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Abstract: Clay-based bio-inorganic nanohybrids, such as layered double hydroxides (LDH), have
been extensively researched in the various fields of biomedicine, particularly for drug delivery and bio-
imaging applications. Recent trends indicate that such two-dimensional LDH can be hybridized with
a variety of photo-active biomolecules to selectively achieve anti-cancer benefits through numerous
photo/chemotherapies (PCT), including photothermal therapy, photodynamic therapy, and magnetic
hyperthermia, a combination of therapies to achieve the best treatment regimen for patients that
cannot be treated either by surgery or radiation alone. Among the novel two-dimensional clay-based
bio-inorganic nanohybrids, LDH could enhance the photo-stability and drug release controllability
of the PCT agents, which would, in turn, improve the overall phototherapeutic performance. This
review article highlights the most recent advances in LDH-based two-dimensional clay-bio-inorganic
nanohybrids for the aforementioned applications.

Keywords: inorganic bio-nanohybrids; clay nanoparticles; phototherapy; combined photochemother-
apy; future directions

1. Introduction

Cancer therapies have advanced with the development of novel therapeutic mod-
els, such as personalized or precision medicine [1–4], but they continue to suffer from
a considerable number of limitations. One of the most promising therapies, namely,
phototherapy [5–7], has negligible side effects because of high selectivity and can be used
to treat even deep-rooted tumors easily, such as liver tumors [8]. Phototherapy mainly con-
sists of two types of therapies, namely, photothermal therapy (PTT) [9–11], which converts
light to therapeutic heat energy, and photodynamic therapy (PDT) [12–14], which converts
light to therapeutic reactive oxygen species (ROS) [15]. With the recent advances in nan-
otechnology, these therapeutic strategies are often combined to improve the overall efficacy
of phototherapy. In addition, recent studies have utilized phototherapies in combination
with chemotherapy, which is generally referred to as photochemotherapy (PCT). However,
phototherapy suffers from a number of limitations, especially with regard to photothera-
peutic agents [16]. In general, near-infrared (NIR) dyes or ROS generators are destabilized
due to degradation. Researchers have attempted to improve the stability of photothera-
peutic agents through encapsulation technologies, via polymers [17], liposomes [18], or
micelles [19].

Although there are several nanotechnological tools available for phototherapy, they
still suffer from their own disadvantages, such as low phototherapeutic stability and toxicity.
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Recent studies have focused on the potential use of clay-based inorganic nanoparticles
(NPs) in PCT applications. Clay NPs are clay minerals that are also referred to as sheet-
silicates or phyllosilicates and form part of inorganic layered nanomaterials [20]. They have
been used in healing agents [21] and as hemorrhage inhibitors [22]. Furthermore, they are
used in pharmaceuticals as active ingredients in oral antacids, gastrointestinal protectors,
and anti-diuretics, topically as dermatological protectors and anti-inflammatories [23], and
in pharmaceutical preparations as disintegrants, diluents, binders, emulsifying agents,
thickening agents, anticaking agents, flavor reservoirs, and the delivery modifiers of active
agents [24].

Clay minerals are well known for their layered design, comprising polymeric sheets of
silica (SiO4) tetrahedra that are attached to octahedral sheets of Al, Mg, and Fe(O,OH)6 [25].
These layered-type aluminosilicate minerals are formed during the chemical weathering
of other silicate minerals that are present on the Earth’s surface (Ismadji et al., 2015). It is
difficult to define “clay minerals” because of the multiple meanings of the word “clay.” It
can be used to denote a family of minerals or can pertain to a size fraction (0.98–3.9 mm) in
soils and sediments. The latter is the most accepted definition. Generally, clay minerals
are less than 2 µm in diameter [26]. Therefore, they have been described as micro- and
nanocrystalline materials with a plate-like morphology because of the layered polyhedral
arrangement in their structures [25].

Even though there are different types of clay NPs (such as anionic and cationic clays),
anionic clay, in particular, the layered double hydroxides (LDHs) [27], has special ad-
vantages. Most importantly, the chemical composition of LDH clays can be controlled;
therefore, the tunability for further functionalization is easier with cost-effective prepara-
tion technologies. In general, LDHs are a class of anion-exchange materials with a general
chemical formula of [MII

1−xMIII
x(OH)2]x+[An−

x/n]x−·yH2O (M: metal, A: anion). The
isomorphic substitution of divalent metal cations (MII) in otherwise neutral brucite-like
MII(OH)2 sheets with trivalent cations (MIII) produces cationic charges in the hydroxide
layers. In the overall LDH structure, the intercalation of anions (An−) in the interlamellar
space compensates for the generated layer charges, as illustrated in Scheme 1.
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Scheme 1. Layered double hydroxides, built from sheets of [MII
1−x MIII

x(OH)2]x+ octahedral units
intercalated with anions (large blue spheres). Each octahedron is composed of a metal cation (MII or
MIII), coordinated with six OH− ligands (small blue spheres).

The biggest advantage of clay NPs is their negligible toxicity at doses predominantly
higher than with most other nanomaterials [28]. In addition, their degradation products
are biocompatible and biodegradable, compared to most phototherapeutic agents [29].
Moreover, there is substantial evidence that confirms the potential effects of clay-based NPs
in several cellular mechanisms, such as proliferation, differentiation, and regeneration [30].

In the case of phototherapy, the chemical stability of common phototherapeutic agents
is critical [31]. Clay NPs have the potential to significantly improve the photostability of
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phototherapeutic agents in several physicochemical reactions, such as in intercalation and
ion-exchange reactions, depending on the research strategy.

Although there are several clay-based NP review articles on drug delivery, a specific
review on LDH-based hybrids and their PCT applications and recent trends has not been
published. For example, Khatoon et al. (2020) and Dong et al. (2020) reviewed the
general drug delivery applications of clay materials. However, these reviews did not
discuss the use of clay materials in PCT applications [32]. In another review, various
applications of two-dimensional (2D) nanomaterials, including photothermal therapy,
water evaporation, thermochemical reactions, electrostatic lithography, catalysis, light-
driven actuation, photothermal electrodes, energy storage, wearable heaters, and wound
healing have been discussed [33]. A similar, previously published review (Chimene et al.,
2015) also highlighted similar studies but only focused on general 2D nanomaterials for
biomedical applications [34].

The application of clay-based NPs in PCT has several advantages because of their
innate physicochemical functions, pore volume, internal surface properties, and structural
and exchangeable cations [35,36]. The properties of these materials could be varied depend-
ing on the type of clay mineral and its structure. The basic chemistry of novel inorganic
hybrid structures is also of great interest. Therefore, it is important to review the most
recent developments in clay-based bio-inorganic nanohybrids acting as phototherapeu-
tic and photochemical agents, along with their hybridization efficiency, since it impacts
the therapeutic outcome. We believe that a fundamental as well as deep understanding
would be highly beneficial to establish their existing issues or benefits so that scientists can
improve their overall effects to maximize the therapeutic outcome.

The present review summarizes the recent trends in LDH-based bio-inorganic nanohy-
brids in terms of PCT applications and their chemical and biological aspects, along with
future perspectives. We hope that bringing attention to these fundamental aspects of
LDH-based clay hybrids will increase the number of prospective applications.

2. Inorganic Bio-Nanohybrids
2.1. Improvement of Photochemotherapy Using Inorganic Bio-Nanohybrids

The reason that clay-based NPs are selected for PCT applications lies in their excep-
tional biocompatibility, even at higher doses, and their pH specificity, which makes them
suitable as efficient phototherapeutic delivery systems for effective cancer therapy. Most
importantly, the phototherapeutic agents can be safely loaded, without photo-bleaching or
sudden disintegration, into the interlayer nano-spaces of the clay NPs (Scheme 1).

2.2. Production of Inorganic Bio-Nanohybrids

Bio-inorganic nanohybrids can be produced through a “convergence” approach that
incorporates the properties of the parent materials via a hybridization process. In brief,
“convergence” is a strategical approach for coupling different materials to achieve better
results than with their individual forms (Scheme 2). Although such approaches were
initially applied in the field of energy research, they have since spread to the drug delivery
and tissue engineering fields [37].

The key mechanism for producing bio-inorganic nanohybrids is by means of “2D lattice
engineering” [38–44], where the 2D known host building blocks are stacked with the known
inorganic, organic, or biomaterials needed for producing hybrid materials. The host mate-
rials used for studying hybrid materials are generally LDH and montmorillonite (MMT)
NPs because of their excellent biocompatibility, tuneability, and pH sensitivity [45–50].
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tions. (A: 2D clay-based building block that is primarily LDH; B: PTT agents; C-PDT agents and D:
PTT, PDT, and chemo agents).

There are several lattice engineering reactions, such as intercalation, ion exchange,
propping open, co-precipitation, exfoliation-reassembling, calcination reconstructing, and
pillaring to make hybrid nanoparticles for phototherapy. In particular, PCT agents can
be loaded in the interlayer nano-spaces of 2D lattices using the above-mentioned lattice
engineering tools [51].

2.3. Photochemotherapy

Recently, PTT and PDT have been extensively researched for oncological applications.
With nanotechnology-aided phototherapeutic agents, it is possible to improve the overall
performance of PCT. However, PCT suffers from numerous problems, such as fast degrada-
tion and photo-bleaching. Therefore, stabilizing PCT agents inside the hybrids are of great
relevance, which is critical to achieving an optimal therapeutic outcome. The interlayer
nano-space and outer surface of clay NPs are highly functional since they are enriched with
surface hydroxyl functional groups [35,52–60], which can easily be modified through cova-
lent conjugation or hydrogen bonding. Some of the recent LDH-based inorganic hybrids
are listed in Table 1.
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Table 1. Various clay-based bio-inorganic nanohybrids in photothermal, photodynamic, photothermal/photodynamic, and chemo-combination therapies.

Clay Hybrids Phototherapeutic Agent
or Chemo Drug Used Applications Physico/Chemical

Characteristics Preparation Method Remarks Ref.

Co-Fe-LDH Co PTT, NIR, MRI,
and PAI

The TEM image of CoFe-LDH revealed
nanosheets with a characteristic hexagonal

morphology and a lateral size of
200 ± 20 nm.

Sintering at 200–800 ◦C under
an Ar atmosphere Theranostic [61]

B3int, DOX, and ICG
loaded in LDH ICG and DOX PTT and Chemo 80 nm sized LDH NPs

LDH NPs were prepared by a
hydrothermal method

followed by surface
modification of the LDH NPs

with H2N-PEG-NH2. The
targeting peptide B3int was

introduced through an amide
condensation reaction and
finally, DOX and ICG were

loaded using a physical
adsorption method

Targeted cancer
therapy and PTT [62]

Fe-LDH Fe-LDH/DOX MRI, PTT,
and chemo

Photothermal conversion efficiency of
45.67% with good stability and

pH sensitivity

Doping of ferrous ions into
Fe-LDH and DOX loading
through physical methods

In vivo results on 4T1
tumor model proved

its theranostic
properties

[63]

DOX/ICG-CpG-LDH ICG and DOX
PTT-Chemo-

Immuno
therapy

The average particle size (DLS) increased
from 84 nm (LDH) to 120 nm (BSA

coated-LDH) at the BSA/LDH mass ratio
of 5:2

Solution mixing Theranosis toward
breast cancers [64]

Isophthalic acid
(IPA)/LDH
nanohybrids

Isophthalic acid PDT

The tapping mode AFM image
demonstrates ~50 nm diameter and ~4 nm

thickness of IPA/LDH, confirming the
formation of ultrathin nanosheets

Co-precipitation method Combined
PDT/chemotherapy [65]

Ce6/Pt(IV)-LDH PDT/Chemo Combined PDT
and Chemo

Average hydrodynamic size for LDH is
52 ± 2 nm; the size increases to 150 ± 7,

184 ± 3, and 2633 ± 685 nm for
Ce6-Pt(IV)/LDH with the Ce6:Pt(IV) of

0.81, 1.92, and 4.99, respectively

LDH was prepared by
hydrothermal method and the
Ce6 and Pt(IV) were loaded by

anion-exchange reaction

Combined PDT and
Chemo approach
cisplatin-resistant

human cancer cells

[66]
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Table 1. Cont.

Clay Hybrids Phototherapeutic Agent
or Chemo Drug Used Applications Physico/Chemical

Characteristics Preparation Method Remarks Ref.

Fe-Mn-LDH Methylene blue PTT/PDT

It has 2D nanosheet structure with particle
size of about 200 nm and thickness of 2.8 nm

comprising 2–3 layers with good
dispersibility in water and cell culture

medium, with an average hydrated particle
size of about 220 nm/zeta potential of

−25.4 mV in water and exhibits good stability
in both water and cell culture medium

Co-precipitation method Improved efficacy on
U14 tumor model [67]

LIPC[a] nanosheets
CCM, ICG, and PTX
loaded with LDHs

Combined PDT
and Chemo

TEM images reveal that LI possessed a
typical hexagonal plate-like morphology,
with the particle lateral dimension in the
range from 50 to 100 nm. After loading
PTX-BSA/BSA and coating CCM, LIPC

displayed a core–shell structure with a shell
of 6–10 nm in length

Physical mixing
Theranostic

approach to treat
colorectal cancers

[68]

ICG/Cu-
LDH@BSA−DOX ICG, Cu, and DOX Dual phototherapy

and imaging

Hydrodynamic diameter and the zeta
potential of Cu-LDH NPs in deionized

water were measured to be 58.4 ± 2.5 nm
and 37.0 ± 0.6 mV, respectively. The

hybrids were in the range of ~200 nm

Physical mixing
Theranostic

applications at
lower dosage

[69]

Fe-Mn-LDH Ce6 and
mesoporous silica Trimodal therapy

The Ce6 and silica coating on
UCNPs@Ce6@mSiO2 (UCS) possesses an

average diameter of 47 nm. The pure
FeMn-LDH exhibits a 2D ultrathin

structure and hexagon structure
comprising several layers with the size of
≈100 nm. After anchoring with UCSP NPs,

it can be observed that UCSP can be
anchored on the FeMn-LDH nanosheets
with an increased size of ≈200 nm with
good monodispersity. The DLS particle

sizes of UCSP, FeMn-LDH, and UCSP-LDH
are 58.8, 130, and 230 nm, respectively with

excellent stability in both water and cell
culture medium after two days’ standing

Physical mixing

The trimodal
theranostic approach
was validated on a

U14-bearing
tumor model

[70]
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Table 1. Cont.

Clay Hybrids Phototherapeutic Agent
or Chemo Drug Used Applications Physico/Chemical

Characteristics Preparation Method Remarks Ref.

d-Cu-LDH/ICG d-Cu-LDH and ICG Trimodal therapy

Cu-LDH, d-Cu-LDH, and LDH/ICG NPs
showed typical plate-like morphology with
almost the same particle size distribution
with the average hydrodynamic particle

size from 25.9 ± 1.1 to 38.8 ± 1.8 nm and
zeta potential of around 34–35 mV

Intercalation of ICG into the
interlayers of d-Cu-LDH PTT and PDT-Chemo [71]

Abbreviations: LDH, layered double hydroxide; PTT, photothermal therapy; NIR, near-infrared; MRI, magnetic resonance imaging; PAI, photoacoustic imaging; B3int, arginine-
tryptophan-(D-arginine)-asparagine-arginine; DOX, doxorubicin; ICG, indocyanine green; PDT, photodynamic therapy; CCM, cancer cell membrane; PTX, paclitaxel; LIPC, LDH-
ICG/PTX-CCM; BSA, bovine serum albumin; CDT, chemodynamic therapy; PTT, photothermal therapy; IPA, Isophthalic acid; Ce6, chlorin e6; 4T1, breast cancer cell line derived from
the mammary gland tissue of a mouse BALB/c strain; U14- squamous mouse carcinoma.
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3. Photothermal Therapy and Photothermal/Chemotherapy

The PTT and PTT/chemotherapy (PTT-Chemo) applications of bio-inorganic nanohy-
brids have been extensively researched. Among them, the LDH-based applications are high-
lighted in the present review, with a focus on recent developments in the field (2020–2022).

3.1. PTT

Gold NPs, and gold nanorods (GNRs) in particular, have frequently been used for PTT
applications [72–77]. The photothermal conversion efficiency (η) of GNRs are crucial. This
can be tuned by increasing the aspect ratio and forming a core−shell structure with LDH
NPs (Figure 1a). The interaction between GNRs and LDHs can induce electron deficiency
on the surface of GNRs, generating therapeutic heat more efficiently. Therefore, the η value
of new hybrid NPs can reach 60% when irradiated at 808 nm of laser power, enhancing the
η value substantially. GNRs are coated with cetyl trimethyl ammonium bromide (CTAB),
which can be replaced during the synthesis process. In addition, GNRs maintain a good
dispersion in LDHs. This biocompatible core−shell composite GNRs@LDH can be applied
to photothermal, antibacterial, tumor therapy, and bio-imaging capabilities [78].

Similarly, a series of novel CoFe-based PTT agents (CoFe-x) have been produced by
heating CoFe-LDH nanosheets (NSs) at temperatures (x) between 200 and 800 ◦C under
an argon environment. The produced hybrids differed based on their particle size, non-
stoichiometry with cobalt deficiency, mixed electronic configurations, and band structures.
Among them, the CoFe-500 product, which had the highest Co2+ defect, was the most
efficient PTT agent when irradiated under 808 nm of laser power. Experiments and density
functional theory calculations confirmed that Co2+ defects could modify the electronic
structure of CoFe-x and could reduce the band gap, thereby increasing the non-radiative
recombination rate and the PTT effects. In vitro and in vivo experimental results proved
that CoFe-500 is an excellent PTT agent and can be traced using several imaging techniques,
including NIR, magnetic resonance imaging (MRI), and photoacoustic (PA) techniques [61].

3.2. PTT-Chemotherapy

In PTT-Chemo approaches, the chemotherapy drug is either chemically or physically incor-
porated into the LDH NPs to achieve the maximum therapeutic efficacy with PTT. For example, a
multifunctional LDH-nanohybrid system was developed for PTT-Chemo to specifically target
the α5β3 integrin receptors on cancer cells. Hence, arginine-tryptophan-(D-arginine)-asparagine-
arginine (B3int) was loaded in the LDH through an EDC/NHS reaction, as shown in Figure 1b.
The obtained product was further loaded with indocyanine green (ICG) and doxorubicin (DOX) to
form the final product, LDH-PEG-B3int NPs, with approximately 19% drug loading efficiency and
a remarkable η value of approximately 25%. In addition, the drug release behavior was dependent
on the pH and NIR power. In vitro and in vivo studies confirmed that the anti-tumor efficacy was
significantly better for nanohybrids compared to their individual components. This result was
experimentally determined using α5β3 integrin-positive B16 (murine tumor cell line) [62].

Designing an effective theranostic system with tumor micro-environmental responsibility
has several potential advantages, including better diagnosis and improved tumor homing
characteristics, which would enhance the clinical output. To achieve this goal, 2D hybrids
were synthesized by doping MgAl-LDH with functional ferrous ions, which were then loaded
with DOX to form Fe-LDH/DOX NPs. The hybrid NPs had MRI (magnetic resonance
imaging)-guided synergistic chemotherapy/PTT for breast cancer treatment. The doping of
Fe-LDH/DOX with ferrous ions enabled a strong photo-induced heating ability with a high η
value of approximately 46%, which could be combined with DOX to have synergistic PTT and
chemotherapeutic benefits. In addition, the in vitro pH-dependent degradation behavior and
T2-weighted MRI effect revealed that the as-prepared Fe-LDH/DOX is sensitive to an acidic
tumor microenvironment. Most importantly, the growth rate of tumors in 4T1-bearing mice
was effectively suppressed after treatment with hybrid NPs. These results showed that the
metal doping of LDH NPs could introduce a novel approach for fabricating an LDH NP-based
nanotheranostics platform with advanced diagnostic and therapeutic performance [63].
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Figure 1. (a) Synthesis scheme of gold nanorods (GNR)@layered double hydroxide (LDH)
(copyright from ACS-2019). (b) Novel two-dimensional (2D) bio-nanohybridization strategies
for photochemotherapy applications. Schematic illustration of the synthesis of doxorubicin
(DOX)-indocyanine green (ICG) and LDH-PEG-B3int((arginine-tryptophan-(D-arginine)-asparagine-
arginine)) nanoparticles (copyright from Elsevier, 2019). (c) Illustration of nanohybrids as two-photon
photosensitizers for 1O2 generation. Schematic representation of the LDH host and five aromatic RTP
guest species. Two-dimensional-confined long-lived triplet excitons can function as photosensitizers
to achieve efficient 1O2 generation under 808 nm near-infrared laser power (copyrights under Cre-
ative Commons Attribution 4.0 International License, Nature, 2018). (d) Overview of the strategy to
co-deliver the Pt(IV) prodrug, DSCP (c,c,t-(diamminedichlorodisuccinato) Pt (IV), and the photosen-
sitizer, Ce6 (chlorin e6), using LDH nanoparticles. (e) Synthetic steps involved in the development of
trimodal photothermal therapy/photodynamic chemotherapy using d-Cu-LDH/ICG nanohybrids.
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It is well known that both cancer recurrence and metastasis are global challenges.
However, bimodular strategies, such as PTT-chemotherapies, are only successful in a lim-
ited number of cases. To improve these bimodular strategies, a multifaceted nanomedicine
has been rationally developed by loading three FDA-approved therapeutics, namely, ICG
(for PTT), DOX (for chemotherapy), and CpG (for immunotherapy) into the LDH NPs, to
eliminate the recurrence and metastasis of invasive breast cancer (Scheme 3). According
to an experimental analysis conducted on a 4T1 breast cancer model, the primary tumor
tissues were completely eliminated. Therefore, no further recurrence of cancer and lung
metastasis was observed. In addition, distant tumors were inhibited because of the im-
proved immunity. Most importantly, the low drug dosage of FDA-approved drugs (ICG,
DOX, and CpG) are the highlight of these nanohybrid systems and are expected to further
improve the clinical outcome [64].
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Scheme 3. Schematic representation of a multifunctional inodocyanin green (ICG)/Dox/DNA/
CpG/BSA-LDH (IDCB)-layered double hydroxide (LDH) nanomedicine. (a) This hybrid
nanomedicine was constructed via initial coating with bovine serum albumin (BSA) and then or-
derly loading with indocyanine green (ICG), the doxorubicin (DoX)/DNA prodrug, and CpG ODN
(oligodeoxynucleotide) 1826. (b) IDCB-LDH, with 808 nm NIR irradiation, heats the tumor tissues
and releases DoX at a temperature above 41 ◦C, yielding anti-tumor effects through efficient pho-
tothermal therapy and the subsequent CTX (chemotherapy), which then results in sufficient tumor
antigens and stimulates the secretion of pro-tumor cytokines. The residual ICB-LDH in the tumor
tissue further acts as a nano-adjuvant and adsorbs the in situ-generated tumor antigens to mature
and stimulate DCs (dendritic cells). (c) Mature DCs activate naïve T Cells in the dLNs (draining
lymph nodes) and induce potent cytotoxic T lymphocytes (CTLs), namely, CD8+ T Cells. The CTLs
subsequently migrate to the distant tumor tissues and the metastatic tumor nodules in the lung to
eliminate the tumor cells. The CTLs increase, while the regulatory T cells decrease, in the distant and
metastatic tumors (Reprinted/adapted with permission from Ref. [64]. Copyright 2019, American
Chemical Society).
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4. PDT and PDT/Chemotherapy

In recent years (2020–2022), PDT, whether used individually or combined with either
PTT or chemotherapy, has not been widely explored. This is mainly due to the lack of
proper lattice engineering strategies. However, there are only a few studies that have
utilized LDH NPs as a base material for such applications. These studies will be explored
in the following sections.

4.1. PDT

ROS (reactive oxygen species) have garnered considerable attention, not only in the
field of catalysis research but also in biological studies because of their strong oxidizing
properties [79–81]. In particular, the photosensitizers in PDT applications have four major
properties, namely, the capability of generating singlet oxygen (1O2), long-wavelength
absorption, good hydrophilicity, and biocompatibility. To achieve these properties in
a single system, an NIR-responsive supramolecular photosensitizer-based isophthalic
acid and LDH have been integrated as an efficient two-photon PDT nanohybrid system
(Figure 1c). The 1O2 quantum yield of the nanohybrid reached 0.74. The in vitro anti-
cancer efficacy on HeLa cells revealed that the approximate IC50 value was 0.153µg mL−1.
Furthermore, in vivo experiments on a HeLa tumor-bearing animal model confirmed that
the nanohybrids were able to achieve deep tumor penetration when they were irradiated
under 808 nm laser power, resulting in complete tumor eradication without any side effects.
This proof-of-concept analysis clearly indicated that ultra-long-lived triplet excitons can
contribute as two-photon-activated photosensitizers for efficient 1O2 production [65].

4.2. PDT/Chemotherapy

In this approach, chemotherapy drugs are combined with the PDT system to pro-
duce a desired nanohybrid, which is expected to improve the overall performance of the
therapeutic regimen. For example, such a nanohybrid was made by assembling the ra-
tiometric co-loading of Pt(IV) prodrug and Ce6 (PDT agent) into LDH NPs (Figure 1d).
The as-made nanohybrids induced anti-cancer effects on cisplatin-resistant human cancer
cells (A2780cisR cells) at nano-molar IC50 values via a combined PDT-Chemo mode. The
in vitro experiments of Ce6-Pt(IV)/LDH on cisplatin-resistant and sensitive cells showed
predominant apoptosis, compared to the untreated cells. Especially in A2780cisR cells,
nanohybrids induced high early apoptotic cells (approximately 23%) and necrotic cells
(approximately 39%) [66].

PDT-Chemo efficacy is mainly dependent on the endogenous H2O2 concentration.
However, it could be varied and is not effective for improved efficacy. Therefore, a self-
supplied H2O2-enhanced PDT-Chemo strategy was achieved by engineering 2D sheet-like
nanoparticles, in order to catalyze the molecular reactions. The nanocatalyst was produced
by assembling ICG and Fenton reaction catalyst Fe2+ ions into two-dimensional ultrathin
LDH NPs. Under NIR irradiation, ICG generates cytotoxic singlet oxygen (1O2), which
cripples malignant cells, and superoxide radical (O2−), which is further converted to
H2O2 by reacting with intracellular superoxide dismutase (SOD). A sufficient self-supplied
H2O2, together with endogenous H2O2, is then catalyzed by Fe2+ and released from
the nanocatalyst to produce a sufficient amount of highly cytotoxic hydroxyl radicals
(OH) to induce apoptosis in tumor cells. In vitro and in vivo evaluations demonstrate the
remarkable performance of cascade nanocatalyst-mediated PDT-Chemo [51].

5. Simultaneous Photothermal/Photodynamic Therapy and Chemotherapy
5.1. Photothermal/Photodynamic

It has been suggested that rod/plate-like nanomaterials with an appropriate size
exhibit higher and longer-term lysosomal enrichment because the shape plays a notable role
in the nanomaterial transmembrane process and subcellular behaviors. Biodegradable LDH-
based nanohybrids with CuS nanocomposites (LDH-CuS NCs) were rationally developed
through the in situ growth of CuS nanodots on LDH nanoplates. These LDH-CuS NCs
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exhibited high photothermal conversion, NIR-induced chemodynamics, and PDT efficacies,
and real-time in vivo photoacoustic imaging (PAI) of the entire tumor was achieved. In
addition, the lysosomal internalized LDH-CuS NCs resulted in higher subcellular ROS
in situ, leading to lysosomal membrane permeabilization (LMP) pathway-associated cell
death, both in vitro and in vivo [82].

Previously, an iron-manganese LDH NS (200 nm in size) was synthesized to achieve
combined PTT/PDT for effective cancer therapy. Methylene blue was loaded into the LDH
NPs to enhance the catalase-like activity, which could help the NSs to decompose H2O2 to
O2 and overcome tumor hypoxia through O2-dependent PDT. The experimental results in-
dicated that these nanohybrids were nearly able to eliminate the whole tumor, as evidenced
by the in vivo animal experiments on U14 tumors (squamous mouse carcinoma) [67].

5.2. PTT-PDT-Chemotherapy

Although multi-modal therapies can improve the overall efficacy by stimulating the
immune community, low tumor accumulation, along with easy immune clearance of
the anti-tumor agents, are still difficult to achieve. As cancer cell membranes (CCMs)
can have homologous tumor targeting [83], further improvements can be made using
multi-modal therapy by complementing the limitations of individual therapeutic modes.
In addition, the intracellular uptake of cancer cells can be controlled by photo-induced
hyperthermia. CCM-modified-ICG and Abraxane (bovine serum albumin (BSA)-coated
paclitaxel (PTX) formulation) were loaded on the LDH NSs to form LIPC NSs (LDH-
ICG/PTX-CCM NSs) for the targeted photochemotherapy of colorectal carcinoma (CRC).
The CCM-modified NSSs induced effective targeted toxicity and were greatly improved
upon laser exposure, synergizing CRC apoptosis. CCM cloaking reduced the uptake of
LDH NSs by HEK 293T cells and macrophages, implying mitigation of the side effects
and the immune clearance, respectively. The in vivo data further demonstrated that LIPC
NSs improved the drug accumulation in tumor tissues and significantly inhibited tumor
proliferation under laser irradiation at very low therapeutic doses (1.2 and 0.6 mg/kg
of ICG and PTX-BSA, respectively), without severe organ damage. This study clearly
demonstrated the importance of CCM coatings on the bio-inorganic nanohybrids, which
is critical in achieving the targeted drug delivery and immune-escaping characteristics
that can eventually enhance the overall efficacy of drug delivery systems. Furthermore,
CCM modifications can also improve the overall hyperthermia by enhancing the cancer
cellular uptake of LIPC NSs on cancer cells and improving the overall multi-modal cancer
therapy [68].

In a previous study, a trifunctional LDH nanohybrid for the combined photochemotherapy
(PTT/PDT and chemotherapy) of skin cancer at very low therapeutic doses was explored. This
nano-system (ICG/CuLDH@BSA−DOX) was composed of an acid-responsive BSA−DOX
prodrug and ICG-intercalated Cu-doped LDH NPs. Thus, ICG/CuLDH@BSA−DOX could
have pH-dependent DOX release. In addition, a combinatorial PTT/PDT was achieved
under 808 nm laser exposure, inducing dermal cancer apoptosis. In vivo studies confirmed
that the ICG/Cu-LDH@BSA−DOX nanohybrid particles were able to satisfactorily ablate
the tumor cells when irradiated with a single course of low dosage (DOX: 0.175 mg kg−1,
Cu: 0.5 mg kg−1, and ICG: 0.25 mg kg−1) at an 808-nm laser condition of low power at
0.3 W cm−2 for 2 min (Scheme 4). This study clearly indicates that rationally designed
anti-cancer nanohybrids would be an efficient combination with phototherapy to minimize
severe toxic effects and could be useful for translational medicines [69].

In another study, tumor microenvironment (TME)-sensitive nanohybrids based on
FeMn-LDH were developed for simultaneous PTT/PDT and chemotherapy applications
under single laser irradiation and a power of 980 nm and 0.72 W cm−2, respectively, for
5 min. Mesoporous silica and chlorin e6 (Ce6) were covalently coated on the LDH NPs as
up-conversion NPs (UCSP) for multimodal imaging-directed cancer therapy. In an acidic
environment, FeMn-LDH can be dissolved and will release Fe3+ and Mn2+ ions to initiate
a Fenton-like reaction enabling PTT/PDT/Chemotherapy, along with MRI. Meanwhile,
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Fe3+ can catalytically decompose hydrogen peroxide (2H2O2) into oxygen (O2) and water
(2H2O), enhancing the PDT guided by UCSP. As a representative non-invasive imaging
probe, the up-conversion luminescence can be recovered after the decomposition of FeMn-
LDH and can provide high-resolution luminescence for pinpointed PDT. Additionally, the
PTT effects of FeMn-LDH can enhance the PDT-Chemo effects. Simultaneous therapy,
along with multimodal imaging, can realize the integration of diagnosis and treatment for
the efficient theranostic approach, as experimentally proven on the U14 (squamous mouse
carcinoma)-bearing tumor model [70].

Scheme 4. Schematic illustration of a multifunctional indocyanine green (ICG)/Cu-layered double
hydroxide (LDH)@BSA–doxorubicin (DOX) nanomedicine. (a) Hybrid LDH nanoparticles con-
structed by making Cu-LDH, loading ICG, and then coating with BSA/BSA–DOX. (b) Mice bearing
B16F0 tumors are intravenously injected with ICG/Cu-LDH@BSA–DOX and exposed to 808-nm
laser irradiation (0.3 W cm−2 for 2 min) after 24 h injection, at considerably lower doses (DOX:
0.175 mg kg−1, Cu: 0.5 mg kg−1, and ICG: 0.25 mg kg−1) than those usually used. (c) BSA/BSA–
DOX-coated ICG/Cu-LDH nanoparticles efficiently accumulate in the tumor site via the EPR effect
and facilitate the uptake of tumor cells via the clathrin-mediated endocytosis pathway. In the late
endosome, LDH nanoparticles that were neutralized with pumped-in H+ ions led to an increased
number of Mg2+, Al3+, and Cl– ions. An increase in the ionic strength within the endosome drove
the water molecules into the endosome, resulting in the osmotic swelling of the endosome and the
eventual release of the residual LDH nanoparticles into the cytoplasm. Once internalized by B16F10
cancer cells, ICG/Cu-LDH@BSA–DOX releases therapeutic DOX in response to an acidic environ-
ment (pH 5.0–6.5), which synergizes with near-infrared irradiation-induced photothermal therapy
(PTT)/photodynamic therapy (PDT) to enable tumor apoptosis. (d) The mechanism of pH-triggered
DOX release involves amide bond cleavage under a mildly acidic microenvironment of tumor tissues
and cells.(Reprinted/adapted with permission from Ref. [69]. 2021, American Chemical Society).

Similarly, LDH NP-based trimodal inorganic nanohybrids were produced for an ef-
ficient breast cancer therapy without any conventional anticancer drugs. NIR-sensitive
ICG molecules were integrated on Cu-LDH NPs, which were further acid-etched to in-
duce more Cu defects in the LDH lattice (d-Cu-LDH/ICG). This, in turn, induced tri-
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modal therapy (PTT/PDT/Chemotherapy) under a single laser source (808 nm laser) at
a low power irradiation of 2.5 W cm−2 for 5 min, at low dosages of 2.5 and 5 mg kg−1

(Figure 1e). The as-made nanohybrids could enhance both PTT and PDT simultaneously,
while PDT-Chemo was achieved with the same nanohybrid system, as confirmed through
the in vitro and in vivo experiments on 4T1 cancer cells and a tumor model, respectively.
Moreover, d-Cu-LDH/ICG NPs generate hydroxyl radicals in the presence of H2O2 as
Fenton catalysts, which were further improved upon by Cu(II) reduction with glutathione
and temperature elevation. As a result, these nanohybrids were able to suppress 4T1 cell
proliferation and showed effective inhibition of tumor growth in vivo, via the multifaceted
PTT/PDT/chemotherapy approach under mild laser irradiation. This study clearly indi-
cates that the rational synthesis of defects in LDH nanohybrids would be highly beneficial
in combinatorial approaches, without the need for conventional anti-cancer agents. In
addition, due to the combined actions of PTT and PDT, complete tumor eradication can be
guaranteed, if treated in the early stages of the disease [70].

6. Future Perspectives and Conclusions

Biocompatibility and therapeutic efficacy are the major criteria for any biomedical
products, along with affordable prices. Of course, LDH-based hybrids could be an easily
reproducible material for PCT applications, as the chemical compositions and functional-
ization are easy to be controlled than many other clay NPs. In addition, from the various
literature studies, it is clear that LDH-based bio-nanohybrids hold good biocompatibility
and biodegradability. In a reported in vivo study, it was proposed that intramuscularly im-
planted LDH tablets in the rat abdominal wall could stay there with no notable toxicity. The
tablets were composed of chloride ions intercalated into LDH of magnesium/aluminum
(Mg2Al-Cl) and zinc/aluminum (Zn2Al-Cl), respectively. Post-implantation studies using
histology assessment reveal no fibrous capsule development around the implanted sites for
both types of LDHs. In addition, there were no inflammatory reactions post-implantation
with these biomaterials. The sidestream dark field imaging analysis (which is usually used
for real-time monitoring of the microcirculation in tissues) confirmed a good microcircula-
tory network around the LDH-implanted sites and were well maintained, with good blood
flow, without enhancing the the leukocyte’s endothelial adhesion. Four weeks of study
revealed that the Mg2Al-Cl tablet promoted mainly type-1 collagen, whereas the Zn2Al-Cl
greatly enhanced type-III collagen [84]. However, when considering the LDH-hybrids,
especially when integrating them with novel materials for PCT application, it is necessary
to clearly understand their long-term toxicity and pharmacodynamics for the benefit of
clinical applications.

We suggest that LDH-based photochemical agents are the most cost-effective photo-
sensitive anticancer nanohybrids. However, there are many challenges, as aforementioned,
that still need to be overcome before these techniques can be commercially used. Clay-
based inorganic NPs are, in general, safe and biocompatible. However, their hybrids
could contain a certain degree of toxicity, especially when they are used for long-term
applications. Therefore, the toxicity of newly developed LDH-based hybrids should be
thoroughly verified.

The stability of colloidal nanohybrids is also critical, especially in the context of
injectable formulations and can be highly dependent on the solvents and media used. At
present, it is hard to validly report the “stability” of nanohybrids from the literature, as there
are not many solid facts from such studies using various conditions, such as simulating
body fluid (SBF) or cell culture media, etc. Future studies must be more focused to cast
light on the colloidal stability of novel LDH nanohybrids for injectable PCT applications.

Another aspect is utilizing LDH hybrids for scaffold-based PTT for breast cancer
bone metastasis. In general, surgical procedures for breast cancer bone metastases have
numerous limitations, such as bone defects and tumor recurrence. In such a case, a
nacre-mimetic, mechanically stable graphene oxide/layered double hydroxide/chitosan
(GO/LDH/CS) layered scaffold with anti-tumor and pro-osteogenesis activities could be
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beneficial. When exposed to a NIR laser, the local temperature around the scaffolds could
rise to 52 ◦C within 2 min, triggering anti-tumor activity via apoptosis, through increasing
caspase-3 expression. Additionally, GO nanosheets and Mg2+ ions could enhance the
pro-osteogenesis activity of GO/LDH/CS layered scaffolds. Twelve weeks after scaffold
implantation, it was found that the layered macropores in the scaffolds were filled with
extracellular matrix and bone tissues. Hence, the integration of a nacre-mimetic architecture
and biofunctional materials could be a novel strategy to treat intractable disease-related
bone defects [85].

Although LDH hybrids have recently begun to be used in PCT applications, this
suggests that it takes time for their commercial applications to be realized. Consequently,
it is difficult to draw any conclusions about the clinical aspects at the moment. However,
we hope that in the near future, there will be new studies emerging in the LDH-based
PCT research fields, with more insights on chemical and biological fundamentals and the
toxicological aspects.

In conclusion, we have reviewed recent LDH-based nanohybrids for PCT applications,
suggesting that such hybrids may be a potential therapeutic strategy for many deep-seated
cancers. Such nanohybrids are possible due to the unique chemical nature of LDH and
the tunable chemical composition, interlayer nanospace, and ease of surface modification
of LDH. However, more studies (pharmacokinetics, biodistribution, organ toxicity, and
histological evaluation) are necessary to understand their toxicological aspects for them to
be fully utilized in further applications.
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