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Abstract: One of the classic hallmarks of cancer is the imbalance between elevated cell proliferation
and reduced cell death. Ceramide, a bioactive sphingolipid that can regulate this balance, has long
been implicated in cancer. While the effects of ceramide on cell death and therapeutic efficacy are
well established, emerging evidence indicates that ceramide turnover to downstream sphingolipids,
such as sphingomyelin, hexosylceramides, sphingosine-1-phosphate, and ceramide-1-phosphate,
is equally important in driving pro-tumorigenic phenotypes, such as proliferation, survival, mi-
gration, stemness, and therapy resistance. The complex and dynamic sphingolipid network has
been extensively studied in several cancers, including breast cancer, to find key sphingolipidomic
alterations that can be exploited to develop new therapeutic strategies to improve patient outcomes.
Here, we review how the current literature shapes our understanding of how ceramide synthesis
and turnover are altered in breast cancer and how these changes offer potential strategies to improve
breast cancer therapy.
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1. Introduction

With an estimated 287,850 new cases in 2022, breast cancer (BC) is the most common
cancer in women (15% of all new cancer cases) [1]. The mortality in BC patients has
decreased steadily over the last twenty years from 26.6% to 19.4% [1], which can be largely
attributed to improved therapeutic strategies that have come from continuous progress
in understanding breast tumor biology. Therefore, the identification and characterization
of important molecular targets driving BC development and progression are essential
to improve the therapeutic efficacies of existing treatments, as well as to develop new
therapeutic strategies.

Over the past few decades, ceramide, a bioactive sphingolipid, has emerged as an
important player in several cancers, including BC, due to its critical role in regulating both
cell death and cell survival. In brief, intracellular accumulation of ceramides can induce cell
death, while ceramides also serve as a substrate for the production of other sphingolipids
that can promote cell survival and proliferation. Therefore, tumor cells tend to employ
mechanisms to restrain ceramide levels while increasing the production of ceramide’s
downstream sphingolipids to support growth. In contrast, BC treatment modalities can tar-
get the sphingolipid pathway to increase ceramide levels and ceramide-mediated cell death.
Since ceramide is the common precursor of downstream pro-proliferative sphingolipids, it
is important to have a global perspective of ceramide metabolism, both its synthesis and
turnover, for a comprehensive evaluation of its role in BC [2–5].

In this review, we will highlight new developments over the last five years in (i) the
role of ceramides in BC biology, (ii) the mechanisms by which ceramide levels are regulated
in BC, and (iii) the therapeutic implications of ceramide production and metabolism in BC.
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2. Ceramides: Structure and Production

Ceramides are structurally defined as a sphingoid base, typically sphingosine with
18 carbons (d18), attached to a fatty acyl chain of variable length (14 to 26 carbons), the
most common one being 16 carbons in mammalian cells (Figure 1) [6]. This characteristic
amide group and the waxy nature of the molecules (‘cer’ meaning wax in Latin) give
them the name ceramides. High hydrophobicity makes these molecules poorly water-
soluble; therefore, they primarily exist in biological membranes. Ceramides are highly
abundant in the outermost layer of our skin, making up about 30–40% of our epidermis
and serving as a permeability barrier [7]. Intracellularly, ceramides are found in the
plasma membrane, nuclear and mitochondrial envelope, endoplasmic reticulum (ER) and
Golgi apparatus, where they carry out distinct functions. While ceramides in the plasma
membrane serve in lipid rafts regulating membrane dynamics, ceramide accumulation in
mitochondria induces apoptosis, and ceramides in the ER and Golgi are used as precursors
to other sphingolipids [8].
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Figure 1. Structures of ceramides and other sphingolipids. (A) The most prevalent sphingoid base
in mammals is a C18-sphingosine. General structures of ceramides (B), sphingomyelins (C) and
glucosylceramides (D) on the C18-sphingoid backbone (black). Head groups of sphingomyelin
and glucosylceramides are shown in blue. The acyl chain (red) length varies from 16 to 26 carbon-
containing structures, predominantly in mammalian cells. C16 species are shown here as representa-
tive structures.

Ceramides can be generated through de novo synthesis from the condensation of serine
and a palmitoyl CoA at the ER by the enzyme serine-palmitoyl transferase (SPT). The prod-
uct of this reaction is 3-keto dihydrosphingosine, which is reduced to dihydrosphingosine.
Dihydrosphingosine is acylated by ceramide synthase (CERS) to yield dihydroceramide.
Mammalian ceramide synthases are comprised of six isoforms, CERS1–6, which have
substrate preferences based on acyl chain length. Dihydroceramides are then saturated by
delta 4-desaturase (DEGS1/2) to produce ceramides. Ceramides can then be transported
to the Golgi apparatus and be converted to downstream sphingolipids, which can also
be converted back into ceramides and broken down through the sphingomyelinase and
salvage pathways (Figure 2).
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3. Canonical Role of Ceramides in BC: A Bona Fide Inducer of Cell Death

The role of ceramides in inducing apoptosis in different cancer cells, including BC, has
been established by several lines of evidence. (i) Apoptosis-inducing agents increase intracel-
lular ceramide levels prior to the initiation of the apoptotic cascade [9–21]. (ii) Intracellular
delivery of ceramides and ceramide-analogs induces apoptosis [22–26]. (iii) Increasing endoge-
nous ceramide levels trigger growth arrest and apoptosis [27–32]. Additionally, (iv) cell lines
incapable of generating ceramides are resistant to chemo- and radiotherapy [17,22,27,33].

The current dogma about the mechanism by which ceramides induce apoptosis states
that ceramides can form pores in the mitochondrial outer membrane (OMM), owing to
their ability to form channels in planar phospholipid membranes [34]. Ceramide-induced
pores in OMM result in an increased OMM permeability and a consequential release of
cytochrome c and other mitochondrial proteins, such as SMAC/DIABLO, heat-shock pro-
teins, and endonucleases, into the cytosol, thereby initiating the apoptotic cascade [35,36].
Consistent with this theory, reports show that OMM has very low ceramides and is enriched
with dihydroceramides in healthy conditions. Dihydroceramides lack pore-forming ability
due to their lack of a 4,5-trans bond as compared to their ceramide counterparts [37,38].
A recent report by Agnes De Mario and colleagues has suggested additional regulators
that may control ceramide action in apoptosis. Ceramide-induced apoptosis in BC can be
dependent on mitochondrial Ca2+ levels as an inhibitor of mitochondrial calcium uniporter
(MCU), reducing mitochondrial Ca2+ uptake and decreasing Ca2+ load in the mitochondria,
protecting BC cells from ceramide-induced apoptosis [39].

The fatty acyl chain length of ceramides can also be a critical factor in the molecular
actions of ceramides. Several studies have described how short-chain and long-chain
ceramides can have different biophysical properties that can affect their actions [40,41].
Increasing short-chain ceramides in breast cancer cells have been reported to reduce prolif-
eration through inhibition of mTOR signaling in a recent study by Kim et al. [42]. In their
study, overexpression of CERS6, which produces C14:0, C16:0, and C18:0 ceramides, but
not other isoforms, resulted in inhibition of mTOR signaling and reduced cell proliferation
in MCF-7 cells [42]. On the other hand, decreased levels of very long-chain ceramides
(C20:0, C22:0, C24:0, and C26:0) have been reported to enhance proliferation and migration
in luminal B breast tumors. Pani et al. reported that luminal B tumors have an alternate
spliced (exon 8 skipped) CERS2 gene, which is associated with a poor prognosis of luminal
B tumors [43]. The exon 8 corresponds to a segment in the catalytic domain of CERS2; hence,
the alternate spliced variant becomes unable to synthesize long-chain ceramides, and the
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reduction of these ceramides promotes luminal B tumor growth. These findings suggest
that more aggressive cancers are likely to employ regulatory mechanisms to restrain very
long-chain ceramide generation from supporting cell proliferation and evading cell death.

Ceramide-mediated actions appear to be at the cornerstone of inducing apoptosis in BC
cells. Over the last few years, several small molecules (such as fatostatin, hydroxytriolene,
zoledronic acid, salvianolic acid, thymoquinone, etc.) have been described that promote
cell death in BC cells through very different mechanisms [44–48]. For example, fatostatin
induces ER-stress [44], and hydroxytriolene interacts with the plasma membrane, regulating
its structure and composition, which reduces Akt signaling [45]. However, both of these
small molecule inhibitors induce cell death by increasing the intracellular ceramide levels,
albeit the detailed molecular underpinnings of how they increase ceramide levels have yet
to be fully elucidated.

4. The Other Role of Ceramides: Conversion to Pro-Survival Sphingolipids

Ceramide, once transported to the Golgi apparatus, can also serve as a precursor to
bioactive sphingolipids such as ceramide-1-phosphate (C1P) and sphingosine-1-phosphate
(S1P), which can counteract the pro-apoptotic ceramide actions, or other sphingolipids such
as sphingomyelin (SM) and hexosylceramide (HexCers) that are involved in cell survival,
proliferation, and drug resistance (Figure 2). Ceramide conversion to other sphingolipids
offers a plausible explanation for the detection of high ceramides in breast tumors from
patients, as SM and S1P levels are also elevated in breast tumors [49–53]. Since ceramides
are the precursors to produce the downstream sphingolipids, both ceramide de novo
synthesis and ceramide turnover are increased in the breast tumor cells, as marked by
increased gene expression of CERS2, -4, and -6, ceramide kinase (CERK), sphingosine
kinase 1 (SPHK1), UDP-glucose ceramide glucosyltransferase (UGCG), and sphingomyelin
synthase 1 (SGMS1), enzymes that are involved in ceramide turnover [49,53,54] (Table 1).
Each of the downstream sphingolipids exerts a specific cellular function that can contribute
to cell proliferation, metastasis, cancer stem cells, and drug resistance in different ways.
Several studies in the past few years have improved our understanding of the cellular
effects of ceramide turnover on different sphingolipids and may offer new targets for
BC therapy.

Table 1. List of enzymes and their inhibitors of the ceramide synthesis and turnover pathways.

Enzyme Name
(Abbreviation) Gene Name(s) Actions Major Implication(s) in BC Inhibitor Citations

Serine palmitoyl
transferase (SPT)

SPTLC1–3,
SPTSSA-B

De novo ceramide
synthesis

Enzyme activity increases in
response to chemo- and

radiotherapy
[55]

Ceramide synthase

CERS1 C18:0, C20:0 ceramide
synthesis

Ceramide production under
different stimulus

FB1

[56]

CERS2
C20:0, C22:0, C24:0,

C26:0
ceramide synthesis

Long-chain ceramide production;
alternative splicing drives

aggressive luminal B phenotype
[43]

CERS3
C16:0, C18:0, C22:0,

C24:0 ceramide
synthesis

Ceramide production under
different stimulus

[44–49,56,57]CERS4
C18:0, C20:0, C22:0,

C24:0, C26:0 ceramide
synthesis

CERS5
C14:0, C16:0 C18:0,

C18:1 ceramide
synthesis

CERS6 C14:0, C16:0, C18:0
ceramide synthesis

Short-chain ceramide production;
inhibits cell proliferation through

mTOR pathway.
[42]
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Table 1. Cont.

Enzyme Name
(Abbreviation) Gene Name(s) Actions Major Implication(s) in BC Inhibitor Citations

Sphingomyelinase
(SMase)

SMPD2 Ceramide
production Induce cell cycle arrest GW4869 [31,32]

SMPD1 Ceramide
production

Activity is required for chemo
and radiotherapy [58–60]

Ceramide kinase CERK C1P generation Cell migration and metastasis NVP-231 [61–66]

UDP-glucose
ceramide

glucosyltransferase
UGCG Glucosylceramide

generation
Metabolic reprogramming,

increased energy metabolism [67–72]

Acid Ceramidase ASAH1

Sphingosine
production and
subsequent S1P

production

S1P generation for promoting
BC growth

D-erythro-
MAPP [73,74]

Sphingosine kinase SPHK1/2 S1P generation BC growth and proliferation FTY720 [75–82]

Sphingomyelin
synthase SGMS1/2 SM generation Promoting EMT, metastasis

and chemoresistance [83,84]

4.1. Sphingosine-1-Phosphate (S1P)

Ceramide is converted to sphingosine by the action of ceramidases (CDase). Sphin-
gosine is then phosphorylated by sphingosine kinase (SPHK1/2) to produce sphingosine-
1-phosphate (S1P) [75]. S1P is secreted outside the cell, binds to S1P receptors (S1PR)
and promotes cell proliferation and survival through activation of Akt and Erk-1/2 path-
ways [61,85]. Out of the five S1PR isoforms in humans, S1PR-1, -3, and -4 have been
implicated in BC [86]. A recent study by Chen and colleagues has suggested that S1P can
promote epithelial-mesenchymal transition (EMT) as well as stemness in BC cells [87]. S1P
can also increase ceramide production and turnover in BC cells by increasing CERS1, -2, -6,
and UGCG gene expression [88].

Three possible strategies to counter S1P’s ability to promote cell proliferation and
survival have been tested in BC: (i) inhibition of CDase, (ii) inhibition of SPHK1/2 to prevent
S1P production, and (iii) inhibition of S1P signaling. An inhibitor of CDase, D-erythro-
MAPP treatment has been reported to increase intracellular ceramides and attenuate S1P
generation, which induced cell death in MCF-7 cells (Table 1) [73]. Similarly, several small
molecule inhibitors of SPHK1/2 and S1PR have been shown to inhibit BC cell growth
both in vitro and in vivo [75–80], of which FTY720 (fingolimod, an FDA-approved drug
for multiple sclerosis), has been extensively studied. FTY720 is a prodrug, which upon
phosphorylation by SPHK2, yields phospho-FTY720, which acts as an antagonist for S1PR1,
thereby inhibiting BC cell survival and proliferation [86]. Additionally, FTY720 has also
been reported to potentiate the chemotherapeutic efficacy of docetaxel and doxorubicin in
BC cells in two recent studies [81,82], thereby suggesting that attenuation of S1P generation
or signaling can be a potential therapeutic strategy for the treatment of BC.

4.2. Ceramide-1-Phosphate (C1P)

Ceramide kinase (CERK) phosphorylates ceramides to produce ceramide-1-phosphate
(C1P), another bioactive signaling sphingolipid involved in pro-survival and pro-proliferative
actions. Recently, two studies have elucidated the molecular actions of C1P in BC, which sug-
gested that cellular actions of C1P are mediated by the production of C-C Motif Chemokine
Ligand 5 (CCL5) [89] and activation of PI3K and Akt pathways [90]. An increasing body
of evidence has implicated C1P in cell migration and metastasis in BC [61–63]. A recent
study that reported an increased CERK expression in the lung and bone metastatic cells of
an MDA-MB-231 tumor supports the role of C1P in metastasis [90]. Along this line, CERK
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expression has been shown to be associated with a worse prognosis in TNBC patients [64].
A recent report by Zhu and colleagues has shown that overexpression of CERK in TNBC
cells promotes cell growth, migration, and chemoresistance [65,66]. Interestingly, C1P
also plays an important role in endocrine therapy-resistant cell survival, as inhibition of
CERK induces cell death in therapy-resistant BC cells via loss of C1P [91]. Owing to C1P’s
ability to inhibit de novo ceramide production, CERK inhibition can induce ceramide
accumulation and consequent cell death in endocrine therapy-resistant BC cells [91,92].

Of note, high levels of very long odd-carbon chain C1P (C23:0 C1P and C23:1 C1P)
have been detected in breast tumors from patients compared to the tumor-adjacent normal
tissue [49], and C1P levels are also positively correlated with Ki-67 index of the breast
tumors [49], suggesting that C1P level can be a potential prognostic parameter in breast
cancer patients [93].

4.3. Sphingomyelins (SM)

Sphingomyelins (SM) are essential components of biological membranes; therefore,
they are necessary for cell growth and proliferation. SM are generated from ceramides
by the action of sphingomyelin synthase (SGMS-1/2). A recent report has implicated SM
in BC metastasis and aggressiveness. Their findings suggest that SGMS2 promotes EMT
through activation of the TGF-ß/SMAD pathway, more specifically, by increasing TGF-ß1
secretion [83]. An increase in ceramide turnover to SM is also an important feature of
chemotherapy resistance in BC [84].

4.4. Hexosylceramides (HexCer)

From a wider perspective of overall cancers, the sphingolipids that play an important
role in therapy resistance are undoubtedly the hexosylceramides (HexCer), a group of
ceramide metabolites that have a neutral sugar moiety linked to a ceramide [94]. They serve
as precursors to complex glycosphingolipids like globosides and gangliosides. The enzyme
that converts ceramides to glucosylceramides, UDP-glucose ceramide glucosyltransferase
(UGCG), is upregulated in multidrug resistance in multiple cancers [94,95]. In BC, UGCG
has been reported to upregulate multidrug resistance protein 1 (MDR1), which confers
drug resistance by acting as a drug-efflux pump, thereby keeping the intracellular drug
concentration low [54]. An in vitro study has shown that co-suppression of MDR1 and
UGCG can increase sensitivity to chemotherapeutic drugs in BC cells [96].

Glucosylceramides also play a crucial role in the metabolic reprogramming of breast
cancer. Overexpression of UGCG increases glutamine synthesis and metabolism in BC, a
common feature of therapy-resistant BC [67–69]. UGCG also confers additional metabolic
changes which favor energy metabolism of therapy-resistance BC cells [70,71]. UGCG over-
expression increases both glycolysis, oxidative phosphorylation, and amino acid synthesis
in breast cancer cells [69,72]. In addition to metabolic changes, UGCG can also induce
critical changes in the plasma membrane. Increasing glycosphingolipid and globotriacylce-
ramide levels in the glycosphingolipid-enriched microdomains impacts multiple cellular
signaling pathways in cell proliferation and drug resistance [97].

5. Therapeutic Implications of Ceramides in Breast Cancer

Treatment of BC involves multiple strategies, often depending on the molecular sub-
type and the size and spread of the tumor. While endocrine therapy (ET) (aromatase
inhibitors or antiestrogens such as tamoxifen) is the standard of care for most hormone
receptor-positive tumors, chemotherapy is the most common neoadjuvant therapeutic
approach for other molecular types [98]. Depending on the presence of cancer cells in the
sentinel node, radiotherapy is also often employed as a treatment modality [99]. Accumula-
tion of ceramides has been reported as a result of ET, chemo- and radiotherapy, suggesting
that ceramide-mediated cell death is an essential feature of neoadjuvant therapies, although
ceramide accumulation occurs through different mechanisms. Tamoxifen treatment in-
duces ceramide accumulation and consequent cell death in MCF-7 and MDA-MB-231
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cells through the inhibition of acid ceramidase (aCDase) [58,59,100]. Tamoxifen-mediated
inhibition of aCDase and the subsequent increase in ceramides and loss of S1P are thought
to occur in an estrogen receptor-independent manner, suggesting tamoxifen may have
some efficacy in in triple negative breast cancer, as well as other cancer types [101].

In contrast to ET, ionizing radiation relies on acid sphingomyelinase (aSMase) activity
to induce ceramide accumulation and cell death in BC cells [57,60]. This was supported by
a study where aSMase-null lymphoblasts were shown to be insensitive to radiation therapy
and to be re-sensitized upon aSMase overexpression [102]. Similar to radiotherapy, cellular
actions of chemotherapeutic agents, such as paclitaxel, also involve aSMase-mediated
ceramide generation and subsequent cell death in BC cells [103]. Additionally, another
study has reported that paclitaxel can also increase de novo ceramide production through
activating SPT in breast tumors [55], suggesting that chemotherapeutic agents may promote
intracellular ceramide accumulation through a combination of increasing de novo ceramide
production and breakdown of downstream sphingolipids.

Considering the role of ceramides in cell death and the role of ceramide downstream
metabolites in cell proliferation and survival, it is plausible that therapy-resistant cells
take certain measures to keep their ceramide levels regulated. Recently, Shammout and
colleagues compared doxorubicin-sensitive and -resistant MCF-7 cells and found that
the doxorubicin-resistant cells maintain an increased level of SM and decreased levels
of ceramides, dihydroceramides, and HexCers [84]. Similarly, our profiling study of
tamoxifen-sensitive and -resistant cells also found decreased ceramide and HexCers levels
in tamoxifen-resistant cells, although SM and dihydroceramide levels were found to be unal-
tered [91]. The different sphingolipidomic changes employed by different therapy-resistant
cells to maintain lower ceramide levels need to be validated in preclinical models and
patient tumors. Additionally, ceramide downregulation also requires to be mechanistically
elucidated for devising new therapeutic strategies and improving patient outcomes.

The majority of the ceramide-based therapeutics in BC are in preclinical or clinical
I/II phases and are mostly focused on preventing ceramide turnover to downstream sphin-
golipids (Table 2). Few studies that have attempted to deliver ceramides to tumor cells to
induce cell death have used synthetic short-chain ceramides formulated in nanoliposomes
for an efficacious intracellular delivery. Ceramide nanoliposomes (CNL) have inhibited
cell proliferation and migration in TNBC cells [58,104,105]. Of note, one study has em-
ployed a topical application of C2 and C6 CNL in a phase II study against cutaneous
breast cancer patients. While the formulation of C2 and C6 CNL showed no toxicity
in patients, only 4% responded to the treatment [106]. Although this low response rate
in patients suspended further clinical trials with CNL, adding short-chain ceramides in
nanoliposome-based formulations has been studied to increase the chemotherapeutic effi-
cacies BC drugs [107–109]. Of note, C12-ceramide-containing liposomes have improved
cellular targeting and synergized with the therapeutic efficacy of docetaxel and doxorubicin
in BC cells in a recent study [110].

Table 2. List of ceramide-based therapeutics in preclinical and clinical studies in breast cancer.

Drug/Compound
Name Target Combination Phase Citations

Fingolimod
(FTY720)

Structural analog of
sphingosine, S1PR

antagonist

Alone Preclinical [111–115]

Sunitinib
malate Preclinical [116]

Radiation Preclinical [117]

Doxorubicin Preclinical [118]

Cisplatin Preclinical [119]
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Table 2. Cont.

Drug/Compound
Name Target Combination Phase Citations

Fenretinide Inhibit DEGS1/2

Alone Preclinical [120]

Alone Phase I/II [121–124]

Tamoxifen Phase I/II [125–129]

Safingol Inhibit SPHK1 Alone Preclinical [130,131]

ABC294640 Inhibit SPHK2 and
DEGS1 Alone Preclinical [132–134]

Ceramide-
nanoliposomes (CNL)

Ceramide delivery Alone Preclinical [104–106]

Tamoxifen Preclinical [58]

SKI-II SPHK1/2 inhibitor Alone Preclinical [78,135]

α-GalCer
Synthetic glycolipid

α-galactosyl ceramide, a
strong immunostimulant

Alone Preclinical [136,137]

6. Concluding Remarks

Ceramides have become increasingly relevant in BC with a growing understanding of
the different regulatory mechanisms of ceramide production and turnover employed by the
cancer cells to promote different hallmarks of cancer. The understanding of the regulatory
network has also been essential for the development of new therapeutic strategies for
BC patients. Several ceramide-based cancer therapeutics are currently being tested in
preclinical and clinical (phase I and II) trials for BC, either alone or in combination with
other neoadjuvant therapies [138].

Of note, sphingolipidomic profiling studies of therapy-sensitive and -resistant tumors
have opened the possibility of ceramide-based treatment modalities in therapy-resistant
breast tumors. In both chemotherapy and endocrine therapy-resistant BC cells, maintain-
ing low ceramide levels has been observed as a common feature of therapy resistance.
However, these observations are yet to be validated in patient-derived xenografts (PDX)
or patient tumors. Further evidence and more mechanistic knowledge about this altered
ceramide regulation can potentially be leveraged into an improved therapeutic application
for patients with therapy-resistant disease.

There are several pertinent questions that remain to be addressed. For example, the
genetic determinants for altered ceramide regulation are largely unresolved. Apart from a
recent study showing alternative splicing of CERS2 in luminal B tumors, genetic signatures
for altered ceramide regulation are not well-elucidated. Additionally, the cellular and
molecular determinants for ceramide sensitivity are also somewhat obscure. As a bioactive
lipid, ceramide can interact with other proteins, and these interactions in BC need to be
characterized. Future studies elucidating these mechanisms will offer novel and improved
strategies and a new frontier of BC therapeutics.
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