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Abstract: As one of the largest transcription factor families in plants, bZIP transcription factors play
important regulatory roles in different biological processes, especially in the process of stress response.
Salt stress inhibits the growth and yield of sugar beet. However, bZIP-related studies in sugar beet
(Beta vulgaris L.) have not been reported. This study aimed to identify the bZIP transcription factors
in sugar beet and analyze their biological functions and response patterns to salt stress. Using
bioinformatics, 48 BubZIP genes were identified in the genome of sugar beet, encoding 77 proteins
with large structural differences. Collinearity analysis showed that three pairs of BvbZIP genes were
fragment replication genes. The BvbZIP genes were grouped according to the phylogenetic tree
topology and conserved structures, and the results are consistent with those reported in Arabidopsis.
Under salt stress, the expression levels of most BubZIP genes were decreased, and only eight genes
were up-regulated. GO analysis showed that the BubZIP genes were mainly negatively regulated in
stress response. Protein interaction prediction showed that the BubZIP genes were mainly involved
in light signaling and ABA signal transduction, and also played a certain role in stress responses.
In this study, the structures and biological functions of the BubZIP genes were analyzed to provide
foundational data for further mechanistic studies and for facilitating the efforts toward the molecular
breeding of stress-resilient sugar beet.
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1. Introduction

Sugar beet is the main sugar crop [1] in northern China. Around the world, it also has
important economic value, accounting for about 25% of the global sugar production [2].
By-products from the sugar beet pulp are rich in cellulose [3], which can be used for the
preparation of material-activated carbon by adding different activators [4—6]. Thus, sugar
beet has very good application prospects globally.

Soil salinization is a worldwide challenge [7] which threatens soil fertility and agricul-
tural productivity [8,9]. Relevant studies have shown that under salt stress, chlorophyll
biosynthesis and stomatal opening of plants are inhibited, leading to a decrease in the
net photosynthetic rate and accumulation of organic matter in plants [10]. Salt stress also
causes changes in membrane permeability and reactive oxygen species (ROS) production in
plants [11], thus affecting the normal growth and development of plants. Studies on sugar
beets showed that sugar production was significantly impaired under salt stress [12,13].
Therefore, identification and functional verification of sugar beet salt-tolerant genes are
very important to provide key genetic resources for molecular breeding of sugar beets.

The basic leucine zipper (bZIP) is one of the largest transcription factor families in
plants [14], and plays an important regulatory role in plant growth and development,
pest defense, abiotic stress response, and other physiological processes [15-19]. bZIP
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transcription factors were first identified in the reference plant Arabidopsis thaliana [20-22]
and subsequently studied in crops such as soybean (Glycine max) [23], rice (Oryza sativa) [24],
maize (Zea mays) [25], sorghum (Sorghum bicolor) [26] and grape (Vitis vinifera) [27]. The bZIP
transcription factors are named according to the bZIP conserved domain of 60-80 amino
acids in length and N-X7-R/K-Xg-L-X¢-L-X¢-L, which is composed of an alkaline DNA
binding region and a Leucine zipper region [28]. The alkaline region is located at the
n-terminus, and is mainly composed of Arginine and Lysine, and the nuclear localization
signal is N-X7-R/K [29]. The Leucine zipper region has about nine amino acid residues
from the C-terminal of the alkaline region, with a low degree of conservation, and one
leucine residue in every seven amino acids [30].

Studies have shown that bZIP transcription factors play an important role in the
plant response to salt stress [31]. In A. thaliana, AtbZIP17 responds to salt stress by
regulating the expression of salt-stress-responsive genes such as AtHB-7, thereby en-
hancing the salt stress tolerance of Arabidopsis [32]. Through ectopic expression of an
Arabidopsis AtbZIP60, it was found that the superoxide dismutase activities in tobacco
(Nicotiana tabacum) and rice (Oryza sativa) were significantly increased, and their tolerance
to salt stress environments was concurrently enhanced [33]. Rice OsbZIP71 regulates the
levels of Na* and K* in the cytoplasm by binding to the promoter of an osmotic reg-
ulatory gene, OsNHX1, so as to reduce the concentration of Na* and improve the salt
tolerance [34]. In Alfalfa (Medicago truncatula), overexpression of bZIP2 and bZIP26 en-
hanced salt stress tolerance [35]. Heterologous expression of soybean GmbZIP44, GmbZIP62
and GmbZIP78 genes in A. thaliana showed that the Arabidopsis plants had better physio-
logical indexes than the wild type under salt stress [36]. Transgenic tobacco with a ThbZIP1
gene from Tamarix hispida showed accumulation of reactive oxygen species, decreased cell
death and enhanced water retention, indicating the positive effect of ThbZIP1 in plant salt
tolerance [37]. Additionally, Zhang et al. [38] overexpressed a maize salt stress response
gene ABP6 in A. thaliana, and found that the salt stress tolerance of the transgenic Arabidop-
sis plants was significantly improved. Furthermore, studies in potato (Solanum tuberosum)
have found that StABF1 was up-regulated under salt stress [39], and overexpression of an
AREBI1 enhanced tomato tolerance to salt stress [40].

The aim of this study was to identify and analyze the bZIP transcription factor family
in sugar beet. The genome-wide identification of the BvbZIP genes was conducted using
bioinformatics methods. Their gene structure, sequence characteristics, chromosome loca-
tion, promoter functional elements, evolutionary relationship and salt stress response mode
were analyzed, providing theoretical reference for further analysis of biological functions
of the BubZIP genes. The results also provide important genetic resources for molecular
breeding of sugar beets for enhanced salt stress tolerance.

2. Results
2.1. Members of BobZIP Gene Family

After verifying the structure of conserved domains, a total of 48 bZIP genes were
identified from the whole genome of sugar beet and named on a scale from BvbZIP1 to
BvbZ1P48 according to the sequence of each gene. Expasy online programs were used to
predict the sequence length, molecular weight (MW) and isoelectric point (pI) of the proteins
encoded by the BubZIP genes (Table S1). Forty-eight BubZIP genes encoded 77 proteins,
among which 15 genes (BvbZIP1, BvbZIP2, BvbZIP11, BubZIP12, BvbZIP16, BubZIP20,
BubZIP22, BubZIP26, BubZIP27, BvbZIP31, BvbZIP32, BubZIP39, BvbZIP42, BubZIP46 and
BubZIP48) corresponded to different transcripts and encoded multiple proteins. In addition,
BubZ1P46, BubZIP47 and BvbZIP48 genes could not be located in the beet genome due
to short reads of the sequences. The sequence length of a BubZIP protein was between
141 (BubZIP28) and 841 (BubZIP10) amino acids (aas), and the molecular weight was
between 16.21 kDa (BubZIP28) and 92.44 kDa (BvbZIP10), and the isoelectric points were
distributed between 4.78 (BubZIP7) and 9.9 (BubZIP14).
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2.2. Sequence Characteristics of BobZIP Gene Family

BubZIP genes were divided into six groups (groupl-group6) according to exon—intron
structure. Except for a few genes, the BubZIP gene in the same group had the same
structure, with a highly similar exon number and intron phase. There were obvious
structural differences between the BubZIP genes in different groups. For example, the
genes in group1 contained only 1 exon, while the genes in group6 contained 8 to 12 exons,
reflecting a high difference between the BubZIP gene sequences (Figure 1).
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Figure 1. Gene structures of BubZIP genes. Yellow boxes represent exons, black lines represent
introns, blue boxes represent upstream and downstream noncoding regions, and the numbers 0,
1 and 2 represent intron phases. The BvbZIP genes were divided into groups 1 to 6 according to
the intron phase, and the grouping results are consistent with the evolutionary tree structure of the
BubZIP genes.

To further analyze the structural characteristics of BubZIP sequences, the online pro-
gram MEME was used to predict 15 conserved motifs of BubZIP proteins (Figure 2a,b).
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Aside from the proteins encoded by the same gene, which had similar motifs, motif types
and positions of other sequences were different. Analysis of the types of conserved motifs
showed that almost all the sequences contained Motifs 1 and 11, which were found by
multiple sequence alignment (Figure 2c). Motifs 1 and 11 corresponded to the complete
bZIP domain, which is the core functional region. The topological structure of the phylo-
genetic tree clustered the sequences with similarly conserved motifs into one group, and
there were significant differences in motifs among different groups (Figure 2a). Aside from
Motifs 1 and 11, other conserved motifs only existed in part of the BubZIP sequences, such

as Motifs 2, 4, 8, 13, 14, 15, etc.
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Figure 2. BubZIP conserved motifs and domains. (a) Phylogenetic tree of BubZIP proteins. (b) Analy-
sis of conserved motifs of BubZIP proteins, in which motifs 1 and 11 correspond to the bZIP domain.
(c) Multi-sequence alignment results of bZIP conserved domain, with * representing the nuclear

localization signal of bZIP conserved domain.

2.3. Chromosomal Localization and Collinearity Analysis of BubZIP Genes

BubZIP46, BbZIP47 and BvbZIP48, which had no specific chromosome location infor-
mation, were excluded, and chromosome location analysis was performed on the 45 BubZIP
genes. Colinear genes between species were obtained by MCScanX analysis to explore
whether gene duplication events existed between the bZIP genes. Chromosome location
analysis showed that BubZIP genes were distributed on nine chromosomes of sugar beet,
including eight BubZIP genes on chromosome 3, seven BubZIP genes on chromosomes 1
and 2, six BubZIP genes on chromosome 6 and five BubZIP genes on chromosomes 7 and 9.
Chromosomes 4, 5 and 8 contained four, two and one BubZIP genes, respectively (Figure 3).
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Figure 3. Chromosomal localization and collinearity analysis of BubZIP genes. The outer circle repre-
sents the location information of BvbZIP genes on the chromosome, and the inner circle histogram and
heat map represent the gene density and CDS density, respectively, on the sugar beet chromosome.
The central line represents all fragment replication genes on the genome, and the red line connects
the BubZIP genes that had undergone fragment replication.

Collinearity analysis showed that there were only three pairs of segmental replication
genes (BobZIP2 and BvbZIP16, BubZIP4 and BubZIP30, BubZIP9 and BubZIP33) between
the BubZIP genes in sugar beet. Comparing the collinearity of bZIP genes in sugar beet,
Arabidopsis, rice and grape, there were 19, 24 and 13 pairs of bZIP genes in Arabidopsis,
rice and grape, respectively, and the number of replication events of bZIP genes in all three
species was greater than that in sugar beet (Figure 4). The results show that there were
28, 12 and 37 pairs of bZIP genes between sugar beet and Arabidopsis, rice and grape,
respectively. There were 48 and 38 pairs of bZIP genes between grape, Arabidopsis and
rice, respectively. There were only two pairs of bZIP genes between Arabidopsis and
rice. In general, bZIP genes showed more gene duplication events between species than
within species.
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Figure 4. Collinearity analysis of bZIP genes in sugar beet, Arabidopsis, rice and grape. Blue for
sugar beets, red for Arabidopsis, green for rice and purple for grapes. The lines link bZIP genes that
were linked by fragment replication between different species.

2.4. Phylogenetic Analysis of the bZIP Family

The AtbZIP sequence and BubZIP genes were selected to construct the phyloge-
netic tree, which could be divided into group I-IX according to the topological structure
(Figure 5). Referring to the classification method for AtbZIP sequences, bZIP sequences
were divided into nine subclasses, A, B, C, D, E, F, G, H and S, according to the sequence
structure features. BZIP sequences of the same subclass tended to cluster in the same
group. Group I was mainly composed of the D subclass bZIP sequence, including two
I subclass bZIP sequences and one H subclass bZIP sequence. Group II was composed
of the S subclass bZIP, which contained one H subclass bZIP sequence. Group III was
composed of the E subclass bZIP, group IV comprised the H subclass bZIP, and group
V was composed of the B subclass bZIP. Group VI was mainly composed of A subclass
bZIP sequences, including six S subclass bZIP sequences. Group VII mainly comprised
the C subclass bZIP sequence, including three S subclass bZIP sequences. Group VIII was
composed of the G subclass bZIP sequence, and group IX comprised the F subclass bZIP
sequence, including one S subclass bZIP sequence.
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Figure 5. Phylogenetic analysis of the bZIP family. (a) Phylogenetic tree of Arabidopsis and sugar
beet bZIP proteins. The outermost circle represents the conserved structural composition of each
protein, and the secondary outer circle heat map represents the length, isoelectric point and molecular
weight of bZIP sequence. According to the phylogenetic tree topology, bZIP was divided into
groups I-IX, and different colors of the inner circle represent bZIP genes of different subclasses A-S.
(b) Sequence information of bZIP conserved structures in different subclasses of A-S.

2.5. Functional Element Analysis of Promoters of BubZIP Genes

Cis-acting elements play a key role in the plant response to environmental stress.
The functional elements of the promoter region of BubZIP genes were predicted, and a
total of 10 functional elements were obtained. They were light (LRE), methyl jasmonate
(MeJA), abscisic acid (ABRE), auxin (IAAR), gibberellin (GAR), anaerobic induction (ARE),
low temperature (LTR), salicylic acid (SA), drought (MBS) and defense stress (TC-rich)
response elements (Figure 6). BubZIP34 contains 36 functional elements in eight categories,
while BvbZIP31 only contains 6 functional elements in three categories. This difference
may account for different biological functions of BubZIP genes. All BubZIP genes except
BubZIP31 contained more than four types of functional elements, suggesting that the BubZIP
genes may be widely involved in the abiotic stress response of sugar beet. Among the
functional elements, TC-rich, MeJA, SA, ABRE and MBS elements may be related to salt
stress [41-43].
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Figure 6. Functional element analysis of BubZIP gene promoters. The vertical axis indicates the total
number of functional components, the size of the box in the stack diagram indicates the number of
specific functional components, and different colors indicate different types of functional components.

2.6. Expression Pattern Analysis of BbZIP Genes under Salt Stress

The expression patterns of BubZIP genes were analyzed using the 300 mM NaCl-
treated sugar beet transcriptome data from the SRA database (Figure 7). The results show
that most of the BubZIP genes were down-regulated or did not change significantly after
salt stress. Twelve genes showed a trend of up-regulated expression in leaves, among
which BvbZIP2, BubZIP9, BubZIP15, BubZIP23, BvbZIP29 and BvbZIP46 were significantly
up-regulated. Ten genes showed a stable up-regulated expression trend in roots, among
which BubZIP9, BubZIP15, BvbZIP23, BubZIP33, BvbZIP34 and BubZIP35 were significantly
up-regulated. Comparing the expression patterns of root and leaf tissues, we found that
BubZIP1, BubZIP8, BubZIP9, BvbZIP15, BvbZIP23 and BubZIP46 were up-regulated in both
roots and leaves, suggesting that these genes play an important role in the response to salt
stress in both tissues.

The transcriptomic data of sugar beet roots and leaves after 200 mM and 400 mM NaCl
treatments were analyzed for the expression patterns of the BubZIP genes under salt stress.
A total of 45 BubZIP genes were successfully matched in the transcriptome data, and the
expression levels of each gene at different concentrations in the leaf (L) and root (R) were
further processed. The expression level ratios of 200 mM/0 mM and 400 mM/0 mM were
used to reflect the changing trends of gene expression under different concentrations of
NaCl treatment. Logy processing was performed for the ratio, and when the Log, value
was greater than 1 or less than —1, differential gene expression was indicated (Figure 8).
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Figure 7. Expression pattern of BubZIP genes in sugar beet roots and leaves under salt stress. Sugar
beet transcriptome data after 300 mM NaCl treatment for 12 h, 24 h, 48 h and 72 h, with 0 h as the
control, were obtained from the SRA database. Data were analyzed by Duncan’s analysis of variance,
and different lowercase letters indicate differences in expression.
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Figure 8. Analysis of expression patterns of the BobZIP genes under salt stress. L indicates leaf tissue,
R s root tissue, 0, 200 and 400 mM are different concentrations of NaCl treatment, and the expression
pattern of BubZIP genes is reflected by the logarithm of expression ratio under different concentrations
of NaCl treatment. Blue is down-regulated expression, and red is up-regulated expression.

In leaves, 18 BubZIP genes were differentially expressed under 200 mM NaCl treatment,
among which BubZIP16, BvbZIP19, BvbZIP29, BubZIP33, BubZIP34, BvbZIP39 and BvbZIP43
were significantly up-regulated. Compared with untreated leaves, most BubZIP genes
were not differentially expressed in leaves treated with 400 mM NaCl, and only BubZIP29
and BubZIP34 were significantly up-regulated and down-regulated, respectively. In roots,
the differentially expressed BubZIP genes were mainly down-regulated under 200 mM
NaCl treatment, and only BuvbZIP23 and BvbZIP48 were significantly up-regulated. The
expression levels of BubZIP16, BubZIP19, BvbZIP29, BubZIP33, BubZIP34, BubZIP39 and
BubZIP43 were significantly down-regulated. There were 27 differentially expressed genes
in roots under 400 mM NaCl treatment, among which 9 genes were up-regulated, BubZIP39
and BvbZIP43 were significantly up-regulated, 18 genes were down-regulated, and BvbZIP9,
BoubZIP23 and BubZIP31 were significantly down-regulated.



Int. . Mol. Sci. 2022, 23, 11573 11 0f 19

Most of the BubZIP genes showed a differential expression trend under salt stress,
indicating that BubZIP genes can respond to salt stress, and may play a certain role in
regulating physiological activities under salt stress in sugar beet. To further quantitatively
analyze the expression pattern of BubZIP genes, qRT-PCR was used to detect the expression
levels of the BubZIP genes after 200 mM NaCl treatment for 6 h and 12 h, and no NaCl
was used as the control group. After excluding the genes that could not be designed with
specific primers, 29 BubZIP genes were detected by qRT-PCR (Figure 9). The results show
that 21 genes, including BubZIP4, BobZIP6 and BvbZIP7, were down-regulated or that their
expression levels did not change significantly after salt treatment; this trend is similar
to that seen in previous transcriptomic data obtained in the same laboratory [44]. The
expression levels of BubZIP3, BubZIP24 and BvbZIP44 were up-regulated 6 h after salt
treatment, but down-regulated 12 h after salt treatment. The expression of BvbZIP5 and
BubZIP9 was up-regulated only after 12 h of salt treatment, the expression of BvbZIP21 and
BubZIP37 increased gradually with the increase in treatment time, and the expression of
BubZIP43 was higher at 6 h and 12 h of salt treatment. According to the expression pattern
analysis, it was determined that most members of BubZIP likely play a negative regulatory
role in sugar beet salt stress response.
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Figure 9. Expression patterns of the BuvbZIP genes after salt stress. The beet root tissues treated
with 200 mM NaCl were analyzed by qRT-PCR, and the sampling time was 0, 6 and 12 h. Each
treatment corresponded to 3 biological replicates and 3 technical repeats. The control group was
not treated with NaCl. The relative expression levels of 29 BubZIP genes were calculated using the
2-2ACt method. The 0 h expression level was used as a reference (relative expression level was 1), less
than 1 was regarded as down-regulated expression, and greater than 1 was regarded as up-regulated
expression. Data were analyzed by Duncan’s analysis of variance, and different lowercase letters

indicate differences in expression.

2.7. Functional Annotation and Interaction Analysis of the BobZIP Proteins

The interaction network analysis of BubZIP proteins and the selection of key modules
showed that a BubZIP protein had a close interaction with other proteins involved in light
and ABA signal responses (Figure 10). GO functional annotation and enrichment analysis
showed that most BubZIP genes were enriched in biological processes, and the three with
the highest degree of enrichment were: sucrose-induced translation repression, positive
regulation of seed maturation and negative regulation of translation in response to stress
(Figure 11), suggesting that BubZIP genes may be involved in the development of sugar
beet seeds and negative regulation of the stress response. KEGG annotation indicates
that BubZIP genes may be involved in environmental information processing and signal
transduction of plant hormones (Figure S1). Among them, BubZIP3(VIP1) is involved in the
cascade reaction pathway of pathogen infection and plays a regulatory role in late infection
defense (Figure S52). As a downstream gene of COP1 and SPA1, BvbZIP14(HY5) is involved
in the blue light response pathway (Figure S3). Additionally, BvbZIP37(ABF) regulates
stomatal closure and seed dormancy in response to ABA signals (Figure S4).
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3. Discussion

In recent years, bZIP transcription factors have been identified and analyzed in many
species, and a series of biological functions of bZIP genes in plant growth and development
and abiotic stress response have been discovered. However, bZIP-related studies in sugar
beet are still few. To fill this knowledge gap, this study systematically identified and
analyzed bZIP transcription factors in the sugar beet genome based on bioinformatics
tools and public data. A total of 48 BubZIP genes were identified, which were unevenly
distributed on each chromosome. According to the exon—intron structure, BvbZIP genes
can be divided into six groups. The gene structure varies greatly among different groups,
but the gene structure is relatively consistent within the same group and tends to cluster in
the same branch in the phylogenetic tree. The intraspecific gene collinearity of sugar beet,
grapes and A. thaliana, which was weaker than interspecific collinearity, suggests that bZIP
genes in different species may not be attributed to genome replication [45], but rather that
they have a common ancestor, and are distributed in different species during the process of
species differentiation [46].

In addition, there were relatively few replication events between the bZIP genes of
rice and the other three species, so it was speculated that the bZIP genes existed before
the differentiation of monocotyledons and dicotyledons, and went through a series of
replication events after differentiation, thus having higher specificity [47].

To explore the evolutionary relationship between bZIP transcription factors, the bZIP
protein sequences of A. thaliana and sugar beet were selected to construct a phylogenetic
tree, which was divided into nine groups according to the composition of the topological
structure. In the study of A. thaliana, the bZIP transcription factors were divided into multi-
ple a-S subclasses according to different conserved structures, among which the functions
of subclasses B, E and F remain unclear [20]. Members of subclass A can respond to ABA
signals, play a role in ABA response and signal transduction and may also participate in
stress responses [48]. Members of subclass C have an increased number of Leucine zippers
and contain nine heptapeptide repeats, which can interact with PBF protein to mediate the
production of seed storage protein [49]. Members of subclass D may regulate plant develop-
ment and defense mechanisms against pathogen infection [50,51]. Members of G subclass
are related to ultraviolet and blue light signal transduction and participate in the regulation
of light response promoters [52]. Members of subclass H contribute to the photophore
formation of plants [53]. The number of members of subclass S is the largest, and the
expression level of members in this group is high in vascular tissues [54]. Relevant studies
have shown that some members of subclass S can be activated via transcription after stress
treatment [55]. The comparison showed that the classification results of bZIP transcription
factors are consistent with the topological structure of the phylogenetic tree according
to the conserved structure, indicating that the members of each subclass of the BubZIP
transcription factor may also have the above-mentioned different functions, and some of
the differences may be caused by the existence of other motifs with low conservation.

Quantitative analysis of the salt response of the BubZIP genes was carried out in beet
root tissues after salt stress. The results show that BubZIP3, BubZIP5, BubZIP9, BubZIP21,
BoubZIP24, BvbZIP37, BubZIP43 and BubZIP44 were up-regulated after salt stress, suggesting
that these genes may play a positive regulatory role in the process of the salt response.
Further ChipSeq and genetic studies may provide detailed characterization of the roles of
these genes in plant salt tolerance. After salt stress, the expression of other BubZIP genes
was down-regulated or not changed significantly (see below). These data are consistent
with the expression pattern in sugar beet transcriptome data. Compared with studies in
other species, some of the bZIP genes were not significantly differentially expressed under
short-term salt stress, but were up-regulated under long-term salt stress [56,57]. Related
gene function studies also showed that some bZIP genes played a negative regulatory
role in the plant salt stress response [58-60]. Combined with GO analysis results, the
down-regulated BvbZIP4, BubZIP8, BvbZIP15, BubZIP17, BvbZIP28, BubZIP29, BuvbZIP30,
BubZIP33 and BvbZIP34 genes were enriched in the negative regulation of translation in
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response to stress. Other down-regulated genes are also enriched in the negative regulation
items of biological processes such as development. So, it is speculated that the regulation
mode of BubZIP genes in salt stress is mainly negative regulation. In addition, some genes,
such as BubZIP6, BvbZIP35 and BvbZIP37, had similar gene structures and were located
in the same branch of the phylogenetic tree, but their expression patterns were greatly
different, which might have been caused by different cis-acting elements.

The interaction network of BubZIP proteins revealed interested findings. For example,
SPA1 protein is involved in the transmission of the plant light signal, which is related to
the normal light-sensing specificity of phytochrome A [61]. BBX20 is the b-box zinc finger
protein, which regulates flowering and photomorphogenesis of plants and also plays a role
in the abiotic stress response [62]. FHY3 protein is a key transcription factor in phytochrome,
a pathway and a positive regulator of ABA signal transduction and abiotic stress [63]. ABI3
and ABI4, ABA-insensitive transcription factors, participate in ABA signaling, reduce the
sensitivity of plants to ABA, weaken the inhibition of the ABA signal in plant growth and
development and play an important role in seed germination [64,65]. COP1 is involved
in photomorphogenesis of plants and plays a key role in stomatal regulation and the
dehydration response [66]. COP1-like regulates many developmental processes of plants,
is a repressor of plant photomorphogenesis and plays an important role in regulating fruit
ripening [67]. UVRS protein can interact with COP1, and the controlled signal cascade
mediates the photomorphogenesis of UV-B radiation and improves the adaptability of
plants to UV radiation [68]. KEG is a Ring-E3 ligase that negatively regulates abscisic
acid signal transduction [69]. The core BuvbZIP14 in the network is HY5, which interacts
with and is degraded by COP1, the negative regulator of photomorphogenesis. COP1
is inhibited under light, and HY5 is accumulated, thus promoting photomorphogenesis
in plants [70]. In conclusion, the BubZIP transcription factor interaction network mainly
functions in light signal transduction, photomorphogenesis and ABA signaling pathways.
Among the BubZIP genes, BBX20, FHY3 and COP1 may also be involved in the responses
to abiotic stresses and dehydration. Under salt stress, photosynthesis of plants is generally
inhibited [71], and ABA content is also affected. ABA plays a dual role in physiological
regulation. Under salt stress, ABA accumulates to inhibit stomatal opening and plant
growth [72]. During the recovery period, it is necessary to reduce the sensitivity of plants to
ABA in order for the plants to grow normally [73]. Therefore, it can be reasonably expected
that the BubZIP transcription factor interaction network is involved in the photosynthetic
system and ABA signal transduction pathway under salt stress. The network function
can improve the salt tolerance of sugar beet through regulating ABA content and organic
matter accumulation.

4. Materials and Methods
4.1. Plant Material Processing

Sugar beet seeds were sterilized with thiram and germinated in vermiculite. After
one week of germination, the seedlings were transferred to a hydroponic environment.
The temperature of hydroponic culture was 28 °C, the intensity of light radiation was
450 umol m 2 571, and the light-dark cycle was 16 h/8 h. After 4 weeks of culture, 200 mM
NaCl was used as the salt stress treatment, with the control group having no addition of
NaCl, and root tissues were collected after 0, 6 and 12 h of treatment [74]. The samples
were stored at —80 °C for the next step of RNA extraction.

4.2. Gene Family Identification

Sugar beet genome, proteome data and GFF files were obtained from NCBI database
(https://ncbinlm.nih.gov/, accessed on 20 September 2022). The bZIP domain files
were obtained from Pfam database (http://pfa-m.xfam.org/, accessed on 20 Septem-
ber 2022) [75], and the Hidden Markov Model of the bZIP domain was constructed by
the HMMER program [76]. The model was compared with sugar beet protein data,
and the candidate BubZIP sequences were obtained and submitted to Pfam, SMART
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(https://smart.embl.de/, accessed on 20 September 2022) [77] and other online databases.
The candidate sequences were further screened according to the structure of the domain.

4.3. Sequence Feature Analysis

The obtained protein sequences were submitted to the online database of MEME
(https:/ /meme-suite.org/, accessed on 20 September 2022) [78] to analyze the conserved
motifs of BubZIP protein sequences. DNAMAN software was used to perform multi-
sequence alignment to analyze the sequence composition of bZIP domain. The CDS
sequence and genome sequence corresponding to BuvbZIP protein were extracted from GFF
data and submitted to the GSDS online program (http://gsds.gao-lab.org/, accessed on
20 September 2022) [79] for exon-intron structure visualization.

4.4. Phylogenetic Analysis

AtbZIP protein sequences were obtained from the A. thaliana genome database TAIR
(https:/ /www.arabidopsis.org/, accessed on 20 September 2022), and phylogenetic trees of
AtbZIP and BubZIP were constructed using MEGA software [80]. The construction method
was the maximum likelihood method, the bootstrap value was set to 1000, and other
parameters were the defaults. The ITOL (https://itol.embl.de/, accessed on 20 September
2022) online program [81] was used to further refine the build results.

4.5. Chromosomal Localization and Collinearity Analysis

Grape, Arabidopsis and rice were selected for collinearity analysis with sugar beet.
The genome sequences and GFF files of sugar beet, grape, Arabidopsis and rice were
downloaded from NCBI, TAIR and RAP-DB (https:/ /rapdb.dna.affrc.go.jp/, accessed on
20 September 2022) databases, respectively, and the chromosome length and the location
information for the bZIP gene on the genome of the four species were extracted. MCScanX
analysis [82] was used to obtain the collinearity information between species and further
analyze the gene replication events of bZIP gene between species. All data were visualized
with TBtools software [83].

4.6. Promoter Analysis and Salt Stress Response Analysis

The BvbZIP gene CDS upstream fragment of 2000 bp was extracted as the promoter
region, and the type and number of functional elements on the BvbZIP gene promoter were
predicted using the PlantCARE database (http://bioinformatics.psb.ugent.be/webtools/
-plantcare/html/, accessed on 20 September 2022) [84]. The transcriptome data of sugar
beet under salt stress were determined in the laboratory, other transcriptome data of sugar
beet were downloaded from SRA database (Table S2), which could be used to analyze the
expression pattern of BubZIP gene under 200 mM and 400 mM salt stress. TBtools was used
to map gene expression.

4.7. cDNA Acquisition and gqRT-PCR Analysis

The TRIzol method [85] was used to extract the total RNA from the roots of the
sugar beet control group and salt stress treatment group, and the extracted RNA was
reversely transcribed to obtain a cDNA sequence according to the instructions of the
reverse transcription kit of Takara Biological Company (Dalian, China). Using the CDS
sequence of BubZIP genes as a template, Primer Premier 5 was used to design specific
primers for qRT-PCR. The SYBR Green I detection method and ABI Prism 7500 PCR system
were used for qRT-PCR. Three biological replicates and three technical replicates were
designed for each BvbZIP gene, the reference gene was 185, and the relative expression
level of the gene was calculated using the 2-AACt method [86].

4.8. Protein Interaction Analysis and Gene Functional Annotation

BubZIP protein sequences were submitted to the String online database (https://
cn.string-db.org/, accessed on 20 September 2022) to predict proteins that interact with
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BubZIP. Cytoscape software was used for visualization, and the MCODE plugin was used
to screen key modules in the network with default parameters. Basic data were obtained
from the GO Network database (http://geneontology.org/, accessed on 20 September
2022), and GO annotation, enrichment and visualization of BuvbZIP genes were performed
using TBtools. The gene ontology (GO) was divided into biological process, cell component
and molecular function. KEGG annotation was carried out using KofamKOALA (https:
/ /www.genome.jp/tools/kofamkoala/, accessed on 20 September 2022).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms231911573 /s1.
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