
 
 

 

 
Int. J. Mol. Sci. 2022, 23, 10918. https://doi.org/10.3390/ijms231810918 www.mdpi.com/journal/ijms 

Review 

Integration of TE Induces Cancer Specific Alternative  
Splicing Events 
Woo Ryung Kim 1,2, Eun Gyung Park 1,2, Yun Ju Lee 1,2, Woo Hyeon Bae 1,2, Du Hyeong Lee 1,2 and Heui-Soo Kim 2,3,* 

1 Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea 
2 Institute of Systems Biology, Pusan National University, Busan 46241, Korea 
3 Department of Biological Sciences, College of Natural Sciences, Pusan National University,  

Busan 46241, Korea 
* Correspondence: khs307@pusan.ac.kr 

Abstract: Alternative splicing of messenger RNA (mRNA) precursors contributes to genetic diver-
sity by generating structurally and functionally distinct transcripts. In a disease state, alternative 
splicing promotes incidence and development of several cancer types through regulation of cancer-
related biological processes. Transposable elements (TEs), having the genetic ability to jump to other 
regions of the genome, can bring about alternative splicing events in cancer. TEs can integrate into 
the genome, mostly in the intronic regions, and induce cancer-specific alternative splicing by ad-
justing various mechanisms, such as exonization, providing splicing donor/acceptor sites, alterna-
tive regulatory sequences or stop codons, and driving exon disruption or epigenetic regulation. 
Moreover, TEs can produce microRNAs (miRNAs) that control the proportion of transcripts by re-
pressing translation or stimulating the degradation of transcripts at the post-transcriptional level. 
Notably, TE insertion creates a cancer-friendly environment by controlling the overall process of 
gene expression before and after transcription in cancer cells. This review emphasizes the correlative 
interaction between alternative splicing by TE integration and cancer-associated biological pro-
cesses, suggesting a macroscopic mechanism controlling alternative splicing by TE insertion in can-
cer. 

Keywords: alternative splicing; TE; miRNA derived from TE; cancer 
 

1. Introduction 
The finding that more than 90% of the average pre-mRNA sequence is removed as 

introns in the nucleus, and only approximately 10% of the remaining pre-mRNA is com-
bined as exonic sequences, brings forth a fundamental principle of biology, known as 
RNA splicing [1,2]. Alternative splicing is a regulatory process of gene expression that 
imparts macromolecular and cellular complexity to higher eukaryotic organisms by al-
lowing the production of two or more variant mRNAs from a single gene. The exons of 
primary transcripts are spliced into structurally and functionally distinct mRNAs that 
have distinct arrangements by alternative splicing [3]. That is, the combination of exons 
is alternatively determined as the cell decides whether to eliminate a part of the pre-
mRNA or include a specific part of the mature mRNA [4]. These processes are orches-
trated by the spliceosome, a dynamic and powerful macromolecular machinery complex, 
in a synergistic and antistatic manner [5,6]. A change in alternative splicing could play a 
role in the occurrence of human diseases by adjusting processes including exon skipping, 
intron retention, and the choice of alternative splicing sites [7,8]. In particular, protein 
isoforms generated by dysregulated alternative splicing, known to be the hallmark of can-
cer, have a close relationship with cancer development and are the subject of therapeutic 
interventions in numerous cancers [9,10]. 
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The insertion of TEs is expected to be the origin of alternative splicing including, exon 
shuffling, and constitutively spliced exons [11]. TEs are DNA sequences that can mutate 
the host genomes by changing their locations and facilitating chromosomal rearrange-
ments via homologous recombination. According to the authors of [2,12] TEs, which con-
sist of almost half of the mammalian genomes, can be classified into two major classes 
distinguished by their transposition mechanisms: DNA transposon and retrotransposon 
[13]. DNA transposons are generally extinct in higher eukaryotes and are activated 
through a ‘cut-and-paste’ mechanism which depends on transposase for catalyzing exci-
sion and insertion [14]. In contrast, retrotransposons change their position via a ‘copy-
and-paste’ mechanism using RNA intermediates and are reverse transcribed into comple-
mentary DNA (cDNA) by reverse transcriptase while retaining the template at its original 
locus [15]. Retrotransposons can also be classified into two subclasses based on the pres-
ence of a long terminal repeat (LTR): LTR retrotransposons, including endogenous retro-
virus (ERV) and non-LTR retrotransposons including long-interspersed elements (LINEs) 
and short-interspersed elements (SINEs), such as Alu and SVA elements [16,17]. Re-
trotransposons are subdivided into autonomous and non-autonomous retrotransposons 
[18]. ERVs and LINEs are autonomous retrotransposons that encode reverse transcriptase 
for insertion into another region of the genome [19]. In contrast, SINEs are non-autono-
mous retrotransposons that cannot move to other regions by themselves because of the 
absence of reverse transcriptase in their sequences; they require LINEs for their transpo-
sition [20]. 

Integration of TE into the host genome can disrupt gene function or alter gene ex-
pression by increasing alternative splicing mechanisms [21,22]. Furthermore, TEs can gen-
erate miRNAs, also called miRNAs derived from TEs (MDTE), which are 20–25 nucleotide 
non-coding RNA that bind to the 3′ untranslated region (UTR) of the target mRNA [23,24]. 
At the post-transcriptional level, miRNAs can function as vital regulatory factors by con-
trolling the expression of specific transcripts through repressive processes, including 
translational suppression and initiation of mRNA degradation [25,26]. Based on the liter-
ature, it has been revealed that biological regulatory actions induced by TE insertion are 
significantly related to cancer development [27,28]. This review focuses on alternative 
splicing and TEs that have a profound effect on the onset and development of cancers 
through the tuning of regulatory correlations. In addition, the tumorigenic mechanisms 
of TE insertion and induced alternative splicing are summarized. Simultaneously, a can-
cer regulatory model of the interaction among TEs, alternative splicing, and miRNAs orig-
inating from TEs is presented. 

2. The Intimate Connection between Alternative Splicing and Cancer 
Previous research has found that 60% of alternatively spliced variants encode func-

tionally distinct proteins [29,30]. In a typical splicing process, the removal of the intron 
region is mediated by major and minor spliceosomes composed of numerous splicing fac-
tors containing five uridine-rich small nuclear RNAs (snRNA U1, U2, U4, U5, and U6) and 
functional analogs of the major spliceosome snRNAs (U11, U12, U4atac, and U6atac) [31]. 
The splicing process comprises consecutive reactions that involve the assembly of spliceo-
some components and their interaction with cis-acting regulatory sequences [32]. To 
begin, snRNP U1, SF1, and U2AF bind to the intron 5′ end splicing donor site (GU), in-
tronic branch point, and intron 3′ end splicing acceptor site (AG), respectively. Then, U2 
binds to the branch point site instead of SF1, and U4/U5/U6 snRNPs form networks with 
U1 and U2. After the release of U1 and U4, the activated spliceosome stimulates the cleav-
age of the intron 5′ and 3′ ends by forming a lariat, the release of the lariat/U2/U5/U6 com-
plex, and the joining of post-spliced exons [6,31]. However, cancers tend to choose a sub-
stitutive pathway, cancer-specific alternative splicing, that generates several mRNA tran-
scripts from the same gene locus with potentially different genetic functions, known as 
isoforms [33]. The differentially expressed isoforms in cancer, known as cancer-specific 
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transcripts, are caused by alterations in internal or external factors. Subsequently, various 
biological processes that promote cancer development have changed (Figure 1) [34]. 

 
Figure 1. Effects of alternative splicing on biological processes related to cancer progression through 
the generation of cancer-specific transcripts. Alternative splicing events in cancer are activated by 
mutations in cis-acting elements and aberrant expression levels of trans-acting factors. The initiation 
of alternative splicing is stimulated by aggregation of splicing-mediated factors to precursor mRNA. 
This procedure is mediated by diverse regulatory processes including exon skipping, alternative 5′ 
or 3′ usage, mutually exclusive exons, intron retention, and use of alternative first or last exons. The 
production of cancer-specific transcripts created by alternative splicing is implicated in cancer bio-
logical processes; apoptosis, cell cycle, metabolism, invasion, proliferation, and angiogenesis. Light 
yellow, light blue and light orange rectangles indicated basal exons. Yellow rectangle indicated 
newly integrated exon. Pre-mRNA—precursor mRNA; SS—splicing site; SR protein—Serine/argi-
nine—rich protein; ESE—exonic splicing enhancers; ESS—exonic splicing silencers; ISE—intronic 
splicing enhancers; ISS—intronic splicing silencers; hn-RNP—heterogeneous nuclear ribonucleo-
proteins. 
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2.1. Cancer Promoting Mutations in Alternative Splicing Causing Factors 
Fine-tuning between cis-acting elements and trans-acting factors coordinates alterna-

tive splicing networks [35]. Cancers are significantly affected by abnormal splicing events 
caused by somatic mutations in cis-acting splicing sequences and irregular alteration of 
trans-acting elements, including different activities of regulatory splicing factors and mu-
tations in the core components, for example, RNA-binding proteins (RBPs), of the splicing 
machinery [36]. Changes in core splicing factors are related to cancer pathologies through 
dysregulation of cancer signaling transduction [37]. Numerous studies have identified 
that mutations in SRSF1, SRSF2, SF3B1, and U2AF1, which are essential components of 
the major spliceosome, are associated with the development of several types of cancers. 
SRSF1, which is upregulated in breast cancer, induces SRSF1-regulated alternative splic-
ing events, such as exon inclusion and skipping, by binding to the 5′ or 3′ splice site. Over-
expression of the exon-9-included CASC4 variant by SRSF1-regulated alternative splicing, 
which is considered a potential target for therapeutic development, increased prolifera-
tion, and decreased apoptosis [38]. Another example is the mutation of the splicing factor 
SRSF2, especially correlated with blood cancer types, which accelerates differential splic-
ing of hn-RNP proteins in the SRSF2P95H mutant cell line [39,40] or alteration of RNA 
binding affinities [41]. Cancer-associated mutations in SF3B1 induce aberrant splicing of 
specific genes, such as DVL2, a regulator of Notch signaling, or disrupt interactions with 
other collaborating proteins, DDX42 and DDX46 [42,43]. In addition, mutation of U2AF1 
in the S34 mutation hotspot region adjusted the progress of noncanonical translation by 
causing alternative splicing [44]. 

Furthermore, other types of RBPs contribute to dysregulated alternative splicing in 
cancer. For example, RNA-binding motif proteins adjust alternative splicing in cancer 
cells. Breast cancer-specific expression of SRPK1 accumulates phosphorylated RBM4 in 
the cytoplasm and then increases RBM4-regulated splicing transcripts of IR-B and MCL-
1S [45]. RBM5, which is downregulated in bladder cancer, inhibits apoptosis [46], and 
RBM10 suppresses endometrial cancer proliferation by causing VEGFA alternative splic-
ing [47]. Likewise, RBM6 represses the growth and progression of tumors and laryngocar-
cinoma by decreasing the expression of EGFR, extracellular signal-regulated kinase 
(ERK), and phosphorylated (p)-ERK [48]. Taken together, mutations accumulated in alter-
native splicing-causing factors lead to functional loss or change in the basal splicing pro-
cess, thus contributing to the generation of cancer-specific splicing variants. 

2.2. Cancer-Specific Transcripts Generated from Several Mechanisms of Alternative Splicing 
Alternative splicing events affect the genetic flexibility and adaptability of cell biol-

ogy in healthy cell metabolism, whereas in cancer, alterations in cancer cell processes oc-
cur via adjustment of apoptosis, invasion, proliferation, angiogenesis, and dysregulated 
metabolism. Through earlier computational analyses and microarray experiments, it has 
been revealed that alternatively spliced isoforms under oncogenic circumstances have a 
close relationship with cancer mechanisms involved in onset and development [49–52]. A 
list of cancer-specific transcripts that are abnormally expressed by alternative splicing and 
continuous regulatory processes is listed in Table 1. These previous findings have shown 
that the expression of cancer-specific transcripts, which encode major factors modulating 
important biological processes, is increased or decreased by alternative splicing mecha-
nisms such as exon skipping, alternative 5′ or 3′ SS usage, mutually exclusive exons, intron 
retention, and usage of alternative first or last exons. The altered expression of abnormal 
transcripts promotes cancer progression by disrupting the normal regulatory system via 
multiple pathways (Figure 1). 
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Table 1. Differential expression of cancer-specific isoforms produced by alternative splicing events 
that adjust cancer-related biological processes. 

Cancer Related 
Biological Pro-

cess 

Type of Alter-
native Splicing 

Gene Protein Isoform Regulatory Process Ref 

Apoptosis 

Alternative 5′ 
SS usage 

BCL2L1 Bcl-2-Like Protein 1 BCl-XL 
Through the alternative use of two competing 5′ SSs in exon 2, 
produced BCL-XL which has an antiapoptotic effect and func-

tions as a dominant regulator. 
[53–55] 

Exon skipping SYK 
Spleen Associated 
Tyrosine Kinase 

SYK(S) 
Switching SYK(L) to SYK(S) generated by exon 9 skipping in-

duces apoptosis in ovarian cancer. 
[56] 

Intron reten-
tion 

STAT2 
Signal Transducer 
and Activator of 
Transcription 2 

STAT2 + 
I19 

STAT2 + I19, splice variant containing intron 19 which has a 
stop codon before the Src homology 2 domain, leads to disrup-

tion of STAT dimerization and suppresses IFN-induced apopto-
sis in IFN-resistant cells. 

[57] 

Exon skipping ASPP2 
Apoptosis-Stimu-
lating of P53 Pro-

tein 2 
ASPP2K 

ASPP2K, which has a truncated C-terminal domain losing the 
p53 binding regions by exon skipping, possesses dominant-
negative activity, impairing the induction of p53 dependent 

apoptosis and promoting cancer aggressiveness. 

[58] 

Exon skipping FAS 
Fas Cell Surface 
Death Receptor 

sFAS 

An alternatively spliced isoform, soluble Fas (sFAS), generated 
by the skipping of exon 6 that encodes the transmembrane do-
main, cannot localize to the plasma membrane. As a result, up-
regulated sFAS inhibits the extrinsic pathway of apoptosis in 

various cancer types. 

[59–61] 

Exon inclusion MCL1 
Myeloid Leukemia 
Cell Differentiation 

Protein Mcl-1 
MCL1-L 

Melanocytes upregulate MCL-1L, a splicing variant of MCL1 by 
exon 2 inclusion, in response to UVB radiation to protect them-

selves against apoptosis, whereas melanoma cells elevating 
MCL1-L expression without UV exposure are resistant to apop-

tosis. 

[62] 

Invasion 
(EMT) 

Exon skipping 
ENAH 

(MENA) 
ENAH Actin  

Regulator 

MENA v6 
ENAH (known as Mena), controls actin nucleation as well as 
cell morphology and motility. Expression of the exon skipped 
splicing isoform, Mena11a, has been correlated with epithelial 
markers and decreased invasion. Inversely, increased expres-
sion of MenaINV by exon inclusion has been associated with 

mesenchymal markers and increased invasion and metastasis. 

[63–66] 

Exon inclusion 
MENA 

INV 

Alternative 5′ 
SS usage 

KLF6 
Kruppel Like 

Factor 6 
KLF6-SV1 

KLF6-SV1 uses an alternative 5′SS, causing frameshift, and pro-
duces a protein isoform that contains 21 novel amino acids but 

lacking all three of the zinc finger domains. Upregulated ex-
pression of KLF6-SV1 increases cell survival, migration, and in-

vasion in various cancer cells. 

[67,68] 

Exon inclusion CD44 CD44 Antigen 

CD44v8-10 

Expression of CD44v8-10, an alternative isoform including the 
variable portion of exon 8 to 10, induces a higher metastatic po-
tential of cancer cells than the standard form of CD44 in breast 

cancer cell lines. 

[69] 

CD44v6 
CD44 variant including variable exon 6 (CD44v6) has been 

identified that promotes the development of metastasis by in-
volving epithelial-mesenchymal transition in cancers. 

[70,71] 

Alternative 5′ 
SS usage 

CTNND1 p120-catenin 

p120-1A 
p120-catenin (p120ctn) isoforms produced by alternative 5′SS 

usage, p120-1A, and -3A, induced the EMT of tumor cells. Espe-
cially, in non-small cell lung cancer (NSCLC), both p120-1A and 

- 3A inhibited EMT and decreased cell invasiveness in cells 
with membrane E-cadherin. In cells with cytoplasmic E-cad-
herin, p120-1A stimulated EMT and cell invasiveness, while 

p120-3A prevented EMT and decreased cell invasiveness. 

[72] 

p120-3A 

Mutually ex-
clusive exon 

FGFR 
Fibroblast Growth 

Factor Receptor 
FGFR lllc 

Increased level of FGFR-IIIc by mutually exclusive exon9 has 
been detected in a variety of tumors and correlated with tumor 

progression, such as increased grading and invasiveness, by 
promoting cancer cells to acquire mesenchymal characteristics. 

[73–75] 

Exon skipping RON 
Macrophage Stimu-

lating 1 Receptor 
ΔRON 

The skipping of Exon 11(ΔRON) brought about the deletion of 
an extra cellular domain that affects the proteolytic maturation 
of protein and increases cancer invasiveness through sustaining 

constitutively active status. 

[76,77] 
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Proliferation 

Exon inclusion RPS6KB1 
Ribosomal Protein 

S6 Kinase B1 
RPS6KB1-2 

RPS6KB1-2 made by inclusion of three cassette exons 6a, 6b, 
and 6c, caused the shorter isoform to lack a portion of the ki-
nase domain. RPS6KB1-2 has contributed to cell proliferation 
and tumor growth via mTORC1 and 4E-BP1 phosphorylation. 

[78,79] 

Exon inclusion NUMB 
NUMB Endocytic 
Adaptor Protein 

NUMB-
PRR(L) 

In lung cancer cells, RBM10 mutations identified that disrupt 
splicing regulation of NUMB (Exon 9 inclusion) which is a key 
target of RBM5, 6, and 10 in the control of cell proliferation, to 

correlate with cell growth. 

[80] 

Exon inclusion SYK 
Spleen Associated 
Tyrosine Kinase 

SYK(L) 

SYK(L), which includes exon 9 compared to the shorter isoform 
(SYK(S)), stimulates cell survival and tumor malignancy in 

many cancers by driving expression of epidermal growth fac-
tor. 

[56] 

Exon skipping MDM2 
E3 Ubiquitin-Pro-
tein Ligase Mdm2 

MDM2-A Normal type of MDM2 could bind to p53 and facilitate pro-
teasomal degradation of p53 as an ubiquitin ligase. Four of the 
splice isoforms (MDM2-A, -B, -C, and -D) by exon skipping in 
human cancers lack part of the p53-binding domain. Spliced 

isoforms could not bind to p53, enhancing degradation of p53 
and cell proliferation. 

[81–83] 
MDM2-B 

MDM2-C 

MDM2-D 

Angiogenesis 

Alternative 3′ 
SS usage 

VEGF 
Vascular Endothe-
lial Growth Factor 

VEGFxxx 
VEGFxxx isoforms, produced by alternative 3′SS usage, were 

overexpressed in many cancers, and resulted in proangiogenic 
effects. 

[84] 

Alternative 3′ 
SS usage 

VEGF 
Vascular Endothe-
lial Growth Factor 

VEGF 165 
sVEGFR1-113, a truncated version of VEGFR1, lacks its trans-

membrane and tyrosine kinase domains due to intron 13 reten-
tion.VEGF165 is a pro-angiogenic factor made by 3′ SS usage. 
One study identified that sVEGFR1-113 is considered to be a 

natural antagonist of VEGFA and upregulated under the mech-
anism associating the VEGF165/SOX2/SRSF2 network in anti-

angiogenic therapied squamous lung carcinoma cells. 

[85,86] 
Intron reten-

tion 
VEGFR 

Vascular Endothe-
lial Growth Factor 

Receptor 1 

sVEGFR1-
113 

Dysregulated 
metabolism 

Mutually ex-
clusive exon 

PKM 
Pyruvate Kinase 

M2 
PKM2 

PKM2 had mutually exclusive exons containing Exon 10 not 
Exon 9 and is ubiquitously expressed in tumors. Substituting 
PKM2 with PKM1 in the tumor decreases lactate production 
and increases oxidative phosphorylation. Therefore, tumor 

growth is repressed. 

[87,88] 

Immune 
response 

Exon skipping BRAF 
B-Raf Proto-Onco-
gene, Serine/Threo-

nine Kinase 

BRAF(V60
0E) 

BRAF(V600E) transcripts by exon skipping (exon 4–8) brought 
about in-frame deletion of the N-terminal RAS-binding do-

main, resulting in melanoma cell resistance which is insensitive 
to inhibitors such as drug (PLX4032). 

[89] 

Exon skipping CEACAM1 
CEA Cell Adhesion 

Molecule 1 
CEA-

CAM1(S) 

The short isoform of CEACAM1, CEACAM1 (S) upregulated in 
many cancer types. This variant enlarged secretory IgA produc-
tion by B cells and was associated with poor prognosis and per-

itoneal dissemination in gastric cancer. 

[90–92] 

Cell cycle Intron reten-
tion 

CCND1 CyclinD1 CyclinD1b 

The formation of the cyclin D1b variant was linked with intron 
4 retention, also concerned with cell cycle progression and pro-
liferation in various cancers, competing with the same target, 

CDK4 with Cyclin D1a. 

[93,94] 

3. Regulation of Cancer Related-Biological Processes by TE Induced Alternative Splic-
ing 

Inserted TEs modulate numerous biological processes including development [95], 
adaptive evolution [96], and disease progression, including cancer [97]. After integration 
of the genome, some activated TEs can modify the expression or transcriptional respon-
siveness of specific genes by stimulating alternative splicing through certain processes, 
such as: exonization; exon disruption; providing splicing donor/acceptor sites; alternative 
regulatory regions; premature stop codons; and inducing epigenetic alterations at the 
transcriptional level (Figure 2). Previous studies have found that disease biological path-
ways are affected by disease-specific transcript variants triggered by TE insertion [98,99]. 
In particular, overexpression of TEs is closely correlated with the onset and development 
of cancer by causing abnormal alterations in cancer progression. 
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Figure 2. The induction mechanisms of alternative splicing by integrated TEs (A) basal splicing pro-
cess without TE integration. Insertion of TE is interrelated with the progression of alternative splic-
ing through induction mechanisms; (B) exonization, (C) exon disruption, (D) providing splicing 
donor/acceptor sites, (E) providing stop codons, (F) alternative enhancer or repressor, (G) alterna-
tive promoter, and (H) epigenetic alteration. Yellow, light purple and orange rectangles indicated 
basal exons. 

3.1. Exonization and Exon Disruption 
In a process called exonization, TEs can integrate into genomic regions and offer 

recognition by the splicing machinery as a newly recruited exon [100]. Approximately 4% 
of human genes contain TE motifs in their coding regions, indicating that exons may have 
been derived from the exonization of TEs [101–106]. Some studies have identified that 
exonized LINEs in the human genome provide an additional domain and produce abnor-
mal transcripts through diverse alternative splicing mechanisms in cancers. For example, 
overexpression of the cancer-specific cadherin-12 (CDH12) variant, a subtype of the N-
cadherin family, can be generated by somatic LINE-1 insertion and induces migration and 
invasion of colon cancer cells by targeting the transcription factor, Snail [99,107]. Other 
researchers have also found that overexpressed LINE-1 MYC products are characterized 
in breast cancer patients [108,109]. Furthermore, Alu inserted into the coding region can 
act as an alternative exon in lung cancer-related genes. One study showed that the expres-
sion of the canonical ADAR2 transcript, which functions as a tumor suppressor gene, was 
downregulated and other aberrant transcripts were inversely upregulated. The TE-de-
rived isoforms among these aberrant transcripts are formed by the inclusion of an alter-
native exon 5a, which introduces a 120-nucleotide coding Alu-repeat sequence [110,111]. 
According to other studies, Alu can also integrate into MYH11, which is important for cell 
migration and adhesion by encoding smooth muscle myosin and make longer isoforms 
by adding additional exons. This insertion led to a frameshift mutation and over-produc-
tion of a truncated protein [112,113]. 

In contrast, some proportion of inserted TEs into the coding sequence result in com-
plete loss-of-function mutations and drastic changes in the encoded proteins by prompt-
ing gene disruption under oncogenic circumstances [114]. As a representative example, 
mutations in BRCA2, mainly observed in breast and ovarian cancers, could be induced by 
the insertion of Alu elements. The Alu element, integrated into the coding region of 
BRCA2, resulted in the elimination of the targeted exon 3 from the equivalent mRNA mol-
ecule by target site duplication, containing a specific 9 bp long segment as a recognition 
site for the transposition machinery [115]. Additionally, other studies have shown that 
TRPC6, which is important for cell proliferation and migration, is strongly expressed in 
breast cancer epithelial cells. The disrupted transcript produced by the LTR insertion is 
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overexpressed in breast cancer [116,117]. In a systemic analysis, two genes, SHSC1 and 
KLK2, were abnormally spliced through an internal exon skipping mechanism after LINE-
1 integration [112]. In particular, some TEs activate gene disruption, which promotes on-
cogenic processes via integration with tumor suppressor genes. The tumor suppressor 
gene, LRP1B, which suppresses cancer cell growth and invasion, was downregulated in 
colon cancer patients and 19 retrotransposon insertions were observed [118]. The data 
show that these genetic alterations are caused by exonization or genetic disruption, which 
adjusts the proportion of variants in a biological direction favorable to the occurrence and 
growth of cancer. 

3.2. Providing Splicing Donor/Acceptor Site and Stop Codon 
TEs are often composed of many splice-donor and acceptor sites, which lead to irreg-

ular splicing processes by interacting with splicing factors and RBPs. RBPs serve site pref-
erences, which prompt them to reach specific regions of TEs [119,120]. TEs change the 
expression of cancer-related gene variants through the suggestion of alternative 5′ or 3′ 
SSs. In particular, inserted Alu retroelements, which contain multiple sites with sequences 
similar to those of SSs, could be considered a real exon by offering pseudo-SSs 
[101,102,121,122]. One study identified that PDZK1, which plays a crucial role in ion-chan-
nel organization, upregulates gene expression by providing alternative 5′ sites via the in-
serted Alu [123,124]. Other studies have also found that Alu offers 5′ alternative sites to 
the tumorigenic gene, HINFP, which activates cyclin E/CDK2 in the cell cycle and regu-
lates DNA damage-induced cell cycle checkpoints [124–126]. 

The insertion of TE inside the intronic and coding regions of a premature mRNA can 
introduce an irregular stop codon or polyadenylation signal, resulting in truncated tran-
scripts. Human antigen R (HuR) or fused in sarcoma (FUS) proteins, characterized by 
binding preference to U-rich motifs, alternatively bind to inserted TE regions and induce 
the nonsense-mediated decay process [127]. One research team confirmed that a short 
variant isoform of CHM was generated from the insertion of LTR12C as a carrier of an 
early stop codon and was highly expressed in colon cancer cell lines and tumor samples 
[128]. Furthermore, LINE-1 elements retain a polyadenylation signal within their own se-
quences, and AATAAA sequences are usually generated in the A-rich tail region of SINEs 
and LINEs [129]. The LINE-1 insertion into the last exon of APC, a tumor suppressor gene, 
led to disruption through the proposal of a polyadenylation site and was associated with 
the development of sporadic colorectal tumors [130]. Another study has also shown that 
germ line L1 insertions into MCC as an upstream inhibitor of the Wnt/β-catenin pathway 
can repress the expression of MCC and overexpress the β-catenin protein. This study sug-
gests a functional link between L1 insertions and HCC-predisposing mutations [131]. Spe-
cific variants created by alternative SSs and stop codons are not only used as potential 
cancer diagnostic biomarkers but also for therapeutic applications. 

3.3. Providing Alternative Regulatory Sequences Such as Enhancer, Repressor and Promoter 
TEs, especially major families of retrotransposons, including LINE and SINE, are in-

volved in the adjustment of upstream open reading frame-related genetic expression by 
operating cis-acting elements, such as promoters, enhancers, and repressors, to control 
gene expression [132,133]. TE insertion can boost the upregulation of the cis-open reading 
frame, causing the stimulation of oncogenic traits for cancer development. For example, 
MAD1L1, a cell cycle regulator, has an LTR sequence-derived promoter as one of two 
promoters. Isoforms induced by the LTR promoter were abundant in various tumors com-
pared to the universally expressed form and increased cancer cell proliferation [134]. Sim-
ilarly, carbonic anhydrase, which is relevant to ion, fluid, and acid-base balance, CA1, is 
over-expressed in colon cancer by the LTR-derived primary promoter [134,135]. In addi-
tion, an alternative promoter generated by LINE-1 insertion elevates the expression of 
DBC-1, which acts as an interface between apoptosis and colon cancer progression by con-
trolling wnt/β-catenin-mediated expression of MACC1 [99,136]. Additionally, the LINE-1 
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integrated region into SYT1 acts as an alternative promoter and upregulates SYT1 expres-
sion, which over-activates the regulatory mechanism in membrane interactions in lung 
cancer [137]. 

On the contrary, TEs can contribute to cancer development by promoting expression 
of the truncated isoform after insertion, thereby downregulating the original function of 
the corresponding gene. For example, ARID3A has a tumor suppressive function that in-
hibits somatic cell reprogramming according to loss-of-function analysis [138]. According 
to previous research, the Alu sequence inserted into the regulatory region of ARID3A se-
quences increased the production of truncated proteins, which are unable to repress de-
differentiation in lung cancer cells [139]. Furthermore, some studies have indicated that 
TE-derived promoters activate tyrosine kinase receptors as oncogenes in colon cancer. The 
proto-oncogene MET1 is controlled by an alternative LINE-1 promoter within the canon-
ical intron 2 by increasing the abnormal isoform translated into a truncated protein 
[140,141]. In another case, the LTR-derived alternative promoter accelerated ERBB4 ex-
pression, which alters cell proliferation and differentiation, migration, and apoptosis, re-
sulting in an increase in the truncated isoform [99,142]. TE-derived regulatory regions 
have changed the overall expression level of transcripts by upregulating or downregulat-
ing cis-acting genes and are involved in diverse cancer-specific biological changes. 

3.4. Epigenetic Alteration 
TEs, mostly silenced in normal situations, lose their repressed markers, such as DNA 

methylation and suppressive histone modifications, by epigenetic dysregulation in cancer 
cells [143]. Many tumors have over-expressed the DNA demethylating enzymes TET2 and 
TET3, which result from higher ERV expression. That is, the demethylation of specific 
genes might be directly related to the transcription level of TEs, including ERV [144]. In 
renal cell cancer, DNA hypomethylation also activated TEs, ERVs expression, and im-
mune signaling [145]. Another study also discovered that hypomethylation of retrotrans-
posons can lead to their activation and translocation to other regions of the genome and 
stimulate an increase in genomic instability in T-cell lymphoma [146]. Likewise, several 
studies have focused on the activation of LINE-1 elements by demethylation of their own 
sequences linked to the development of cancers [147–149], such as prostate carcinoma and 
hepatocellular carcinoma [150–152]. In accordance with transcriptome analysis for chronic 
lymphocytic leukemia, the results suggest that TEs are globally hypomethylated com-
pared to normal tissues [153]. In melanoma, LINE-1 hypomethylation was also closely 
correlated with the shortened period of relapse and survival time of patients and was 
connected with the metastatic conversion of primary cancer [154]. 

Additionally, when TEs are inserted into a tumor suppressor gene, they may cause 
cancer by providing new methylation or histone modifications to regulatory sequences 
[143]. Numerous studies have shown that inserted TEs can spread repressive epigenetic 
markers to regions adjacent to genomic sequences. Based on previous studies, TEs, espe-
cially highly repetitive Alu elements, are regarded as methylation centers in the genome 
[155,156]. Through epigenetic pattern analysis, one study revealed that Alu, integrated 
into intron 1, might offer additional methylation to MLH1 in correlation with trans-acting 
elements. Expression of MLH1, which is closely associated with mismatch repair, might 
be downregulated by hypermethylated Alu elements and is predicted to be closely asso-
ciated with cancer development [157]. As carriers of epigenetic markers, TEs can integrate 
into the genomic region and generate tumorigenic status by changing the location and 
proportion of epigenetic markers in the regulatory region. 

4. MDTEs as Regulatory Elements Linking Alternative Splicing by TE Integration and 
Cancer Organically 
4.1. MDTEs’ Regulatory Processes Related to Cancer Progression and Cancer Therapy 
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Inserted TEs occasionally produce miRNAs from their sequences [24]. The TE se-
quence is transcribed as a primary miRNA and processed into precursor miRNAs through 
cleavage by proteins such as DGCR and Drosha. Precursor miRNAs move to the cyto-
plasm through the nuclear transport protein exportin-5 and are cleaved by proteins in-
cluding TRBP and Dicer to form a miRNA duplex. One of the two complementary strands 
creates an RNA-induced silencing complex with functional proteins and binds to mRNA 
for mRNA degradation or translational repression. Through epigenetic regulation, 
MDTEs act as regulators that control the expression of several alternative transcripts  
(Figure 3) [158,159]. The MDTEs adjust the portion of oncogenic transcripts not only 
through basic inhibitory mechanisms but also through interactive mechanisms by inter-
acting with other genetic elements, such as long non-coding RNA, transcription factors, 
and circular RNA [160–163]. Overexpression or knockdown of genes required for onco-
genic processes under the adjustment of MDTEs had an effect on cancer onset and pro-
gression [164,165]. In brief, TE insertion affects pre-transcriptional regulation by directly 
participating in the alternative splicing process and has a big impact on fine-tuning the 
expression of transcripts at the post-translational level by creating a regulatory element, 
called miRNA, from their sequences. 

 
Figure 3. General regulatory process of miRNAs derived from TEs to control the expression of on-
cogenic transcripts at the post-transcriptional level. RISC-RNA-induced silencing complex. Yellow, 
light purple and orange rectangles indicated basal exons. 

Numerous studies have indicated that miRNAs are closely related to the expression 
of cancer-related genes as significant regulatory factors through the repression or activa-
tion of their target genes, contributing to the onset and development of human cancer 
types [166–168]. Oncogenic miRNAs in previous studies have confirmed that a substantial 
proportion of miRNAs known to affect the development of cancer are derived from TEs. 
Despite the importance of biological correlations, few studies on the interactive relation-
ship between MDTE and cancer progression have been conducted. 

According to previous research, TEs are important drug targets in the field of disease 
treatment because they extend from disease-causing factors [169–171]. Particularly in 
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cancer, TEs have been applied as major drug targets for cancer treatment for the design of 
anticancer drugs. In prostate cancer, reverse transcriptase (RT), the enzyme which is en-
coded as region of the open reading frame 2 of LINE-1, is used as a target for anti-prostate 
cancer drugs. Inhibitors of reverse transcriptase (RT) repressed the proliferation of cancer 
cells and tumor progression and inversely promoted differentiation in animal models 
[172,173]. TEs were also used as vital coordinators related to cancer therapy by generating 
miRNAs from their sequences. Exosomal MDTEs can modulate cancer cell resistance, 
leading to tumor recurrence by regulating the chemosensitivity of cancer cells, which are 
promoted by altered cellular signaling pathways in chemotherapy [174]. As a representa-
tive example, exosomal miR-151a produced by LINE controls drug resistance in glioblas-
toma and pancreatic adenocarcinoma. Exosomal miR-151a sensitized temozolomide 
(TMZ)-resistant glioblastoma cells to TMZ by interacting with X-ray repair cross-comple-
menting 4 (XRCC4) [175]. In pancreatic ductal adenocarcinoma, macrophage-derived ex-
osomal miR-151a decreases the sensitivity of cancer cells to gemcitabine, dramatically 
[176]. Although there are still several technical limitations in the clinical trial of cancer 
using TEs and MDTEs, they are crucially considered as a future drug target. 

4.2. Cancer Controlling MDTEs in the Top 5 Mortality Cancers 
According to the global cancer report of 2020, lung cancer is the leading cause of 

cancer death (18% of the total cancer-related deaths), followed by colon (9.4%), liver 
(8.3%), stomach (7.7%), and breast (6.9%) cancers for both sexes combined [177]. Table 2 
indicates the MDTEs dysregulated in five major mortality-causing cancers in the previ-
ously published literature over the last five years (2018–2022). The information on the 
origin of the specific TE sequence of each miRNA was organized with regard to the infor-
mation of the human genome 38 registered in the UCSC genome browser. MDTEs can 
change cancer pathways by regulating the expression of their direct target genes on the 
basis of interactions with various genetic factors, leading to cancer induction or progres-
sion. 

4.2.1. Lung Cancer 
Lung cancer is the second most frequently diagnosed cancer with the highest death 

rate in 2020 [177]. MDTEs have been considered more sensitive potential prognostic bi-
omarkers and therapeutic indicators in lung cancer than other tumor markers. Overex-
pressed hsa-miR-421 and hsa-miR-1290, both derived from LINE (L1) and DNA transpos-
ons, respectively, were linked to a poor prognosis and development of lung cancer, in-
cluding advanced tumor stage, enlarged tumor size, lymph node involvement, and dis-
tant metastasis [178,179]. Increased or decreased miRNAs can alter the biological mecha-
nisms of lung cancer into a favorable environment for cancer development by modulating 
the expression of their target genes. For instance, upregulated miR-4317 functions as a 
potential suppressor of lung cancer by directly binding fibroblast growth factor 9 and cy-
clin D2, resulting in the inhibition of proliferation, colony formation, migration, and inva-
sion [180]. Similarly, miR-1246 prevented cell invasion and epithelial mesenchymal tran-
sition by interacting with C-X-C chemokine receptor type 4 and blocking the JAK/STAT 
and PI3K/AKT signal pathways in lung cancer cells [181]. 

In-depth studies have shown that MDTEs are involved in substantive cancer treat-
ment. For example, miR-181b and miR-885-3p are closely related to chemoresistance by 
targeting BCL2 and Aurora A, respectively [182,183]. In some cases, miRNA regulation in 
lung cancer has a molecular connection with non-coding RNA or circular RNA. According 
to one study, MALAT1, an upregulated long non-coding RNA, promotes proliferation, 
apoptosis, migration, and invasion in non-small cell lung cancer by downregulating miR-
374b-5p and inversely upregulating SRSF7 [184]. Another study also revealed a correlative 
axis among circular RNA, target mRNA, and miRNAs. Additionally, Circ-ZKSCAN1 in-
creased FAM83A expression and restrained MAPK signaling by targeting carcinogenic 
miR-330-5p as a sponge to aid non-small cell lung cancer progression [185]. 
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4.2.2. Colon Cancer 
Colon cancer is a secondary cause of death and the third most frequently diagnosed- 

cancer type worldwide in both sexes [177]. Biological processes regulated by miRNAs are 
connected with colon cancer incidence and development. Cell growth and proliferation 
were stimulated by downregulation of miR-583-3p and miR-1273g-3p, inducing overex-
pression of their target genes PSME3 and MAGEA3/6 in colon cancer cells [186,187]. Some 
studies have found that exosome-transmitted miRNA-335-5p and miR-340-5p, directly 
controlled by LncRNA LINC00662, promote colorectal cancer invasion and metastasis 
through facilitating epithelial-mesenchymal transition and activating the ERK signaling 
pathway [188,189]. Moreover, angiogenesis in colon cancer has been over-activated by 
miR-181a, broadly known as an oncogenic miRNA that stimulates over-activation of 
VEGF signaling in various cancer types [165,190]. In addition, miR-552 serves as an indi-
cator of poor prognosis in cancer patients and is a potential diagnostic target by regulating 
the expression of PTEN [191]. 

Some miRNAs derived from LINE act as broad tumor suppressor miRNAs related to 
tumor hallmarks such as proliferation, growth, apoptosis, and migration. Downregulated 
expression of miR-708 in various cancers, including colorectal cancer tissues and cell lines, 
activates proliferation and metastasis and inhibits apoptosis via the targeting of ZEB1 
through the Akt/mTOR signaling pathway [192]. Additionally, miR-28-5p was identified 
as a component of the combined regulatory axis UCA1/miR-28-5p/HOXB3, which controls 
tumor size and stage, cell growth, and migration in colon cancer [193]. 

4.2.3. Liver Cancer 
Liver cancer is the third leading cause of cancer-associated deaths worldwide. Liver 

cancer has a poor prognosis for late diagnosis at advanced and metastatic stages without 
representative prior symptoms and sufficient therapeutic approaches [194]. Studies of di-
agnostic biomarkers are important for the early diagnosis of liver cancer. One study 
showed that upregulated exosomal miR-224 derived from the DNA transposon is a diag-
nostic and prognostic biomarker of hepatocellular carcinoma, resulting in a lower survival 
rate and increased proliferation and invasion [195]. Moreover, overexpression of miR-493-
5p and miR-608 suppresses the proliferation and invasion of liver cancer cells by regulat-
ing the expression of their target genes, VAMP2 and the BET family protein BRD4, respec-
tively [196,197]. Some miRNAs originating from SINE negatively control the Warburg ef-
fect, a distinctive metabolic phenomenon that favorably utilizes glucose through aerobic 
glycolysis by silencing their target genes [198]. miR-342-3p, a tumor suppressor miRNA, 
inhibits cancer cell proliferation by inactivating the IGF-1R-mediated PI3K/AKT/GLUT1 
signaling pathway. Suppression of IGF-1R weakens glycolysis by decreasing glucose up-
take, lactate generation, ATP production, and extracellular acidification rate, inversely in-
creasing the oxygen consumption rate in hepatoma cells, causing activation of prolifera-
tion [199]. Another study demonstrated that forced expression of miR-885-5p enhanced 
aerobic glycolysis by reducing glucose uptake and lactate production through inhibition 
of hexokinase 2, which catalyzes the first step of glycolysis [200]. 

Liver cancer-controlling miRNAs also have a close correlation with long non-coding 
RNAs and form a regulatory axis with other factors, including transcription factors and 
target genes of miRNA, based on the competing endogenous RNA hypothesis that 
lncRNAs might act as a molecular sponge for miRNA. One study has identified that 
lncRNA H19 and miR-326 are expressed inversely in hepatocellular carcinoma and con-
trol the expression of TWIST1, a downstream target of miR-326, tempting changes in can-
cer cell growth, migration, and invasion [201]. Another study confirmed a negative corre-
lation between lncRNA MIR31HG and miR-575. MIR31HG suppresses proliferation and 
invasion of liver cancer cells by inhibiting miR-575, an upstream regulator of the tumor-
igenicity 7-like (ST7L) gene [202]. 

4.2.4. Stomach Cancer 
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Stomach cancer, the most common malignant tumor, ranks fifth in incidence and 
fourth in mortality in global cancer statistics for 2020 [177]. The onset of stomach cancer is 
often caused by the abnormal expression of specific genes. Several studies have confirmed 
that changes in the expression of cancer-related genes can be regulated by MDTEs. Con-
sequently, MDTEs can control cancer biological pathways and manage cancer progres-
sion. Both miR-585 and miR-1269, are derived from the LTR element and inversely regu-
late the proliferation of stomach cancer cells. The tumor suppressor miRNA miR-585 
binds to MAPK1 and prevents its expression, leading to suppression of tumor prolifera-
tion and migration [203]. On the other hand, oncogenic miRNA miR-1269 promotes pro-
liferation and cell cycle G1-S transition by activating the AKT signaling pathway while 
suppressing apoptosis by targeting RASSF9 via the Bax/Bcl-2 signaling pathway [204]. 
Similarly, upregulated LINE derived-miR-552 also functions as an oncogenic miRNA, as 
an accelerator of gastric cancer progression, increased metastasis, and worsens therapeu-
tic outcomes by targeting forkhead box O1 (FOXO1) and modulating the PI3K/AKT path-
way [205]. Cancer cells induce polymorphisms in major oncogenes to circumvent this reg-
ulatory mechanism of MDTE. A recent study found that MUC4, a regulator of cell apop-
tosis and tumorigenesis, is aberrantly expressed in numerous cancer types. The evaluated 
expression of the rs2641726 C allele of MUC4 was significantly concerned with cancer 
incidence by providing a binding site to attenuate its interaction with miR-581 [206]. 

In addition, long non-coding RNAs and circular RNAs also contribute to the correla-
tion between MDTEs and their target genes in gastric cancer. One study has verified that 
the novel abundantly expressed lncRNA RP11-290F20.3, named GC-related lncRNA1 
(GCRL1), could change gastric cell proliferation and metastasis both in vitro and in vivo 
by sponging the tumor suppressor miRNA miRNA-885-3p and stimulating overexpres-
sion of the target gene cyclin-dependent kinase 4 (CDK4) [207]. In addition, long non-
coding RNAs such as TRPM2-AS and LINC00324 act as miRNA sponges for MDTEs such 
as miR-612 and miR-3200-5p and attenuate tumorigenesis by increasing the expression of 
their target genes [208,209]. Furthermore, circular RNAs, Circ_0008287, and Circ-
LDLRAD3, boost immune escape mechanisms or cancer cell viability criteria such as cell 
growth, migration, and invasion by regulating MDTEs, miR-548c-3p, and miR-224-5p, its 
target genes axis in stomach cancer [210,211]. 

4.2.5. Breast Cancer 
Breast cancer is the most common cancer diagnosed in women and the most preva-

lent cancer in 2020 in both sexes [177]. Improved survival outcomes of breast cancer are 
associated with understanding the molecular processes driving breast cancer develop-
ment, including the interaction of miRNA and target mRNA. For example, miR-421 is a 
valuable diagnostic biomarker that adjusts breast cell proliferation through targeting 
RDCD4 [212,213]. According to other studies, as a tumor suppressor miRNA, miR-326, 
and miR-340-5p derived from DNA transposon controlled vital tumor pathways, 
ErbB/PI3K and Wnt/beta-catenin signaling pathways [214,215]. 

In particular, a few miRNAs facilitate tumorigenesis of triple-negative breast cancer, 
which is a subset categorized by the negative expression of human epidermal growth fac-
tor receptor 2, estrogen, and progesterone receptors, and is also considered one of the 
highest-risk and poorest prognostic subtypes of breast cancer [216,217]. LINE-originated 
miRNAs, miR-582-5p, and miR374-5p, stimulate cancer invasion and metastasis by antag-
onizing their target genes, CMTM8 and ARRB1 [218,219]. Moreover, upexpressed miR-
224-5p, derived from the DNA transposon in triple-negative breast cancer cells, enhances 
cell proliferation, migration, and invasion by inhibiting CASP9 [220]. 

Table 2. The list of miRNAs dysregulated in five major mortality-causing cancers in the last 5 years. 

Cancer Type MiRNA Subclass Superfamily Target Gene Reference 
Lung cancer hsa-miR-421 LINE L2 - [178] 
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hsa-miR-4317 SINE MIR FGF9, CCND2 [180] 

hsa-miR-330-5p SINE MIR 
RASSF1A [221] 
FAM83A [185] 

hsa-miR-374b-5p LINE L2 SRSF7 [184] 
hsa-miR-544a DNA transposon hAT-Charlie FBXW7 [222] 
hsa-miR-1183 LINE L2 PDPK1 [223] 
hsa-miR-181a LINE RTE-BovB GAS7 [224] 
hsa-miR-181b LINE RTE-BovB Bcl-2 [182] 
hsa-miR-340 DNA transposon TcMar-Mariner - [225] 

hsa-miR-340-5p DNA transposon TcMar-Mariner KPNA4 [226] 
hsa-miR-885-3p SINE MIR Aurora A [183] 
hsa-miR-378a-3p SINE MIR CDK4/CDK6 [227] 

hsa-miR-1246 LTR ERVL-MaLR CXCR4 [181] 
hsa-miR-1290 DNA transposon TcMar-Tigger - [179] 

hsa-miR-326 DNA transposon hAT-Tip100 
hsa_circ_0003998 [228] 

Sp1 [229] 
hsa-miR-608 LINE L2 MIF [230] 

Colon cancer 

hsa-miR-585-3p LTR ERVL-MaLR PSME3 [186] 
hsa-miR-335-5p SINE MIR RASA1 [188] 
hsa-miR-181a LINE RTE-BovB SRCIN1 [190] 
hsa-miR-708 LINE L2 ZEB1 [192] 

hsa-miR-1273 SINE Alu 
MAGEA3/6 [187] 
circPIP5K1A [231] 

hsa-miR-340-5p DNA transposon TcMar-Mariner CLDN8, IL22 [189] 
hsa-miR-552 LINE L1 PTEN, p53 [191] 

hsa-miR-28-5p LINE L2 HOXB3 [193] 
hsa-miR-374b-5p LINE L2 LRH-1 [232] 

Liver cancer 

hsa-miR-23c SINE MIR ERBB2IP [233] 
hsa-miR-575 SINE MIR ST7L [202] 
hsa-miR-608 LINE L2 BRD4 [197] 
hsa-miR-326 DNA transposon hAT-Tip100 TWIST1 [201] 
hsa-miR-645 DNA transposon hAT-Charlie SOX30 [234] 

hsa-miR-493-5p LINE L2 VAMP2 [196] 
hsa-miR-224 DNA transposon DNA transposon GNMT [195] 

hsa-miR-342 SINE tRNA-RTE 
IGF-1R [199] 
MCT1 [235] 

hsa-miR-378a SINE MIR VEGFR, PDGFRβ, c-Raf [236] 
hsa-miR-885-5p SINE MIR HK2 [200] 

hsa-miR-421 LINE L2 MAPK14 [237] 

Stomach cancer 

hsa-miR-575 SINE MIR PTEN [238] 
hsa-miR-581 DNA transposon hAT-Charlie MUC4 [206] 
hsa-miR-552 LINE L1 FOXO1 [205] 

hsa-miR-885-3p SINE MIR CDK4 [207] 
hsa-miR-421 LINE L2 Hsacirc0001546 [212,239] 

hsa-miR-181a LINE RTE-BovB caprin-1 [240] 
hsa-miR-612 SINE MIR IGF2BP1, FOXM1 [208] 

hsa-miR-224-5p DNA transposon DNA transposon circ-LDLRAD3 [211] 
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hsa-miR-3200-5p LTR ERVL BCAT1 [209] 
hsa-miR-1269 LTR ERVL RASSF9 [204] 
hsa-miR-585 LTR ERVL-MaLR MAPK1 [203] 

hsa-miR-4317 SINE MIR ZNF322 [241] 
hsa-miR-548c-3p DNA transposon TcMar-Mariner CLIC1 [210] 

Breast cancer 

hsa-miR-130a-3p LINE RTE-BovB FOSL1, RAB5B [242] 
hsa-miR-582-5p LINE CR1 CMTM8 [218] 

hsa-miR-224-5p DNA transposon DNA transposon 
CASP9 [220] 
Smad4 [243] 

hsa-miR-1246 LTR ERVL-MaLR - [244] 

hsa-miR-326 DNA transposon hAT-Tip100 
EGFR, ErbB2, ErbB3, 
AKT1, AKT2, AKT3 [214] 

hsa-miR-708 LINE L2 - [245] 
hsa-miR-374a-5p LINE L2 ARRB1 [219] 
hsa-miR-335-5p SINE MIR EphA4 [246] 
hsa-miR-181a LINE RTE-BovB AK024094 [161] 

hsa-miR-340-5p DNA transposon TcMar-Mariner LGR5 [215] 
hsa-miR-421 LINE L2 PDCD4 [213] 

4.3. Cancer Regulatory MDTEs in Other Cancer Types 
In addition, it has been confirmed that MDTEs can function as vital controlling fac-

tors in other cancer types (Table 3). In renal cancer, DNA transposon-derived hsa-miR-
224 in collaboration with miR-193a-3p promotes cell proliferation and migration by tar-
geting al-pha-2,3-sialyltransferase IV and activating the PI3K/AKT pathway [247]. Simi-
larly, miR-340 prevents the proliferation, migration, and invasion of squamous cell carci-
noma cells by directly targeting the Ras homolog gene family member A [248]. In bladder 
cancer, miR-374 and miR-612 function as tumor suppressor miRNAs through interaction 
with ZEB2 and malic enzyme 1 [249,250]. Upregulated miR-582-5p directly targets AKT3 
and affects cell proliferation and apoptosis in endometrial carcinoma [251]. LINE-origi-
nated miRNAs, miR-1271, 887-3p, and miR-552, regulate the progression of pancreatic 
and ovarian cancers by inhibiting each target gene [252–254]. Some MDTEs have the same 
effect on cancer as their regulators. In cancer studies, miR-224 and miR-374b were shown 
to be oncogenic miRNAs and tumor suppressor miRNAs, respectively, in cervical cancer 
by binding to pentraxin 3 and junctional adhesion molecule-2, respectively [255,256]. 

Table 3. The list of miRNAs dysregulated in various cancer types in the last 5 years. 

Cancer Type MiRNA Subclass Superfamily Target Gene Refer-
ence 

Renal cancer hsa-miR-224-3p DNA transposon DNA transposon ST3GalIV [247] 
Skin cancer hsa-miR-340-5p DNA transposon TcMar-Mariner RhoA [248] 

Bladder cancer 
hsa-miR-374b-5p LINE L2 ZEB2 [249] 
hsa-miR-330-5p SINE MIR circFARSA [162] 

hsa-miR-612 SINE MIR ME1 [250] 

Cervical cancer 
hsa-miR-224-5p DNA transposon DNA transposon PTX3 [255] 

hsa-miR-374b-5p LINE L2 JAM2 [256] 
Endometrial 

cancer hsa-miR-582-5p LINE CR1 AKT3 [251] 

Oral cancer 
hsa-miR-1290 DNA transposon TcMar-Tigger - [257] 
hsa-miR-1246 LTR ERVL-MaLR CCNG2 [258] 
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Pancreatic can-
cer 

hsa-miR-1271 LINE L2 E-cadherin, 
ZEB1, TWIST1 [252] 

hsa-miR-224-5p DNA transposon DNA transposon TXNIP [259] 
hsa-miR-887-3p LINE L2 STARD13 [253] 

Ovarian cancer hsa-miR-552 LINE L1 PTEN [254] 

In addition, MDTEs have a significant effect on chemotherapy as well as their role as 
regulators of cancer progression. For example, the expression of the circulating miRNA, 
miR-1290, was downregulated in the plasma of oral squamous cell carcinoma patients 
compared to that in healthy volunteers. According to clinicopathological and Cox regres-
sion analyses, oral cancer patients with lower expression of miR-1290 showed poor patho-
logical response to preoperative chemoradiotherapy and a lower five year overall survival 
rate. As a valuable biomarker, circulating miR-1290 can predict the clinical response to 
chemoradiotherapy and the overall survival rate in patients with oral squamous cell car-
cinoma [257]. Poor survival rates by increasing chemoresistance were caused by LTR-de-
rived miR-1246, overexpressed in oral cancer patient tissues. Moreover, miR-1246 re-
presses CCNG2 expression, leading to cancer cell stemness progression, which can repre-
sent relapse and metastasis [258]. Thus, MDTEs can be applied as therapeutic and diag-
nostic biomarkers, as well as expression regulators of oncogenes promoting cancer devel-
opment and tumor suppressor genes inhibiting the generation of tumors. However, their 
biological and clinical value in patients with cancer has not yet been fully explored, and 
few research papers illuminating the relationship between MDTE and cancer have been 
conducted. 

5. Conclusions 
This review focuses on the biological consequences of TEs as a key source of alterna-

tive splicing and as a vital transcriptional regulator of various oncogenic processes asso-
ciated with the onset and development of cancer. Under normal conditions, RNA pro-
cessing fidelity is preserved by basal splicing, which maintains normal physiological ho-
meostasis. Conversely, with the incidence of cancer, disruption of regulatory homeostasis 
by TE insertion can produce cancer-specific transcripts and contribute to the development 
of cancer by altering the expression of cancer progression-related genes. Moreover, miR-
NAs derived from TE can regulate a portion of cancer-specific transcripts at the post-tran-
scriptional level. That is, integration of TE acts as a critical regulator of many aberrant 
tumorigenic processes implicated in cancer pathogenesis, including the cell cycle, apop-
tosis, EMT, metabolic deregulation, and angiogenesis (Figure 4). Despite this scientifically 
revealed organic relationship, there have been few studies on the correlation between al-
ternative splicing by inserted TEs and cancer-related MDTEs by analyzing in vivo data 
originating from samples of cancer patients. Hence, in-depth research and systematic 
analyses of these interactions are necessary to provide therapeutic insights into cancer 
treatment and a better understanding of oncogenic regulatory mechanisms from a macro-
scopic point of view. 
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Figure 4. Impact of cancer-specific alternative splicing promoted by TE integration. Integrated TE is 
a critical regulator of many aberrant cancer-related biological processes implicated in cancer patho-
genesis. (A) Fundamental splicing process in normal cell biology. (B) Macroscopic regulatory mech-
anism of cancer-specific transcript expression under the cancer environment. EMT: Epithelial-Mes-
enchymal Transition. Yellow, light purple and orange rectangles indicated basal exons. 
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