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Abstract: (1) Background: Extracellular signal-regulating kinase 5 (ERK5) has been implicated in
many cellular functions, including survival, proliferation, and vascularization. Our objectives were
to examine the expression and effect of ERK5 in clear cell renal cell carcinoma (ccRCC). (2) Methods:
The expressions of ERK5 and its regulating micro-RNA miR-143 were investigated using immuno-
histochemistry and quantitative reverse transcriptase PCR in surgical specimens of ccRCC patients.
With invitro and in vivo studies, we used pharmacologic ERK5 inhibitor XMD8-92, RNA interference,
pre-miR-143 transduction, Western blotting, MTS assay, apoptosis assay, and subcutaneous xenograft
model. (3) Results: A strong ERK5 expression in surgical specimen was associated with high-grade
(p = 0.01), high-recurrence free rate (p = 0.02), and high cancer-specific survival (p = 0.03). Expression
levels of ERK5 and miR-143 expression level were correlated (p = 0.049). Pre-miR-143 transduction
into ccRCC cell A498 suppressed ERK5 expression. ERK5 inhibition enhanced cyclin-dependent
kinase inhibitor p21 expression and decreased anti-apoptotic molecules BCL2, resulting in decreased
cell proliferation and survival both in ccRCC and endothelial cells. In the xenograft model, ERK5
inhibitor XMD8-92 suppressed tumor growth. (4) Conclusions: ERK5 is regulated by miR-143, and
ERK5 inhibition is a promising target for ccRCC treatment.

Keywords: clear cell renal cell carcinoma; extracellular signal-regulating kinase 5; miR-143

1. Introduction

An estimated 403,262 new cases of renal cell carcinoma (RCC) were diagnosed world-
wide in 2018 (Bray, F. et al. GLOBOCAN2018; https://www.uicc.org/news/new-global-
cancer-data-globocan-2018; accessed on 1 September 2020). The most common RCC sub-
type is clear cell RCC (ccRCC; 70–75%) [1]. Approximately 90% of ccRCCs harbor an
inactivation of both von Hippel Lindau (VHL) and tumor-suppressor gene alleles [2].
Nephrectomy is used to treat localized RCC; however, half of these patients had metastatic
lesions at diagnosis or developed such lesions during the follow-up period [3]. In the case
of metastatic RCC (mRCC), systemic pharmacotherapies are used, which target vascular-
endothelial growth factors (VEGFs) and mammalian targets of rapamycin complex 1. Most
recently, immuno-oncology drugs were developed and established as a treatment for
mRCC [4]. These new drugs have been improving the survival of RCC patients; however,
mRCC rarely leads to a cure. The identification of new therapeutic targets is warranted to
develop better treatment approaches for mRCC.

Extracellular signal-regulated kinase 5 (ERK5), also known as big mitogen-activated
protein kinase 1/mitogen-activated protein kinase (MAPK) 7, is a member of the MAPK
family [5–7]. ERK5 is approximately twice the molecular size of ERK1/2, the best studied
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MAPK family protein. The kinase domain is encoded by its N-terminal half and shares
approximately 50% homology with ERK1/2, while its unique C-terminus encodes two
proline-rich regions and a nuclear localization signal. The ERK5 gene knock-out mice are
lethal due to cardiovascular defects, which result from the impairment of angiogenesis
in ERK5-lacking endothelial cells. ERK5 has been implicated in many cellular functions,
including survival, proliferation, and vascularization [8,9]. We previously demonstrated
that ERK5 requires catecholamine biosynthesis in neuronal cells [10]. Furthermore, the
ERK5 signaling pathway implicates therapy resistance in several human cancers. A recent
study revealed that ERK5 is degraded through the ubiquitin–proteasome system in a
process mediated by a VHL protein (pVHL) [11] because harboring an inactivation of
pVHL, ccRCC should store ERK5. In fact, a previous report demonstrated that 60% of
ccRCC patients had overexpression of ERK5 in their surgical specimens [12,13].

ERK5 is reportedly regulated by several miR-143 cancers [14–19]. In addition, a
previous report demonstrated that RCC patients with low expressions of miR-143 had poor
prognoses [20]; however, the correlation between miR-143 and ERK5 in ccRCC remains
unknown.

Hence, we investigated ERK5 expressions, the correlation between ERK5 and miR-143,
and the functions of ERK5 in ccRCC. In the present study, we demonstrated that (1) ccRCC
patients with strong ERK5 expression in their surgical specimens had poor survival; (2) the
specimens with decreased miR-143 had higher rates of strong ERK5 expression; (3) ERK5
inhibition suppresses ccRCC-cell and endothelial-cell proliferation and survival in vitro
and in vivo.

2. Results
2.1. ERK5 Expression in Surgical Specimens of ccRCC

First, we analyzed expression of ERK5 in 250 human ccRCC surgical specimens using
immunohistochemistry staining. Patient characteristics are shown in Table 1. Two of two-
hundred and fifty specimens were not evaluated. Among the remaining 248 specimens,
29 (20%), 139 (55%), and 82 (25%) specimens had negative, weak, and strong expressions
of ERK5, respectively. ERK5 expression was not associated with clinical T and M stages
(p = 0.40 and 0.23, respectively) (Figure 1B,C), whereas a higher rate of high-grade spec-
imens had strong ERK5 expressions (p = 0.01) (Figure 1D). The recurrence-free rate and
the cancer- specific survival were significantly shorter in the patients with strong ERK5
expression (p = 0.020/Figure 1E and p = 0.027/Figure 1F, respectively). The multivariate
analysis both for recurrence-free rate and cancer-specific survival did not show that ERK5
is an independent prognostic factor (HR [95%CI]; 1.270 [0.616–2.405], 1.099 [0.480–2.514],
respectively). To validate that the patients with strong ERK5 expression had shorter sur-
vival, we compared overall survival with high and low ERK5 mRNA expression using the
TCGA database. As expected, patients with high ERK5 expression level had shorter overall
survival (p < 0.001).



Int. J. Mol. Sci. 2022, 23, 8448 3 of 15Int. J. Mol. Sci. 2022, 23, 8448 3 of 15 
 

 

 
Figure 1. ERK5 expression in ccRCC specimens. (A) Representatives of negative, weak, and strong 
expression of ERK5 in immunohistochemistry specimens. (B) ERK5 expression level by each cT 
stage. (C) ERK5 expression level by each M stage. (D) ERK5 expression level by each grade. (E) 
Recurrence-free survival divided by ERK5 expression. (F) Cancer-specific survival divided by ERK5 

Figure 1. ERK5 expression in ccRCC specimens. (A) Representatives of negative, weak, and strong
expression of ERK5 in immunohistochemistry specimens. (B) ERK5 expression level by each cT
stage. (C) ERK5 expression level by each M stage. (D) ERK5 expression level by each grade.
(E) Recurrence-free survival divided by ERK5 expression. (F) Cancer-specific survival divided by
ERK5 expression. Abbreviations; ERK5, extracellular signal-regulated protein kinase 5; ccRCC, clear
cell renal cell carcinoma.
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Table 1. Patient Characteristics.

Number %

Age Median (Range) 64.7 (30.8–85.9)
Sex

Male 174 70.2
Female 74 29.8

cT
1a 136 54.8
1b 62 25
2a 19 7.7
3a 22 8.9
3b 7 2.8
4 2 0.8

cN
0 234 94.4
1 7 2.8
2 7 2.8
M
0 227 91.5
1 21 8.5

Grade
1 102 41.1
2 97 39.1
3 38 15.3
4 11 4.4

Outcome
alive without RCC 181 73

alive with RCC 22 8.9
dead by RCC 24 9.7

dead by other cause 21 8.5

2.2. ERK5 and miR143 in ccRCC Cell Lines

A previous report demonstrated that ERK5 accumulation is caused by an impairment
of the pVHL/proteasome system [11]. To validate ERK5 accumulation in ccRCC cell
lines, most of which harbor VHL inactivation, we examined ERK5 expressions in VHL
mutant- ccRCC cell lines and a VHL-wild type RCC cell line. All examined human RCC
cell lines expressed ERK5, especially in A498 and A704 cells. Although a proteasome
inhibitor MG132 enhanced ERK5 expression in VHL wild-type cell line Caki1, it did not in
VHL-mutant cell line A498, 786O, 769P, and A704 (Figure 2A).
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Figure 2. Correlations between ERK5 and miR-143. (A) ERK5 expression with/without proteasome 
inhibitor MG132 in RCC cells. The RCC cells were treated with 20 μM MG132 for 24 h. (B) miR-143 
expression level in RCC cells. (C) Transduction of pre-miR-143 suppressed ERK5 expression. (D) 
miR-143 expression in surgical specimens. (E) Specimens with decreased miR143. Abbreviation; 
ERK5, extracellular signal-regulated protein kinase 5; RCC, clear cell renal cell carcinoma. 

Figure 2. Correlations between ERK5 and miR-143. (A) ERK5 expression with/without proteasome
inhibitor MG132 in RCC cells. The RCC cells were treated with 20 µM MG132 for 24 h. (B) miR-
143 expression level in RCC cells. (C) Transduction of pre-miR-143 suppressed ERK5 expression.
(D) miR-143 expression in surgical specimens. Abbreviation; ERK5, extracellular signal-regulated
protein kinase 5; RCC, clear cell renal cell carcinoma.
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The expression levels of miR-143 in A498, 786O, Caki1, and A704 were lower than the
others, which showed an inverse relationship between the expression levels of miR-143
and ERK5 except 786O (Figure 2B). The induction of pre-miR-143 reduced ERK5 expression
in A498 cells (Figure 2C).

2.3. miR143 Expression in Surgical Specimens of ccRCC

The range of relative miR-143 expression levels was 0.03–7.66. Of 48 cases that exam-
ined miR-143 expression levels, 14 (29.2%) and 34 (70.8%) cases decreased and were normal
or had increased miR-143, respectively (Figure 2D). The specimens with decreased miR-143
had higher rates of strong ERK5 expression (p = 0.0491) (Figure 2D).

2.4. ERK5 Inhibition in ccRCC Cells

To examine the effect of ERK5 inhibition, siRNA for ERK5 was conducted in A498
cells. The transient knockdown of ERK5 increased cell-cycle-dependent kinase inhibitor
p21 and decreased anti-apoptotic molecule BCL2 (Figure 3A).

To further confirm the role of ERK5 and investigate the potential for therapeutic target
in ccRCC, we used the small inhibitor XMD8-92, which inhibits ERK5 kinase activity (Fig-
ure 3B). First, we conducted an MEF2C reporter assay to validate the effect of XMD8-92;
MEF2C is a transcription factor that was directly activated by ERK5 [21]. We found that
1.25–10 µM XMD8-92 suppressed MEF2C-dependent transcription in dose–dependent
manner (Figure 3C). Western blotting analyses showed that XMD8-92 increased p21 and
p27 expression and decreased BCL2, in agreement with the siRNA results (Figure 3D).
Moreover, we found that XMD8-92 produced cleaved PARP (Figure 3D) and increased the
sub-G1 population from 6.4% in the control to 39.6% in XMD8-92-treated cells (Figure 3E),
which indicated an increase in apoptotic cells. To confirm that XMD8-92 induces apop-
tosis, we investigated the mitochondrial membrane’s potential using TMRE and caspase
activity. XMD8-92 reduced TMRE-positive cells and increased caspase 3/7-positive cells
(Figure 3F). In addition, we also use another ERK5 inhibitor, XMD17-109, to confirm the
effect by pharmacological inhibition. XMD17-109 also showed an increase in apoptotic
cells (Figure 3G). Investigating the IC50 of XMD8-92 in A498 (VHL mutant, low miR-143
expression, and strong ERK5 expression human ccRCC cells, Figure 3H), Caki1 (VHL wild
type, low miR-143 expression, and weak ERK5 expression human RCC cells, Figure 3I),
769P (VHL mutant, high miR-143 expression, and weak ERK5 expression human ccRCC
cells, Figure 3J), HUVEC (human endothelial cells, Figure 3K), and HRCEpC (normal
urothelial cells, Figure 3L), the values were 9.6 µM, 26.5 µM, 28.6 µM, 7.4 µM, and 45.1
µM, respectively. The high ERK5 expression ccRCC cell line A498 and endothelial cell
HUVEC had lower IC50 than low ERK5 expression RCC cell lines Caki1 and 769P and
normal kidney cell line HRCEpC. The IC50 of another ERK5 inhibitor XMD17-109 in A498
was 1.3 µM (Figure 3G).
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Figure 3. Effects of ERK5 inhibition. (A) Transient knockdown of ERK5 inhibited BCL2 and en-
hanced p21 on Western blotting in A498 cells. (B) The structure of ERK5 inhibitor XMD8-92. The 
error bars indicate standard deviation. (C) XMD8-92 suppressed the expression of MEF2C, ERK5, 
down-stream protein in a dose-dependent manner on luciferase-reporter assays in A498 cells. (D) 
XMD8-92 suppressed anti-apoptotic protein BCL2, produced cleaved PARP, and enhanced p21 and 

Figure 3. Effects of ERK5 inhibition. (A) Transient knockdown of ERK5 inhibited BCL2 and enhanced
p21 on Western blotting in A498 cells. (B) The structure of ERK5 inhibitor XMD8-92. The error bars
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indicate standard deviation. (C) XMD8-92 suppressed the expression of MEF2C, ERK5, down-stream
protein in a dose-dependent manner on luciferase-reporter assays in A498 cells. (D) XMD8-92
suppressed anti-apoptotic protein BCL2, produced cleaved PARP, and enhanced p21 and p27 on
Western blotting in A498 cells. (E) Cell cycle analyses using flow cytometry with/without XMD8-
92 in A498 cells. Flow cytometry was performed three times. The middle and left charts are the
representative flow cytometry with/without XMD8-92. The right chart shows the average ratio of
the cell-cycle distribution. The error bars indicate standard deviation. XMD8-92 augmented subG1
population in a dose-dependent manner. (F) The apoptosis assay with/without XMD8-92 for 24 h.
(G) The apoptosis assay with/without XMD17-109 for 24 h. (H–L) MTS assay and IC50 with XMD8-92
in A498 (VHL mutant and low miR143 expression ccRCC cell line, (H)), Caki1 (VHL wild type ccRCC
cell line, (I)), 769P (VHL mutant and high miR144 expression ccRCC cell line, (J)), HUVEC (human
vascular endothelial cell line, (K)), and HRCEpC cells (normal renal cortical epithelial cell line, (L)).
(M) MTS assay and IC50 with XMD17-109 in A498. Abbreviations: IC50, half maximal inhibitory
concentration; ccRCC, clear cell renal cell carcinoma.

2.5. Effect of ERK5 Inhibitor XMD8-92 in Xenograft Model

Using the subcutaneous A498 xenograft model, we examined the effect of XMD8-92
in vivo. We found that the injection of XMD8-92 suppressed tumor growths (p = 0.0027)
(Figure 4A). There was no weight loss in the mice during treatment (data not shown).
Moreover, the injection of XMD8-92 decreased Ki67-positive cells that are markers for cell
proliferation (Figure 4B) and CD34, which is a marker for neovascularization (Figure 4C),
in a dose-dependent manner.
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XMD8-92 (n = 6, 50 mg/kg of body weight; fifth a week) or vehicle 20% cyclodextrin (n = 5) was Figure 4. Subcutaneous A498 xenograft model with XMD8-92. (A) The mice were treated with

XMD8-92 (n = 6, 50 mg/kg of body weight; fifth a week) or vehicle 20% cyclodextrin (n = 5) was
administrated by I.P. injections five times weekly for 3 weeks. Data shown are mean ± SEM. The p
value was determined by one-way ANOVA. (B,C) Mice were treated with XMD8-92 at a dose of 50
mg/kg once daily (QD), twice daily (BID), or with carrier solution intraperitoneally. Ki67 (B) and
CD34 (C) expressions in the tumor were assessed by immunostaining.
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3. Discussion

ERK5 is the most recently discovered MAPK family protein [22]. Its substrates in-
clude serine/threonine kinase ribosomal S6 kinase, transcription factors c-Fos, Ankrd1,
and MEF2c [21–24]. ERK5 positively regulates cell proliferation via p21 inhibition and
cell survival via BCL2 expression in endothelial cells [25–29]. Several reports showed
that strong ERK5 expression indicates worse prognoses in breast, prostate cancer, and
ccRCC [12,13,30,31]. In addition, recent studies demonstrated ERK5 as a potential thera-
peutic target in leukemia, multiple myeloma, breast, liver, prostate, and pancreatic can-
cer [25,32–39]. Nevertheless, the role of ERK5 in ccRCC remains unknown. We showed
that strong ERK5 expression indicates worse prognoses in ccRCC, in agreement with the
previous study. In addition, ERK5 expression is associated with the grade but not with
the clinical stage (Figure 1B–D). Moreover, our study first demonstrated in ccRCC that (1)
ERK5 is regulated not only by pVHL but also by miR-143; (2) ERK5 inhibition suppresses
cell viability in highly ERK5-expressed ccRCC cell and endothelial cells; (3) ERK5 inhibition
suppressed the expression of anti-apoptotic protein BCL2 and induced apoptosis; (4) ERK5
inhibitor XMD8-92 suppressed tumor growth in xenograft model.

ERK5 is polyubiquitinated by pVHL, which leads to proteasomal degradation [11].
Our study also showed that proteasome inhibitor MG132 did not change the ERK5 expres-
sion level, which supports the previous report. In the surgical specimens of this study,
however, there were only 25% ccRCC specimens with strong ERK5 expression and as many
as 20% without its expression. Nevertheless, beyond 95% of ccRCC, it should harbor VHL-
or VHL-related gene inactivation [2]. These results imply that ERK5 expression in ccRCC
should also be regulated by other mechanisms.

A previous report demonstrated that miR-143 suppresses ERK5 in acute myeloid
lymphoma, breast cancer, HeLa cell, bladder cancer, and adipose tissue-derived stromal
cells [14–19]. Other reports demonstrated that miR-143 suppressed cell proliferation via
hexokinase-2 and K-RAS and that miR-143 expression level is inversely correlated with
early recurrences in RCC [20,40,41]. We demonstrated that the induction of pre-miR-143
suppressed ERK5 expression in ccRCC cells. In addition, low miR-143 expression levels
have reverse correlations with ERK5 expression levels in both human ccRCC cell lines and
surgical specimens. These results indicate that ERK5 regulation is one of the rationales
for tumor suppression by miR-143 in ccRCC. Meanwhile, there should be unknown mech-
anisms that regulate ERK5 other than pVHL and miR-143 because 786O has low ERK5
expression, despite the presence of the VHL mutant and low miR-143 expression levels.
Further studies are needed to investigate other mechanisms of ERK5 regulation than pVHL
and miR-143.

In the in vivo study, ERK5 inhibitor XMD8-92 suppressed CD34 positive cells, which
reflect neovascularization and Ki67, which reflect cell proliferation. A previous study
demonstrated that ERK5 gene knock-out mice are lethal due to cardiovascular defects,
which results from an impairment of angiogenesis in ERK5-lacking endothelial cells [27].
Another report demonstrated that VEGF activates ERK5 in endothelial cells [42]. Our results
also demonstrated that ERK5 inhibition suppressed endothelial cells. These results indicate
that XMD8-92 not only directly inhibits cancer cells but also targets cancer angiogenesis.
Moreover, ERK5 inhibition might contribute to overcoming anti-VEGF therapy resistance
in ccRCC. Although the anti-VEGF therapies are prevalent in metastatic ccRCC treatments,
almost all patients develop resistances against them [1]. One of the reasons for the resistance
is that other growth factor axes than VEGF, e.g., fibroblast growth factor, hepatocyte growth
factor, and hepatocyte growth factor/cMet receptor, are strongly expressed and work for
angiogenesis through the anti-VEGF treatment [43,44]. Since ERK5 is a molecule at down-
stream of the growth factor, ERK5 inhibition can evade interactions between growth factors.
Further studies will be needed to investigate if ERK5 inhibition overcomes the resistance
against anti-VEGF therapy.

ERK5 activation requires the stimulation by MEK5. Generally speaking, the signal
pathway of MEK5/ERK5 is activated by environmental stress, growth factor, and cytokine
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stimulation [27,33,42,45,46]; however, the mechanism of ERK5 activation in ccRCC is
unclear. Further studies will be needed to investigate the mechanism for ERK5 activation.
One of the other limitations is the potential bias of animal study. We did not use the strategy
to minimize potential confounders, such as the order of treatment and measurements or
animal cage location.

4. Materials and Methods
4.1. Clinical Specimens and Tissue Collection

A total of 250 ccRCC specimens were collected from patients who had undergone
nephrectomy in Yamagata University between 2006 and 2012. Patients with adjuvant
targeted therapy and non-ccRCC were excluded. Patients with adjuvant interferon-alpha
treatments were included.

The tumors were fixed in 10% buffered formalin and embedded in paraffin (FFPE),
and the samples were coded. Paraffin sections were routinely stained with hematoxylin
and eosin, and a pathological diagnosis was made. Pathological stage and grade were
determined according to the Union for international Cancer Control TNM classification of
malignant tumors. Pathological grades were assigned according to the 2016 World Health
Organization classification [47].

4.2. Immunohistochemistry

Antibodies against anti-ERK5 (abcam Japan, Tokyo, Japan) were used for immuno-
histochemistry (IHC). The staining was performed as previously described [48]. Briefly,
a 5 µm-thick FFPE sample was mounted on silanized glass slides (Dako Japan, Tokyo,
Japan). After deparaffination and rehydration, epitopes were reactivated by autoclaving
the sections in a 10 mM citric buffer (pH 6.0) for 10 min. The slides were incubated with
the primary antibodies and held overnight at 4 ◦C in a moist chamber. After washing with
phosphate-buffered saline, the bound antibody was detected by the peroxidase method
using Histofine simple stain MAZ-PO (Nichirei, Tokyo, Japan). The staining reaction was
developed by diaminobenzidine in the presence of H2O2. Nuclear counterstaining was per-
formed using hematoxylin. Positive and negative controls were included in each staining
series.

Two investigators (SN and TN), who were both blinded to the patient data, evaluated
the expression of EKR5 on tumor cells and scored them as strong, weak, and negative
expression semi-quantitatively (Figure 1A). Any discrepancy was resolved by consensus.

4.3. TCGA Database

To validate the value as a prognostic indicator, we collected clinical data and the ERK5
mRNA expression level of Kidney Renal Clear Cell Carcinoma in the Cancer Genome
Atlas (TCGA; https://cancergenome.nih.gov/, accessed on 28 June 2018) via cBioPortal
(http://www.cbioportal.org/, accessed on 28 June 2018).

4.4. Cells and Culture Conditions

The established renal cell cancer cell lines A498, 786O, 769P, Caki1, and A704; the
established human normal renal cortical epithelial cell line HRCEpC; and the established
human endothelial cell line HUVEC were purchased from ATCC (Manassas, VA, USA).
The cells were cultured as described previously [49].

4.5. Cell Viabitliy

Cell viability was detected with the CellTiter 96® Aqueous One Solution Cell Prolifera-
tion Assay (Promega, Madison, WI, USA), as described previously [49]. ERK5 inhibitor,
XMD8-92 and XMD17-109 were purchased from ChemoScene (Monmouth Junction, NJ,
USA). Values of the half maximal inhibitory concentration (IC50) were calculated by fitting
concentration–response curves to a four-parameter logistic sigmoidal function model using
R package ‘drc’ (http://www.bioassay.dk; Copenhagen, Denmark).

https://cancergenome.nih.gov/
http://www.cbioportal.org/
http://www.bioassay.dk
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4.6. Precursor microRNA Introduction

A498 cells were transfected with 30 nmol/L of precursor microRNA, pre-miR-143
(Applied Biosystems Japan, Tokyo, Japan). Transfection was performed with Lipofectamin
2000 (Thermo Fisher Scientific, Tokyo, Japan) as described previously [49].

4.7. MicroRNA Extraction and Real-Time PCR for Analysis of miR-143 Expression

Before microRNA extraction, fresh surgical specimens of paired malignant and normal
renal tissue were immersed in an RNAlater (Applied Biosystems) tissue storage solution
and stored at −80 ◦C until further use.

MicroRNA extraction and real-time PCR were performed with the mirVana® miRNA
Isolation Kit (Applied Biosystems), a TaqMan® Universal PCR Master Mix (Applied Biosys-
tems), and TaqMan® MicroRNA Assays (has-miR-143 and RNU6B, Applied Biosystems),
as previously described [49]. The expression of miRNAs was calculated using the compara-
tive Ct (2-delta-delta Ct) method [50] with RNU6B as an endogenous control to normalize
miRNAs expression levels. Each reaction was run in triplicate and means with SD were
calculated. When the ratio of miR143 expression in malignant to normal tissues was under
0.8, the miR-143 expression was considered decreased.

4.8. RNA Interference

The transient knockdown of ERK5 was achieved in A498 cells using two siRNA (its
sequence—TTTGCCTTACTTCCCACCTGtt and CCCATGTCGAAAGACTGGtt; Integrated
DNA Technologies, Coralville, IA, USA). An unrelated control siRNA was also used
(Applied Biosystems). Transfection was carried out using Lipofectamine max (Invitrogen,
Waltham, MA, USA) according to the manufacturer’s recommendations.

4.9. Western Blotting Analysis

Western blotting analysis was performed as described previously [49]. The following
antibodies were used: anti-βactin (Abcam, Cambridge, MA, USA), BCL2, p21, PARP, and
ERK5 (Cell Signaling Technology Japan, Osaka, Japan).

4.10. Luciferase Reporter Assay

A luciferase reporter assay was performed as described previously [10]. The DNA
plasmids were transfected into A498 cells using the transfection reagent Lipofectamine
3000 (Thermo Fisher Scientific). Briefly, the cells were seeded onto 12-well plates at
1 × 105 (cells/well) and cultivated for a day. The DNA plasmids (3.3 µg of MEF2C/Luc,
0.1 µg of pGL4.74) and transfection reagents (5.0 µL/tube) were mixed gently in DMEM
(100 µL/tube) and incubated for 15 minutes at room temperature. After the incubation,
this entire mixture was transferred to the cultured media (100 µL/well). After incubation
for 10 h at 37 ◦C, media were replaced with growth medium (500 µL) and XMD8-92 at
the indicated concentration (for free, 1.25 µM, 2.5 µM, 5.0 µM, and 10 µM of XMD8-92).
For reporter gene assays, the cells were incubated with XMD8-92 at 37 ◦C for 8 h. Cells
were lysed in lysis buffer (Duel-Luciferase Reporter Asay System, Promega, Tokyo, Japan)
(100 µL/well). After lysis, the luciferase reaction was induced by adding luciferase assay
substrate, and luciferase activity was measured using a luminometer (Lumat LB 9507,
Berthold Japan K.K., Tokyo, Japan). As an internal control, renillla luciferase activity was
measured in the lysates to normalize for transfection efficiencies.

4.11. Apoptosis Assay

The apoptosis assay was performed as follows; A498 cells were cultured in the pres-
ence and absence of XMD8-92 for 72 h. The apoptosis was estimated by using 10 µM
CellEventTM Caspase-3/7 Green Detection Reagent, which is a fluorogenic substrate for
activated caspase-3/7 and 100 nM InvitrogenTM tetramethylrhodamine ethyl ester (TMRE)
(both products; Thermo Fisher Scientific, Tokyo, Japan), and this reflects the mitochondrial
membrane’s potential.



Int. J. Mol. Sci. 2022, 23, 8448 12 of 15

4.12. Xenograft Tumor Model of ccRCC in Mice

All experimental procedures using female BALB/c-nu mice (CLEA Japan Inc., Tokyo,
Japan) were performed according to the animal welfare regulations of Yamagata University
Faculty of Medicine. Three to five mice per cage were maintained on a 12-hour light/dark
cycle and were provided with sterilized water and standard rodent feed. Fourteen mice
were randomized into two groups (7 mice in each group). A498 cells (8.5 × 105) were
resuspended in DMEM and injected subcutaneously into the right flank of 6-week-old
female mice, as described previously [36]. When the tumor volume reached approximately
1000 mm3, the mice were treated with XMD8-92 (n = 6, 50 mg/kg of body weight; fifth a
week) or vehicle 20% cyclodextrin (n = 5, control group), which was administrated by I.P.
injections five times weekly for three weeks. One mouse in the XMD-8-92 group and two
mice in another control group were excluded from the analysis because their tumor did
not grow enough. Animal health was monitored daily and in the case of the appearance
of a palpable tumor, its size was measured every 2–3 days with a caliper. The volume
of tumors was calculated as (L × W2) × 0.5. We did not use the strategy to minimize
potential confounders such as the order of treatment and measurements or animal cage
location. The primary endpoint was the tumor volume after a 3-week treatment, which
was set correspondingly to the design of this study. All mice were sacrificed by cervical
dislocations under anesthesia using isoflurane after tumor volume assessments. Although
we planned to euthanize mice with more than 20% body weight loss, we did not actually do
so. After sacrifice, removed tumors were fixed in FFPE. The FFPE xenograft tumors were
stained against Ki67 and CD34 (DAKO Japan, Tokyo, Japan) following the IHC procedure.
In addition, one mouse was treated with 50 mg/kg of body XMD8-92 twice a day, five days
a week for three weeks in order to examine the dose-dependency on the results of IHC.

4.13. Statistical Analysis

The statistical correlations between parameters of clinical background and ERK5
expression level were analyzed using Fisher’s exact test for categorical data and Welch’s
t test for continuous variabilities. Survival durations were estimated using the Kaplan–
Meier method and compared among groups using the log-rank test. The multivariate
analysis was performed using the Cox proportional model. The tumor volume in mouse
xenograft model was compared using one-way ANOVA. A p-value of <0.05 was considered
statistically significant. All statistical analyses were performed using the statistical software
package R version 3.5.2 (https://cran.r-project.org. accessed on 28 June 2018).

5. Conclusions

Our work shows that ERK5 is regulated by not only VHL inactivation, but also by
miR-143 suppression in ccRCC. Our results also identify ERK5 as a potential therapeutic
target in ccRCC.
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