (TFs) are groups of protein molecules that can bind to specific se-
quences in the 5′ upstream sequences of genes to ensure that the target genes are expressed
at a specific intensity at a specific time and location [52]. We used iTAK software [53] to
predict plant TFs. R2R3-MYB genes were identified in the PFAM protein family database
using HMMER 3.0 software [54], with the MYB-like DNA-binding domains (Pfam, PF00249)
as the search query [55] and an initial threshold value of E ≤ 10–10. Basic information
about these genes, including PIs, MWs and subcellular localization, was predicted using
the ExPASy website (https://web.expasy.org/protparam/ (accessed on 10/02/2021)) [56].

4.8. Phylogenetic Analysis

The inferred protein sequences of the R2R3-MYB from L. multiflorum and A. thaliana
were aligned using ClustalW with its default parameters. MUSCLE [57] and Clustal
Omega [58] were also used to verify alignment results. The proteins of A. thaliana MYB were
downloaded from the Arabidopsis Information Resource (TAIR) (http://www.aabidopsis.
org/ (accessed on 10 February 2021)). Based on the alignment of the MYB domain, a
phylogenetic tree was constructed with MEGA 7.0 [59] using the neighbor-joining (NJ)
method. Bootstrap values (>50%) were estimated using 1000 replicates. Interactive Tree Of
Life (iTOL) software was used to optimize the obtained phylogenetic tree [60].

4.9. Expression Pattern Analysis of the R2R3-MYB Gene Family

Total RNA was extracted from leaves under drought stress. The cDNA was synthe-
sized using a MonScript™ RTIII Super Mix with dsDNase (Two-Step) Kit from Monad
Biotech Co., Ltd. (Suzhou, China). Subsequently, real-time quantitative PCR (qRT-PCR)
was performed using SYBR qPCR Master Mix (Vazyme, China). Gene-specific primers

http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/goseq.html
http://bioconductor.org/packages/release/bioc/html/goseq.html
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(shown in Supplementary Table S1) were designed to avoid the conserved region. Both
eIF4A and HIS3 were used as reference genes [61].

4.10. Subcellular Localization and Heterologous Expression

Subcellular localization prediction of gene family members was conducted using the
ExPASy website. To confirm the predicted subcellular localization, we inserted the full-
length sequences of LmMYB1, LmMYB8 and LmMYB9 into the pYBA1132 vector. Then, all
of them were transformed into tobacco leaves by Agrobacterium-mediated transformation.
The primers used are listed in Supplementary Table S7. Empty vector GFP was used
as a control. The fluorescence images of GFP fusion proteins were observed by FV10
confocal microscopy.

4.11. Heterologous Expression of LmMYB1, LmMYB8 and LmMYB9 in Yeast

LmMYB1, LmMYB8 and LmMYB9 were amplified from the PacBio cDNA library of
L. multiflorum constructed using the primers listed in Supplementary Table S7. The correct
CDS regions were cloned into a pYES2 vector for expression in yeast. Cells of the sorbitol-
and NaCl-sensitive yeast strain INVScI were obtained from MiaoLing Plasmid Platform.
The plasmids empty pYES2, pYES2-LmMYB1, pYES2-LmMYB8 and pYES2-LmMYB9 were
transformed into INVScI yeast by Carrier DNA (Vazyme, China).

Yeast transformants were screened using SD-Ura plates. The whole process lasted for
2 days at 28 ◦C. To analyze sorbitol and NaCl resistance, the validated single colonies were
cultured in liquid SD-Ura medium (2% galactose) at 28 ◦C and 150 rpm. When the medium
OD600 value reaches 2.0, gradient dilution is performed (10−1, 10−2, 10−3). Diluted yeast
was spotted onto SD-Ura plates containing 3 M sorbitol or 2 M NaCl in turn, which were
photographed and observed by the naked eye.

5. Conclusions

Through the analysis of transcriptome changes in leaves and roots of annual ryegrass
under drought stress using SMRT and NGS sequencing technologies we identified many
genes with potentially related functions and revealed complex transcript responses such
as alternative splicing and lncRNA expression. These results contribute to the current
understanding of the complexity of transcriptional regulation in plant drought responses.
In particular, the R2R3-MYB transcription factor family was identified and analyzed using
the high-quality full-length transcriptome. The candidate drought response regulatory
factors LmMYB1, LmMYB8 and LmMYB9 in L. multiflorum were preliminarily verified in
both tobacco and yeast. These results help clarify the mechanism of plant responses to
stress. Future studies will focus on plant responses to stress to improve our understanding
of plant adaptation to climate change.
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