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Abstract: Whole genome sequencing (WGS) provides the highest resolution for genome-based species
identification and can provide insight into the antimicrobial resistance and virulence potential of a
single microbiological isolate during the diagnostic process. In contrast, metagenomic sequencing
allows the analysis of DNA segments from multiple microorganisms within a community, either
using an amplicon- or shotgun-based approach. However, WGS and shotgun metagenomic data
are rarely combined, although such an approach may generate additive or synergistic information,
critical for, e.g., patient management, infection control, and pathogen surveillance. To produce
a combined workflow with actionable outputs, we need to understand the pre-to-post analytical
process of both technologies. This will require specific databases storing interlinked sequencing and
metadata, and also involves customized bioinformatic analytical pipelines. This review article will
provide an overview of the critical steps and potential clinical application of combining WGS and
metagenomics together for microbiological diagnosis.

Keywords: whole genome sequencing; metagenomics; epidemiology; surveillance; antimicrobial
resistance; transmission; database; bioinformatics; combination

1. Introduction

Three questions guide diagnostics in clinical microbiology: (i) Species identification:
“who is there?”, (ii) biological functionality: “what are microorganisms doing?”, and (iii) in-
teraction between microorganisms and the host: “are they linked?” [1]. These questions
allow the assessment of different clinical scenarios using specific culture- or genome-based
technologies. Culture-based microbiological diagnostic assays usually provide reliable
species identification and allow the detection of mixed infections on agar plates. Cul-
ture also delivers established phenotypic readouts such as antibiotic susceptibility [2].
However, important shortcomings include the following: (i) Most phenotypic methods
are time-consuming, requiring up to 72 h to obtain results [3,4]; (ii) many microbes are
fastidious or non-culturable, thereby remain undetected, introducing a diagnostic bias [5];
(iii) information on virulence is often scarce due to a lack of standardized phenotypic
readouts; and (iv) phenotypes for antimicrobial resistance profiling can be influenced by
numerous parameters, e.g., type of agar plates, age of colonies, and environmental factors
such as temperature and pH [6]. Genome-based diagnostics may help to overcome some of
these limitations.

Since the first fully sequenced bacterial genome of Haemophilus influenzae type B
became available in 1995 [7], sequencing technologies have rapidly evolved and are now
used in patient care and infection control management [8]. Whole genome sequencing
(WGS) and metagenomics use different approaches to determine the genomic content in
a sample. WGS aims to analyze the whole genome of a single bacterial colony, while
amplicon-based marker gene sequencing (e.g., 16S/ITS) or shotgun metagenomics focuses
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on microbial communities within a sample, usually without culture [9,10]. The costs per
sequenced nucleotide have substantially decreased during the past decade [11,12] due to
the expansion of sequencing capacities, the development of cost-effective technologies,
advances in laboratory automation, and the progression of standardized workflows [13,14].
Today, knowledge and utilization have increased to a point where WGS can be applied in
clinical microbiological diagnostics and surveillance not only in high-resource laboratories,
but also in limited-resource environments [15–17].

Successfully linking the genotype to the phenotype for clinical applications requires a
profound understanding of the diagnostic process, for example, when and how linking both
types of information is appropriate. Sequencing capacity was further boosted during the
COVID-19 pandemic [10,18], with more than 13.9 million SARS-CoV-2 genomes sequenced
and made publicly available (www.covid19dataportal.org; accessed on 9 August 2022).
This massive sequencing effort also resulted in a high degree of standardized analytical
protocols and increased awareness of quality control of the sequencing data [19].

The choice of the sequencing approach (WGS vs. metagenomics) is dependent on
the clinical question and demand, e.g., rapid result, need for acute management vs. high-
resolution result for typing. In addition, the available sample type influences the choice
of technology. Figure 1 provides a decision flow chart for selecting the suitable sequenc-
ing technology.
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With increasing numbers of available WGS and metagenomic datasets, the question
arises as to whether a combination of both potentiates the technical resolution and the
information produced for disentangling the microbial communities present in various
environments and their transmission between them. While WGS still largely generates
data from isolates grown on plates, culture-independent 16S metagenomics drastically
reduces the time required for species identification, thanks to the more rapid and direct
marker-gene sequencing and available high-quality databases. In the case of pathogens,
WGS can elucidate risk potentials such as strain relatedness for outbreak detection, as well
as the presence of genes potentially encoding antimicrobial resistance (AMR). Shotgun
metagenomics can combine the advantages of both these methods and also shed light on
the pathogens circulating in the environment. However, this comes with high costs, low
standardization, and limited sequencing depth, often resulting in fragmented information
from single bacterial genomes [20], and challenging bioinformatics hampers its application
in clinics so far. A successful combination may allow the application of new statistical
approaches such as data mining and enable the exploration of individual pathogens and
host–pathogen interactions, as well as the complex interplay of microbial communities.
This could pave the way for a more personalized risk assessment of colonizing or virulent
pathogens and the transmission dynamics of microbes between different environments.
How could a combined approach be applied to healthcare? What are the technical and
analytical requirements? What are the potential use cases?

In this review, we will try to answer and discuss these critical questions.

2. Focus on Individual Microorganisms

In bacteriology and mycology routine diagnostics, WGS is most commonly applied
to single bacterial isolates [21]. Nowadays, with the help of advanced molecular biology
techniques, difficult-to-culture microorganisms can also be sequenced using WGS. For
example, the sequencing of Mycobacterium tuberculosis from liquid media using the My-
cobacteria Growth Indicator Tube (MGIT) [22] has been established, although with a slower
turnaround time compared to targeted DNA enrichment directly from sputum [23]. Viruses
or intracellular bacteria can be amplified or enriched using (i) pathogen-specific PCRs
(e.g., for SARS-CoV-2 or Influenza) [24,25] or (ii) bead-based DNA pull-down assays, e.g.,
for Chlamydia trachomatis [26], human papillomaviruses [27], or Noroviruses [28]. Sweeps
from solid agar plates with multiple mixed species can also be used, as shown for the
mGEMS and mSweep bioinformatic pipelines, which were validated with Escherichia coli,
Enterococcus faecalis, and Staphylococcus aureus [29].

Quality control. After sequencing, the typical analysis workflow includes quality assess-
ment of the sequenced data (raw fastq files), followed by preprocessing of the sequenced
reads (adapter trimming and filtering low-quality reads) and assembly [30–32]. The quality
control (QC) monitors the following critical parameters: Read accuracy (Q30 score to mea-
sure the probability of incorrect base calling), genome coverage, genome completeness, and
the number of contigs [33]. QC is followed by the assembly of the reads to generate contigs
and possibly circularize the genome. Assembly is either performed de novo, against a refer-
ence genome map, or as a split k-mer analysis [34], which all may influence the subsequent
typing resolution. Short-read and long-read sequencing can be used together to form hybrid
assemblies, which allow the generation of high-quality genomes of single pathogens [35,36].
GC biases (GC-poor and GC-rich regions), which arise due to the genomic composition
of the microorganisms, lead to uneven coverage during sequencing and might affect the
resulting assemblies [37,38]. The library preparation techniques used for sequencing can
also impact the assemblies [39,40]. In addition, contamination from different or even the
same species needs to be excluded to ensure the reliability of the downstream analyses [41].
After assembly of the raw data, it is difficult to attribute the cause of errors. Specific QC
pipelines such as AQUAMIS (Assembly-based Quality Assessment for Microbial Isolate
Sequencing) allow for automating this process [42].
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Identification. The assembled genomes are used to identify microbes at species or
subspecies levels. Genomic-based species annotation of assembled genomes appears
trivial at first but can have unexpected caveats for certain species, even for well-known
pathogens [43,44]. The bacterial taxonomy is ruled by the International Code of Nomen-
clature of Prokaryotes (ICNP) under the supervision of the International Committee on
Systematics of Prokaryotes (ICSP) based on different phylogenomic approaches [45]. The
extent of sequencing and the consequent possibility for a higher-resolution distinction be-
tween the genus and species have sparked new discussions on a revision of the ICNP [46,47].
Therefore, a crucial aspect is correct annotation with well-curated and internationally ac-
cepted databases to reliably identify a bacterial species.

The Type Strain Genome Server (TYGS, (https://www.dsmz.de/services/online-
tools/tygs, accessed on 31 May 2022) is a particularly well-curated database, and the
accompanying software offers the possibility to identify potential new bacterial species [48].
The GTDB (Genome Taxonomy Database) is another highly curated, phylogenetically
consistent, and genome-based taxonomy database for annotation, backed by GTDB-Tk
software for genome annotations [49]. Despite these well-curated databases, identifying
a bacterial species from genomic data can still be challenging. For example, currently
available software tools such as PubMLST, MetaPhlAn3, and Mykrobe-predictor showed
variable performances in correctly identifying non-tuberculous mycobacterial species.
Sensitivities ranged from 57–100% and specificities from 83–98%, which could be attributed
to the different databases and algorithms used [50].

Molecular epidemiology. WGS has become the reference standard for microbial typing
to address epidemiological questions. Increasingly standardized workflows and quality
management have been established [51,52]. Most studies use genome comparison to a
reference (mapping) or within-cluster mapping with either core genome (cg) multi-locus
sequence typing (MLST), SNP-based comparison, or more recently, also split k-mer analy-
sis (SKA) [53–56]. Pairwise genome comparisons using SKA showed a higher resolution
compared to cgMLST of Enterococcus faecium [34]. Outbreak investigation and transmission
studies benefit from large publicly available genome datasets to compare potentially re-
lated strains with non-outbreak-associated isolates. As an example, the NCBI pathogen
browser covers a selection of 40 bacterial and fungal species with more than 1 million
available genomes (accessed on 31 May 2022; [57]). Similarly, the Swiss Pathogen Surveil-
lance Platform (www.SPSP.ch; accessed on 31 May 2022 [58]), the Eukaryotic Pathogen,
Vector, and Host Informatics Resource (VEuPathDB) (https://veupathdb.org/veupathdb/
app/static-content/about.html, accessed on 4 August 2022), or the European Nucleotide
Archive (https://www.ebi.ac.uk/ena, accessed on 31 May 2022) contain genomic data on
viral, fungal, and bacterial pathogens, which allow epidemiological studies with important
epidemiological metadata. Outbreak analyses in hospitals often focus on antibiotic-resistant
pathogens, and the value of WGS has been documented in many instances for the transmis-
sion of bacterial strains [59–63] or plasmids with multi-drug resistance genes [64].

Inference of function. Assembled genomes from WGS can be used to infer pheno-
types, such as AMR and virulence [65,66]. Curated databases such as ResFinder [67]
and CARD [68] are commonly used for the detection of AMR genes. The combination
of highly curated databases and underlying algorithms plays a major role in predic-
tion accuracy [69,70]. For example, the concordance of Mykrobe-based (https://www.
mykrobe.com, accessed on 31 May 2022) AMR prediction with phenotypic testing was 94%
in Mycobacterium tuberculosis compared to TB-profiler, MTBseq, and other benchmarked
tools [71]. Single-nucleotide polymorphisms (SNPs) can be associated with a loss or gain of
function. For instance, SNPs were conclusively linked to functional impairment of porins
within the species P. aeruginosa (oprD; [72]) and de-regulating feedback loops affecting
transcription factors were linked to beta-lactamase expression (ampR and ampC; [73,74]).

A promising new approach for identifying specific functional links is Genome-Wide
Association Studies (GWAS), which have recently been translated from human genetics
to microbiology [75,76]. A GWAS identifies genes, k-mers, and/or SNPs enriched in
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microorganisms linked to a particular phenotype. Examples include daptomycin resistance
in Staphylococcus aureus linked to mutations in mprF [77], and clinical phenotypes such
as invasiveness following urinary tract infection linked to the adherence factor papGII of
E. coli [78,79]. Newly developed bioinformatic GWAS pipelines such as PowerBacGWAS
provide power calculations to determine statistically significant sample size association
testing [80]. Clinical validation of the identified genetic markers in randomized controlled
trials, similar to any other clinically used biomarker, is necessary to assess their clinical
value. In the next few years, we expect that more bacterial genetic markers will lead to
diagnostic applications, e.g., virulence assessment or AMR surveillance [81–83].

3. Focus on Bacterial Communities

When sequencing bacterial communities, two metagenomic sequencing approaches
can be distinguished, amplicon-based and shotgun metagenomics. The former targets a
marker-gene or a segment thereof, which allows for the resolution of the bacterial commu-
nity structure. The latter sequences/covers representative genetic material of a specimen,
usually including the DNA of the host.

Identification with amplicon-based sequencing. In recent years, amplicon-based short-read
sequencing of marker genes, in particular 16S rRNA gene (16S) and its variable regions
(V1-V9), became highly popular for explorative studies in ecology research. Alternative
universal marker genes include the bacterial rpoB or the fungal internal transcribed spacer
1/2 (ITS-1/2) [84]. 16S sequencing has also been applied for clinical diagnostics, e.g., in
abscesses [85], urinary tract infections [85,86], or sepsis [87], as well as for environmental
studies. Oberaune et al. profiled the microbiome of intensive care units (ICUs) and found
higher microbial diversity compared to culture-dependent techniques [88].

For taxonomic profiling, the 16S sequence reads are assigned to representative se-
quences, such as operational taxonomic units (OTUs) through clustering [89] or to amplicon
sequence variances (ASVs) through a denoising algorithm [90–92]. There are various OTU
clustering algorithms available [93–95]. Imprecisely clustered sequences can give rise to
inaccurate OTU classifications, which has a significant impact on downstream analyses.
Therefore, alternatives for OTUs have been suggested, such as pairwise alignment sequence
dissimilarity (PSD), MSA-based sequence dissimilarity (MSD), and phylogenetic branch
length distance (BLD) [96].

For species identification, single variable regions are usually not suitable [97], and
some variable regions such as V7 are known to yield ambiguous identifications [98]. How-
ever, bioinformatics tools allow the combination of individually sequenced variable regions
from one strain, thereby delivering species-level resolution within samples [99,100]. A
recent promising approach uses 16S-23S de novo assembled sequencing data and a Basic
Local Alignment Search Tool (BLAST) approach with a newly developed database for
species identification [101]. Recently, long-read-based full rRNA operon region analysis
has also been described, providing an even higher resolution [102].

Inference of function with amplicon-based sequencing. Amplicon-based sequencing lacks
the possibility to directly study functional aspects of the species within a sample. However,
metabolic inference approaches such as Paprica, Picrust2 [103,104], and Tax4Fun2 [105]
are available. These tools use hidden-state prediction (HSP) algorithms, which allow the
estimation of metabolic functions based on representative genomic content from a well-
described bacterial community. A key problem in using such databases is the relatively low
correlation between the relative abundance of their specific functions [106] and the high
population variability, limiting these tools in applications with defined cohorts.

Identification with shotgun metagenomic sequencing. Shotgun metagenomics facilitates
untargeted sequencing of all microbial genomes present in the sample [107]. The dataset
generated is much more complex than amplicon-based sequencing [108]. Standardiza-
tion of the methodological and analytical workflows has just started [109,110]. Proof-of-
concept studies have shown the potential clinical impact in pathogen identification within
culture-negative samples of, e.g., meningitis and encephalitis [111], sepsis [112–114], pneu-



Int. J. Mol. Sci. 2022, 23, 9834 6 of 17

monia [115,116], and prosthetic joint infections [117,118]. The detection limit of shotgun
metagenomics is affected by slow-growing microorganisms or if the potential pathogen
is present in low abundance. Different protocols to increase the sensitivity have been
developed, e.g., a short, specific culture step for certain pathogens [117]. However, in pri-
mary non-sterile body sites, this may introduce a critical diagnostic bias. The performance
in bacterial detection and identification was compared between shotgun metagenomics
and 16S amplicon-based sequencing, where shotgun metagenomics showed a slightly
higher sensitivity (46.3% vs. 38.8%) than 16S [119]. Similarly, Gu et al. compared shotgun
metagenomic sequencing using Illumina (short-read) and Nanopore sequencing (long-read)
platforms for pathogen identification and validated the results with traditional culture-
based methods and also with 16S and 28S-ITS PCRs for bacterial and fungal species. They
have also shown that the real-time analysis offered by Nanopore sequencing enabled
a reduced turnaround time for pathogen identification [120]. The latest add-on feature
with the ONT sequencing platform is “adaptive sampling”, which allows for enriching
or depleting sequenced DNA from selected species selectively in a software-controlled
manner during sequencing [120,121]. This is useful for clinical samples such as body fluids
and swabs where human DNA largely outweighs non-human DNA, and the depletion
of host DNA consequently increases the pathogen detection sensitivity [122,123]. On the
bioinformatics front, new software tools such as SMAGLinker, Strainberry, and STrain
Resolution ON assembly Graphs (STRONG) allow for obtaining strain-resolved genomes
in microbiota samples for both short-read and long-read sequencing data. Metagenomic
sequences are assigned to several bins and merged for taxonomic identification [124–126].
For RNA viruses, the RNA-dependent RNA polymerase (RdRp) can be used as a baseline
core motif for species identification [127,128].

Inference of function with shotgun metagenomics. Deciphering microbiota functions is crucial
for predicting clinical phenotypes. The generation of high-quality metagenomically assembled
genomes (MAGs) from metagenomic datasets facilitates the understanding of microbial ecosys-
tems by elucidating detailed metabolic pathways and horizontal gene transfer networks [124].
The prediction of function requires various bioinformatic tools and databases, of which dozens
have been developed [129–131]. Since not all the genes and annotations are known yet, the
databases for functional annotation (e.g., KEGG and EggNOG) are still incomplete, and thus
not all metabolic functions can be inferred from the MAGs. An important aspect of functional
inference is the detection of AMR genes. Knowledge about local microbiome compositions
and hotspots of AMR genes present in the environment may potentially be used to trigger
further investigations. Chng et al. sequenced environmental surface swabs collected from
a hospital and combined short- and long-read sequencing to determine distinct ecological
niches present in various regions of the hospital [132]. AMR monitoring from sewage samples
is an interesting surveillance tool [133], which is not only used for pathogen surveillance, e.g.,
SARS-CoV-2 [134], but also for virulence monitoring [135]. Perry et al. compared sewage
samples from a hospital and the surrounding community sewage plants. The authors modeled
the correlation between antimicrobial usage in the hospital and resistance gene abundances
and showed that sewage from the hospital has a higher percentage of Antibiotic Resistance
Genes (ARGs) compared to the communal sewage samples [136]. Another interesting function
to study would be the microbial association network from microbiome data in order to capture
the interactions between the various identified species. The microbial association catalog
(mako) is one such graph-based database compiled from 60 microbiome studies, which allows
for a user-friendly network motif search [137] to infer the associations within the microbiome.
The next step is to link more complex microbiological communities, on the species level or
the genetic content level, to particular clinical phenotypes. A microbiome-wide association
study [138–141] could help to identify crucial networks of communities and link this to, e.g.,
treatment response in mixed infections, the risk of colonization, or invasive infection [142].
Another interesting application of the interaction of microbiota or microbiome would be im-
mune modulation in cancer, where specific species are enriched or show immunomodulatory
effects for check-point inhibitors during cancer therapy [143–147].
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4. An Integrated Approach of WGS and Metagenomic Sequencing

Comparing the currently available WGS and metagenomic technologies and ap-
proaches (refer to Table 1 for the possibilities and limitations) to study microbial features,
it becomes clear that no single approach can answer all diagnostic or research questions.
Both approaches show potential for complementary usage and data analysis, which may
potentiate the output and provide novel insights into host–pathogen interactions, clinical
outcomes, and pathogen surveillance in various environments. However, to achieve this
goal, we first need to link the sequencing outputs. In a prospectively built database, e.g.,
during surveillance or monitoring of a patient, a unique identifier could be used to merge
one or more WGS datasets with a metagenomic dataset. Ideally, additional clinical, micro-
biological, or epidemiological metadata would be added, such as the time and space of
acquisition of each dataset and potential phenotypic readouts such as AMR or metabolic
profiles. The below section discusses the data formats, clinical use cases, bioinformatics
tools, and the quality control pointers for combining WGS and shotgun metagenomics
sequencing data.

Table 1. Comparison of whole-genome sequencing, marker gene-based amplicon sequencing, and
shotgun metagenomic sequencing. GWAS = Genome-Wide Association Studies. SNP = Single
Nucleotide Polymorphism. The symbol “$” represents the cost of sequencing. Higher number of
$ = higher cost. The symbol “+” represents the turnaround time for the sequencing strategies. Higher
number of + = longer turnaround time.

Parameters WGS 16S/ITS Shotgun
Metagenomic Sequencing

Sample Cultured or enriched
microorganisms

Swabs from body sites, stool
samples, body fluids or tissue

samples, and sewage

Swabs from body sites, stool
samples, body fluids or tissue

samples fecal matter,
and sewage

Species identification Yes Yes Yes

Degree of resolution Species-Strain level Genus-Species level Species-Strain level

Complete genome
Complete genome possible

depending on
sequencing platforms

No Near complete to
gapped genomes.

SNP analysis Yes No Yes

GWAS Yes No Yes

Identification of virulence
factors and resistance genes Yes No Yes

Microbial
community profiling No Yes Yes

Cost $$ $ $$$

Turnaround Time (TAT) + ++ +++

Examples of combined WGS and shotgun metagenomics approaches. A combined, integra-
tive approach allows one to look for similarities in the dataset and is the primary aspect of
merging both data sources. Such a combination may be used for identification, functional
readouts, and typing. The ability to quantify and detect bacterial strains within hetero-
geneous environments has applications in numerous fields including diagnostics [148],
clinical studies for the microbiome [149], bio surveillance, One Health [150,151], outbreak
investigations [150,152,153], providing insight into the spread of antibiotic resistance [152],
tracking the progression of within-host bacterial evolution [153], and exploring diverse
environments [154,155].
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Such an integrated approach was used to investigate an outbreak of carbapenemase-
producing Enterobacter hormaechei. The source of the strain could be allocated to the plumb-
ing and water resources in a hospital. The combination of short- and long-read sequencing
enabled the resolution of the complete plasmid of the resistance gene carrier (IMP-4) and
thereby the monitoring of its transmission across the hospital environment [156]. Similarly,
an outbreak of a carbapenem-resistant Acinetobacter baumannii was investigated and the
source was again linked to the plumbing system of a hospital [157]. This outbreak investi-
gation resulted in an internal database of circulating pathogens in the environment, and it
allowed one to restrict the transmission of the resistant strain and provided information
about the recurrence of the pathogens in the hospital wards.

A new addition to metagenome sequencing is the implementation of single-cell bacte-
rial sequencing technology, which combines shotgun metagenomics and WGS for strain
resolution and allows the tracking of mobile elements. For example, Zheng et al. devised
Microbe-seq, single-microbe genomics to achieve sub-species resolution from the human
gut microbiome. Using microfluidics, they have captured single microbes in liquid droplets,
lysed the cells, and barcoded the DNA followed by whole genome amplification. Computa-
tionally, the authors have co-assembled single-amplified genomes (SAGs), recovered from
the whole genome amplification of single bacterial cells, and characterized the horizontal
gene transfers within the strains of the same species [158]. This approach therefore allows
one to study the transfer of AMR or virulence genes. One hypothetical application for
combining WGS and shotgun metagenomics data could be as follows: We can consider the
identified microbiome from the shotgun metagenomic sequencing as a restricted database
of microorganisms present in a clinically relevant environment. The assembled genome of
a particular pathogen obtained from WGS can then be used as a query sequence, which can
be searched against this database (and vice versa). During a hospital outbreak investigation,
for example, this would allow the quick identification of the outbreak source, assuming en-
vironmental screening is performed at regular intervals and enriched with useful metadata.
In other words, the pathogen can be traced back to an environmental origin in the hospital
if a hit of high similarity is found in the database, while it is likely an introduction from
outside if it cannot. This approach could also be applied for tracking the transmission of
mobile genetic elements across environments. On the community front, the microbiome
data obtained could also be used for identifying at-risk populations based on microbial
distributions. One major drawback of such a combination is the added cost of regularly
sequencing the environment of interest.

Data readouts. Typically, short-read sequencing data from Illumina machines and
long-read sequencing data from Nanopore and PacBio result in fastq files after base calling
from their respective sequencing data formats. Contigs, assembled genomes, or segments
are usually in FASTA format. As a consequence, merging data from either platform is
computationally convenient.

Possible computational methods for strain-level microbial detection from WGS and shotgun
metagenomic sequencing. An inter-linked dataset allows the use of the contained data as
a reference for mapping. A range of bioinformatics pipelines and methods for strain-
level microbial detection in metagenome sequencing data have been developed [159].
In principle, methods are based on (i) assembly-based reconstruction and (ii) methods
operating with or without a reference database. We are only at the beginning of using
WGS and metagenomics in clinical settings, therefore it is crucial to have a comprehensive
benchmark across different (clinical) applications to validate performances and standardize
the available tools.

Assembly-based approaches identify single strains in mixed reads by whole genome
assembly. Sufficient differences in the genomes are necessary to separate or cluster, e.g.,
bacterial variants into distinct strains [160]. This approach requires sufficient read length
and sequencing depth to reach at least one variant site in most reads. Tools such as
EVORhA, STRONG, StrainGE, and Strainberry deconvolute the assemblies from short-
and long-reads to provide strain-level resolution [125,126,153]. Hypothetically, this offers
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interesting applications in AMR surveillance, as these strains could then be compared using
a curated database containing local endemic AMR-relevant strains. The assembly step in
WGS can also be combined with a metagenomic dataset, which allows the identification of
specific single strains within a bacterial community [161]. Zlitni et al. performed short-read
and read cloud metagenomic sequencing together with metatranscriptomics to monitor the
sub-strain populations within a patient’s gut [162]. Meanwhile, Ivanova et al. used shotgun
metagenomics with chromosome conformation capture (Hi-C) technology. This resulted in
high-quality MAGs together with plasmids, as the technology also linked reads between
genome and mobile genetic elements [163]. These approaches allow for identifying specific
pathogens or plasmids harboring multi-drug resistance in a specific environment.

Furthermore, full genome alignment-based methods allow strain classification by
aligning reads directly to a selection of reference genomes and applying stochastic models
to calculate the likelihood of association between a specific read and reference [164]. Patho-
scope [165] is a classification pipeline using different aligners, including GNUMAP [166],
Bowtie 2 [167], and BLAST [168], and scores for each alignment reflect the likelihood that
the read source matches the reference assembly. Furthermore, a semi-quantitative assess-
ment can be reached for strain abundance based on the number of reads mapping to each
reference. Alignment-based detection works within clear and well-separated sub-lineages.
However, the reference database is critical in closely related strains.

Substantial computing time can be saved by aligning a set of genetic markers, rather
than the complete genome. These marker-based methods classify genetic diversity within
a sample using a database of, e.g., unique genes [169], SNPs, or k-mers [170]. Pattern-
based methods also require a reference database for statistical models. However, pattern-
based methods initially pre-process extracted features and use these features for a new
classifier algorithm, which results in substantially decreased analytical time. MIDAS is
one such bioinformatic tool, applying this concept for species and strain-level taxonomic
identification [171]. The k-mer-based tool GSMer identifies strains by using a strain-specific
database of strain-specific k-mers, or genome-specific markers (GSM) [172]. In this tool,
each strain is represented by at least 50 GSMs, and strains with less than 50 unique GSMs
are excluded. Strains are only identified if there is perfect alignment for all 50 GSMs,
resulting in high specificity, but potentially low sensitivity. Such an approach may be rather
useful for clonal, slowly evolving strains without high rates of genetic adaptation.

Quality control. There are several quality factors to consider, before integrating the data
from different omics techniques: (i) Regular update of databases: This not only includes
technical and software updates but also includes the epidemiological content covered by
the database, e.g., via regular shotgun metagenomic sequencing of a given environment;
(ii) sequencing depth and coverage: Care should be taken to assess the quality of the data
obtained from each of these omics technologies. Since the performance of these technologies
is prone to bias, standardized workflows will result in reproducible read cut-off values for
depth and coverage.

5. Conclusions and Future Trends

With the use of clinical WGS and metagenomics on the rise, in part due to the SARS-
CoV-2 pandemic, environmental screening for microbes has become feasible and cost-
effective [151]. Researchers have combined various sequencing platforms in proof-of-
concept studies for pathogen identification, the characterization of virulence and resistance
genes, and the typing of relatedness between bacteria, viruses, and fungi. Indeed, mapping
the ecological niches of the pathogens, e.g., in the hospital [156,157] as well as the envi-
ronment may potentiate the effects. It has also been shown that it is possible to integrate
16S and shotgun metagenomics for microbiome studies, where the expected readouts are
taxonomic abundance, diversity, and functional annotations. While 16S can provide the
identified taxonomy, shotgun metagenomic sequencing can validate it with the genomes
of the identified microbes and their functional annotations [173–176]. Harmonization and
standardization of the individual technologies will likely also move forward. For clini-
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cal applications, clear, controlled, and reproducible protocols are necessary, reflected in
the regulatory requirements such as the recently established In Vitro Diagnostic Regula-
tion (IVDR).

So far, only a few studies have shown how to successfully integrate and use the
additive and potential synergistic effects of both technologies. One limitation is the need
for standardization and harmonization between protocols and workflows, and the added
sequencing costs of two technologies being applied along with the costs linked to data
storage and maintaining the bioinformatic pipelines and databases. Metadata with a
sufficient spatio-temporal resolution (e.g., sample isolation date and geographical location)
and additional epidemiological context may become important to use this potential. The
access to metadata goes hand in hand with the FAIR data-sharing principles (Findable,
Accessible, Interoperable, and Reusable), and the need for databases to allow for properly
annotating the interlinked status between omics data types. Overall, combining WGS and
shotgun metagenomics brings out complementary benefits by incorporating missing pieces
of information.
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