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Abstract: X-ray diffraction technique is one of the most common methods of ascertaining protein
structures, yet only 2–10% of proteins can produce diffraction-quality crystals. Several computational
methods have been proposed so far to predict protein crystallization. Nevertheless, the current
state-of-the-art computational methods are limited by the scarcity of experimental data. Thus, the
prediction accuracy of existing models hasn’t reached the ideal level. To address the problems above,
we propose a novel transfer-learning-based framework for protein crystallization prediction, named
TLCrys. The framework proceeds in two steps: pre-training and fine-tuning. The pre-training step
adopts attention mechanism to extract both global and local information of the protein sequences. The
representation learned from the pre-training step is regarded as knowledge to be transferred and fine-
tuned to enhance the performance of crystalization prediction. During pre-training, TLCrys adopts a
multi-task learning method, which not only improves the learning ability of protein encoding, but also
enhances the robustness and generalization of protein representation. The multi-head self-attention
layer guarantees that different levels of the protein representation can be extracted by the fine-tuned
step. During transfer learning, the fine-tuning strategy used by TLCrys improves the task-specialized
learning ability of the network. Our method outperforms all previous predictors significantly in five
crystallization stages of prediction. Furthermore, the proposed methodology can be well generalized
to other protein sequence classification tasks.

Keywords: protein crystallization; transfer learning; attention mechanism; pre-training; fine-tuning

1. Introduction

The functions of a protein are largely determined by its three-dimensional structure.
Therefore, analyzing the three-dimensional structure of proteins is of great significance for
understanding the molecular mechanism of biological processes and studying the patho-
genesis mechanism of diseases. Furthermore, it can also provide key information for the
development and design of drugs for human diseases. At present, existing methods used
to identify the three-dimensional structure of protein sequences are electron microscopy [1],
Nuclear Magnetic Resonance (NMR) spectroscopy [2], and X-ray diffraction crystallography
(X-ray diffraction measurement, XRD) [3]. Compared with NMR and electron microscopy,
XRD has the advantages of easy implementation, short execution time, and low research
cost. Therefore, XRD has become the most popular method at present, about 80% of protein
structures in protein data bank (PDB) are obtained by XRD. In the experiments of protein
crystallization, the main concern is on the importance of performing XRD experiment on a
crystallizable protein. However, only 2–10% of proteins can produce diffraction-quality
crystals [4–6]. Hence, experimenting with X-ray diffraction crystallography for proteins
that cannot crystallize at the current experimental level, are costly and time-consuming.
Therefore, it is important to develop accurate and efficient computational methods of
forecasting whether a protein can crystallize at the current experimental level or not.
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Early-stage computational methods are based on classical machine learning or sta-
tistical algorithms and mainly focused on feature extraction of protein sequences, such
as OBScore [7], ParCrys [8], CrystalP2 [9], XtalPred [10], PPCPred [11], SCMCRYS [12],
SVMCRYS [13], PredPPCrys I & II [14], Crysalis I & II [15]. These methods can be simply
regarded as two-stage classification: (i) physio-chemical and structural feature selection
and extraction, and (ii) classification with different machine learning algorithms using
the extracted features. However, all of these methods require fussy physio-chemical and
structural feature selection from the raw protein sequences, thus the performances of these
methods are dependent on the quality of feature extraction. Hence, these models lack
generalization and robustness.

Deep learning has been widely applied in bioinformatics [16–18]. Recently, some
remarkable end-to-end deep learning frameworks [19,20] have been utilized for crystalliza-
tion prediction. In comparison with traditional machine learning algorithms, the above
methods integrate representation learning and model training in a unified architecture
and does not need to extract features before modeling. In addition to the architectural
advantages of the task design, existing deep learning models require a lot of labeled data to
learn the information. However, compared with the protein database, the amount of crys-
tallization label data for protein sequences is not large enough. Therefore, the performances
of these models are still not satisfactory in real world applications.

Transfer learning [21] defines two domains: source domain S and target domain T.
Learning task on source domain TS helps to improve the performance of learning task on
target domain TT by transferring the TS-learning knowledge to TT . Knowledge learned
from source domain can significantly enhance the robustness and generalization of target
task. Recently, deep learning models with pre-training, such as Transformers [22] and
BERT [23], have achieved remarkable success on natural language processing tasks. These
models include two steps. Firstly, pre-training is adopted to initialize the network weights
and learn the representations. Secondly, the downstream task is performed based on the pre-
training step. Since protein sequences have many similarities with natural language, these
transfer learning models are also suitable for modeling biological sequences. Unlabelled
protein sequences implicitly contain significant structural and functional information. As a
result, these pre-trained tasks learn representations [24,25] of protein, which can be used
for transfer learning and help to achieve good performance in downstream tasks such as
secondary structure prediction and interaction prediction [24,26].

In order to overcome the problems of insufficient labeling training data and inaccurate
model prediction results, and to explore the internal correlation between protein sequence
modeling and crystallization propensity, we propose a novel transfer learning based method
for protein crystallization prediction, called TLCrys. The predictor consists of two models
and processes, a protein representation pre-training step through a self-supervised multi-
task model on protein sequence and Gene Ontology (GO) annotations, and a multi-head
self-attention fine-tuning step on protein crystallization dataset with pre-trained parameters.
In summary, our main contributions of this paper are as follows.

• As far as we know, this is the first time that transfer learning is applied to the protein
crystallization prediction task based on the protein sequences. Compared with tradi-
tional machine learning models, our model is more interpretable and our predictions
are more accurate.

• Since protein sequences generally contain complex spatial structure, we use global
attention module and multi-task learning to pre-train the self-supervised model of
protein sequences.

• In fine-tuning step, we apply a multi-head self-attention layer to extract the different
levels of protein features from the global representation space during pre-training step.

In order to verify the effectiveness of the protein representations of pre-training and
fine-tuning steps, we design an end-to-end direct learning pipeline for comparison of
TLCrys. We combine the pre training model and fine-tuning model, and use the crys-
tallization data to train directly. Experiments indicate that TLCrys is superior to current
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state-of-the-art models. Besides, in order to prove the effectiveness and robustness of our
model, we also carry out ablation experiments and case study.

2. Materials and Methods
2.1. Overview of Model

The training process of TLCrys model for protein crystallization prediction consists of
two parts.

• Learning task on source domain: self-supervised pre-training step for protein repre-
sentation on protein sequences and Gene Ontology annotations.

• Learning task on target domain: supervised fine-tuning step on protein crystallization
dataset with pre-trained parameters.

The representations learned in pre-training can be regarded as the knowledge of
source domain. Transferring the representation as the input of fine-tuning step helps to
improve the performance of the target task, i.e. protein crystalization prediction. The key
component of these parts is the attention module.

2.2. The Attention Module

The attention module used in the pre-training process of TLCrys model was pro-
posed by Brandes [27]. This attention module is similar to the self-attention module used
in the Transformer model [22]. It is well known that protein structure is an extremely
complex spatial structure that loses its spatial characteristics when it is expanded into a
secondary structure. Two residues that are spatially close to each other are far apart in a
two-dimensional sequence. So when we construct protein representations, we use attention
modules to focus on global characteristics as well as local characteristics. As illustrated
in Figure 1, the architecture of the attention module consists of dual parallel paths,one
proceeds locally and the other proceeds globally. The local representations collected in the
first path are 3D tensors of shape B× L× dlocal where B is the batch size, L is the sequence
length in each mini-batch, and dlocal is the dimension of the local representations. The
second path produces 2D tensors of shape B× dglobal as global representations.

Output sequence Output annotations

Add&Norm Ad

Add&Norm

Dense

Dense

Dense

Global Attention
         Block

Dense&Softmax

（location-wise） Dense&Sigmoid

Dense
（location-wise）
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Dilated
Conv-1D

      Dense
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（B x dglobal ）
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Figure 1. Structure of attention module in TLCrys pre-training step.
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For the local representation path, the input sequences pass through two different types
of 1D convolution layers, dilated convolution and classical convolution layer. Meanwhile,
for the global representation path, the input annotations pass through the fully-connected
layer, and then the broadcast layer. The broadcast layer is a fully-connected layer that
transforms the dglobal-channel global features into dlocal-channel local features. Then, they
are added up to the local representation path. Based on this structure, the global represen-
tations influence the local representations. These outputs are summed to the inputs of the
regularization layer and then pass through the same structure again to generate the global
representations. The local representations influence the global representations by global
attention block.

We use global attention mechanism as special self-attention mechanism which focuses
on position information of each other through each position vector, whereas the global
attention quantifies position-wise attention weights to the local input features according
to the global input vector. The global attention modules have two independent kinds
of inputs, a global representation vector x ∈ Rdglobal , and a local representation vector
R(S1, S2, . . . , SR ∈ Rdlocal ). It outputs a global representation vector y(y ∈ Rdvalue), which
can be calculated as:

y =
R

∑
i=1

zivi, (1)

where z is the attention values defined by:

z1, z2, . . . zL = So f tmax

 〈q, ki〉√
dkey

 (2)

The global query vectors q, the positional key vectors ki and local value v are three
different vectors obtained by three linear transformations Wq, Wk, Wv functions separately:

q = tanh(Wqx), ki = tanh(Wkx), vi = σ(WvSi), (3)

where Wk ∈ Rdkey×dlocal , Wq ∈ Rdkey×dglobal , Wv ∈ Rdvalue×dlocal are trainable parameters and√
dkey is the scaling factor. σ denotes the sigmoid function.

To extract multi-view information in multiple representation sub-spaces simultane-
ously, a multi-head attention mechanism is applied, which aggregates features from multi-
ple heads in parallel and aggregates these head outputs. Note that dvalue = dglobal/nhead,
where nhead is the total number of the attention heads. Compared with self attention
mechanism, global attention mechanism has the following advantages.

• We use dilated convolution to expand the receptive field and capture multi-scale
context information.

• Global attention regards global inputs as the key vector. Therefore, the number
of computation parameters performed by the model grows only linearly with the
sequence length, while the standard self-attention calculates a position-to-position
consistency matrix and the amount of parameters grows quadratically. This linear
growth is also applicable to the computation complexity and the memory consumption
of the model.

• Owing to the informational interaction between the local and global representations,
we can obtain not only the local features of adjacent amino acids, but also the global
features of protein sequences

• The model, based on the convolutional and global attention layers, is more efficient
and stable than that relying on recurrent layers.

As illustrated in Figure 2a, we pre train the protein representation through the self-
supervised dual-task method by protein sequence and Gene Ontology (GO) annotations,
We use 26 characters and some special tags to represent the protein sequence, including
20 standard amino acids, Selenocysteine (U), an undefined amino-acid (X). Specially, we
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use OTHER to represent one of the other amino acids, and every sequence starts with
START token and ends with END tags. Sequences shorter than the sequence length of the
mini-batch are padded with PAD tags. GO annotations of each sequence are encoded as
binary vectors.

Attention
Module

Dense

Input sequence Embedding
Local

Global

Dense&
Softmax
Dense&
Sigmoid

…

…

…

x 6

Local

Global

Local

Global

Local

Global
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Input annotation

Concatenate

Output annotation

Attention
Module

Attention
Module

Attention
Module

V(x)

Q(x)

是K(x)

Output sequence

     Pre-training step(a)

Fine-tuning step(b)

Figure 2. The architecture of TLCrys consists of two parts: (a) self-supervised pre-training protein
representation models on protein sequences and Gene Ontology annotations. (b) supervised fine-
tuning on protein crystallization dataset with pre-trained parameters.

The pre-training step of TLCrys is based on the global attention module. In the local
path, the embedding layer can map the input protein sequences into the local representation
vectors Rdlocal . In the global path, we use a fully-connected layer to transfer the input binary
annotations into global representation vectors Rdglobal . The pre- training model includes
six attention modules in series. The global representation and local representation of the
previous module’s output are input into the next attention module to obtain a new global
representation and local representation.

The pre-training dataset on protein sequences and GO annotations are extracted from
UniRef90 (https://www.uniprot.org/uniref/) (accessed on 10 December 2021). To enhance
the robustness of the model, we randomly replace 5% tokens with other tokens as noise.
Furthermore, the inputted GO annotations are added with random noise by removing
existing annotations by 25% probability or totally removed by 50%. In summary, the pre-
training step is a dual-task where the model is expected to simultaneously recover both
the protein sequence and its known GO annotations. The hyperparameter settings of the
pre-training step are shown in Table 1.

Table 1. parameters of TLCrys.

Global Dim Local Dim Dilation Rate Kernel Size

512 128 5 9

Stride Size Key Dim Value Dim Head Number

1 64 128 4

2.3. Pre-Training

The loss function of the pre-training step consists of two parts: the categorical cross-
entropy over the protein sequences and the binary cross-entropy over the GO annotations.
It is defined as follows.

https://www.uniprot.org/uniref/
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L = −
l

∑
i=1

Si · log(Ŝi)−
N

∑
j=1

(Aj · log(Âj) + (1− Aj) · log((1− Âj))), (4)

where l is the sequence length, Si ∈ {1, . . . , 26} is the sequence real tag at position i,
Ŝi ∈ {0, 1} is the predicted probability at position i. N is the the number of annotations,
Aj ∈ {0, 1} is the sequence real annotations at position j, Âj ∈ 0, 1 is the predicted
probability of annotations j.

2.4. Fine-Tuning

As depicted in Figure 2, we extract every pair of global representations from each
attention module and concatenate them with the output global representation as whole
global representation L = concatenate[L1, L2 . . . Ln]. We designe a multi-head self-attention
layer to extract the important information from each representation.

The self-attention mechanism transforms the concatenated feature vector L into three
feature vectors, the Query (Q), Key (K), and Value (V) by three different linear mapping
functions. As depicted in Figure 2, the weight assigned to each value is calculated as the
dot-product of the query with the corresponding key:

Attention(Q, K, V) = So f tmax
(

QKT
√

dk

)
V, (5)

where
√

dk is the scaling factor, dk is the dimension of the vector K, and T is the transpose
operation. This operation is also called scaled dot-product attention [22]. The Q, K and V
are obtained by three linear transformations with the same input separately:

Q = LWQ, K = LWK, V = LWV , (6)

where WQ, WK, WV ∈ RdL×dk are trainable parameters and dL is the dimension of fea-
ture map.

To extract multi-view information in multiple representation sub-spaces simultane-
ously, a multi-head attention mechanism is applied, where each head is an independent
scaled dot-product [22] attention module:

headi = Attention(QWQ
i , KWK

i , VWV
i ), (7)

Multi(Q, W, V) = Concat(headi, . . . , headh)Wo, (8)

where QWQ
i , KWK

i , VWV
i ∈ RD×dki are the linear transformation parameters same as those

in Equation (3) and Wo is the linear transformation parameters for aggregating the extracted
information from different heads. Note that dki = dk/h, where h is the total number of the
attention heads, here h = 6.

Our model adopts binary cross entropy loss function with a l2 normalization. The
regularized objective function L(θ) is calculated as follows.

L(θ) = −
N

∑
i=1

[yilogŷi + (1− yi)log(1− ŷi)] + λ‖θ‖2
2. (9)

Here ŷi represents the predicted label of nth protein sequence, yi represents its corre-
sponding crystallization prediction label, and N is the size of the training set, λ denotes a
hyperparameter of l2 regularization, and θ denotes all parameters of the model.

The model is trained using the Adam [28] optimizer, with mini-batch gradient descent
to minimize the objective function. Initially, parameters of all layers in the pre-trained
model are frozen, and only the newly added fully-connected layer is trained for up to
40 epochs. Then, all parameters are unfrozen and trained for up to 40 additional epochs.
At the end, we train the model for 1 final epoch with a larger sequence length. Throughout
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all epochs, we reduce the learning rate on plateau and apply early stopping based on an
independent validation set.

Early stopping is a useful learning strategy to overcome overfitting during training.
Specifically, when the validation loss is no longer decreasing for limited epochs, the training
procedure terminates. The models of all epochs are then evaluated on the validation set
and the one with the best performance is chosen as the final prediction model.

2.5. Direct Learning

In order to verify the effectiveness of the protein representation in pre-training and
fine-tuning steps, we build an end-to-end pipeline that combines the two steps. To compare
with the transfer learning process of TLCrys, the hyperparameter settings of the direct
learning model are consistent with those of the previous model. The training strategy
of direct learning also remains unchanged compared with the fine-tuning process. We
construct an all-zero vector as the GO annotation input since our crystallization dataset
lacks the GO annotations.

3. Results
3.1. Dataset and Environment

As we can see in Table 2, the experimental dataset of this paper is from the PredP-
PCrys [14] model (https://doi.org/10.1371/journal.pone.0105902.s007) (accessed on
10 December 2021), which includes five datasets in the form of FASTA. Each entry of
the FASTA data consists of a protein residue sequence and a tag. The five corresponding
tags include Sequence Cloning failed, Production of protein material failed, Purification
failed, Crystallization failed, and Crystallizable. They respectively indicate final states of
protein crystallization experiments.

The types of tags indicate the propensity of protein in different stages of crystallization:
the protein cloning failure (CLF), the production of protein material failure (MF), protein
purification failure (PF), and crystallization failure (CF) and crystallographic (CRYs) of
final diffraction mass. In CLF task, only the cloning failed tag is negative. In MF task,
Sequence Cloning failed, production of protein material failed are negative. In protein
material production tendency task (MF), Sequence Cloning failed, production of protein
material failed are negative. In the task of purification tendency (PF), purification failed and
crystallization failed are negative, crystallizable is positive, and crystallizable is negative in
the task of final diffraction mass crystallization. The numbers of training sets and test sets
are shown in Table 2, in which the sequence similarity of test sets is 40%.

Table 2. Statistics of datasets

Tasks Dataset Clone f. Material Production f. Purification f. Crystallization f. Crystallization

CLF Train N:9502 P:14428
Test N:1939 P:2852

MF Train N:17017 P:6913
Test N:3347 P:1444

PF Train - N:2318 P:4702
Test - N:474 P:932

CF Train - N:224 P:631
Test - N:35 P:138

CRYs Train N:19509 P:4421
Test N:3892 P:899

f. means failed.

https://doi.org/10.1371/journal.pone.0105902.s007
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Our codes are implemented in Tensorflow which is a powerful deep learning frame-
work. Trainable weight matrices of TLCrys are initialized by the default setting. TLCrys is
trained on a single NVIDIA GeForce GTX 3070 GPU with 8GB memory.

3.2. Metrics

We evaluate our model on the dataset described in Section 3.1. Accuracy (ACC),
Matthew’s Correlation Coefficient (MCC), balanced F1 Score, sensitivity (SENS), specificity
(SPEC) and precision(PRE) are commonly used metrics for binary classification. All of them
are based on the number of true positive (TP), true negative (TN), false positive (FP), and
false negative (FN). They are defined as follows.

Accuracy(ACC) =
TP + TN

TP + TN + FP + FN
(10)

Speci f icity(SPEC) =
TN

TN + FP
(11)

Sensitivity(SEN) =
TP

TP + FN
(12)

Precision(PRE) =
TP

TP + FP
(13)

F1− Score =
2 ∗ Precision ∗ Sensitivity

Precision + Sensitivity
(14)

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(15)

Accuracy is the most common evaluation metric, which means the proportion of
correctly classified samples in all samples. Specificity is the ratio of correctly predicted
negative samples. Sensitivity denotes the ratio of the positive samples that were correctly
predicted. Precision represents the proportion of samples that are classified as positive
samples that are actually positive samples. F1-score is a comprehensive evaluation metric
and the harmonic average of precision and sensitivity. Matthew’s Correlation Coefficient is
a remarkable metric in binary classification problem on imbalanced data [29].

Furthermore, the receiver operating characteristic (ROC) curve denotes the classifica-
tion performance of a model by plotting the true-positive (TP) rate against the false-positive
(FP) rate. TP rate and FP rate change when the different discrimination thresholds are
selected. The area under ROC curve (AUR) is an important indicator for measuring the
classification performance of a model.

3.3. Comparison with Other Methods

We evaluate predictive performances of 13 models based on five stages of crystalliza-
tion prediction dataset. They are OBScore [7], XtalPred [10], CrystalP2 [9], Crysalis I &
II [15], PredPPCrys I & II [14], ParCrys [8], TargetCrys [30], PPCPred [11], SVMCRYS [13],
SCMCRYS [12] and DeepCrystal [19]. Here, only Crysalis I & II model and PredPPCrys I &
II model can predict the classification results of the five stages. The five-stage classification
of protein crystallization is specifically the sequence failing to clone (CLF), protein material
production failed (MF), protein purification failure (PF), and crystallization failure (CF)
and diffraction-quality crystals (CRYs). According to the statistical data in Table 3, the
performance of TLCrys in the five-stage protein crystallization prediction is better than all
the previous predictors. Some metrics, such as SPEC or SEN, are related to the classification
tendency and do not represent the comprehensive performance of the classifier. In terms of
comprehensive metrics such as AUC, MCC, and F1-Score, TLCrys is significantly better
than other compared models.
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Table 3. Comparison of our two model with other methods on test sets.

Model AUC MCC ACC (%) SPEC (%) SEN (%) PRE (%) F1 Score (%)

CLF

PredPPCrys I 0.711 0.296 65.33 63.58 66.50 73.16 69.67
PredPPCrys II 0.725 0.322 66.54 65.56 67.20 74.44 70.63

Crysalis I 0.731 0.332 66.98 66.60 67.22 75.56 71.15
Crysalis II 0.756 0.365 68.34 69.95 68.34 76.85 72.35

Direct learning 0.701 0.326 64.65 76.14 56.84 77.81 65.69
TLCrys 0.817 0.455 72.90 74.28 71.96 80.46 77.00

MF

PredPPCrys I 0.772 0.380 69.93 68.21 72.88 49.95 59.27
PredPPCrys II 0.793 0.416 71.95 71.36 73.30 52.70 61.32

Crysalis I 0.759 0.377 70.23 69.93 70.99 49.25 58.15
Crysalis II 0.793 0.427 73.08 73.58 73.09 54.15 62.21

Direct learning 0.745 0.307 73.31 88.67 37.74 58.98 46.03
TLCrys 0.848 0.446 78.37 92.53 45.57 72.47 55.90

PF

PredPPCrys I 0.800 0.460 74.83 70.52 77.02 83.77 80.25
PredPPCrys II 0.872 0.579 79.73 81.43 78.86 89.31 83.76

Crysalis I 0.796 0.436 73.87 67.80 73.87 82.47 77.93
Crysalis II 0.793 0.427 73.08 73.58 73.09 54.15 62.21

Direct learning 0.778 0.505 78.52 60.97 73.09 54.15 62.21
TLCrys 0.861 0.583 81.58 70.25 87.34 85.24 86.27

CF

PredPPCrys I 0.712 0.280 67.05 67.65 66.91 89.42 76.54
PredPPCrys II 0.735 0.175 69.47 68.89 69.50 97.80 81.26

Crysalis I 0.739 0.281 65.50 70.59 64.23 89.80 74.89
Crysalis II 0.752 0.337 62.57 85.29 56.93 93.97 70.90

Direct learning 0.694 0.123 71.10 31.43 81.16 82.35 81.75
TLCrys 0.785 0.459 79.77 68.57 82.61 91.20 86.69

CRYs

ParCrys 0.611 0.132 59.66 60.56 55.91 25.40 34.93
OBScore 0.638 0.184 59.28 57.78 65.49 27.14 38.38

CRYSTAP2 0.599 0.123 51.64 48.10 67.78 22.28 33.54
XtalPred - 0.224 65.04 65.61 62.51 29.31 39.91

SVMCRYs - 0.142 55.11 52.78 65.70 23.39 34.50
PPCPred 0.704 0.254 63.63 62.09 70.67 29.03 41.15

XtalPred-RF - 0.205 60.94 59.67 66.41 27.56 38.95
SCMCRYS - 0.145 60.93 62.01 56.24 25.48 35.07

PredPPCrys I 0.770 0.326 69.65 69.30 71.13 35.23 47.12
PredPPCrys II 0.838 0.428 76.04 76.21 75.30 42.64 54.45

Crysalis I 0.788 0.339 71.00 70.89 71.41 35.50 47.42
Crysalis II 0.838 0.435 76.27 76.28 76.20 42.84 54.85

DeepCrystal 0.858 0.477 77.83 77.43 79.51 45.90 58.20
Direct learning 0.801 0.367 83.79 95.99 31.03 64.14 41.83

TLCrys 0.879 0.546 87.24 94.96 53.84 71.18 61.30
Area Under Curve (AUC), Matthew’s Correlation Coefficient (MCC), Accuracy (ACC), Specificity (SPEC), Precision
(PRE), Sensitivity (SENS), and Precision (PRE).

3.4. Ablation Experiments

In order to verify the effectiveness of the multi-head self-attention layer in fine-tuning
module and select the number of heads required, we conduct ablation experiments. Firstly,
we remove the multi-head self-attention layer and directly send the concatenated whole
representations into the fully-connected layer for the output layer. Then, we set up different
numbers of heads to determine the best number of heads. As we can see from Table 4, when
we set a 6-head self-attention layer, the model has the best performance in comprehensive
metrics. From the experimental results, we can conclude that the multi-head self-attention
layer of TLCrys can extract important information from each representation, which can
improve the accuracy and robustness of the model.
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Table 4. Ablation experiments on CRYs task.

Models AUC MCC ACC (%) F1 Score (%)

without multi-head attention 0.874 0.498 86.57 54.36
2 heads 0.875 0.537 86.69 61.32
4 heads 0.880 0.529 86.99 59.09

TLCrys (6 heads) 0.879 0.546 87.24 61.30
8 heads 0.879 0.541 87.30 60.10

3.5. Case Study

Transcription factors are defined as some sequence-specific proteins, which can reg-
ulate many essential biological processes. Sox transcription factors consist of highly con-
served high-mobility group (HMG) domain of 70∼80 amino acids [31]. In Sox transcription
factor family, Sox9 is a gene that can target several important organs, such as the brain,
heart, kidney, and bone. Sox17 can participate in endoderm differentiation in early mam-
malian development [20]. Five protein sequences of Sox9 and Sox17 are applied to validate
the performance of TLCrys and other predictors. The recent research has illustrated that
Sox9 HMG, Sox17 HMG and Sox17EK HMG are competent to conduct diffraction-quality
crystallization, while it is not evident that full-length sequences of Sox9 and Sox17 (i.e.,
Sox9 FL and Sox17 FL) are competent to produce diffraction-quality crystals [19,31,32].
Therefore, an excellent protein crystallization predictor should output low probability
scores while processing Sox9 FL and Sox17 FL, and output high probability scores while
processing Sox9 HMG, Sox17 HMG and Sox17EK HMG.

Table 5 shows the predicted probability score of the TLCrys and other predictors for
Sox transcription factor proteins. Here we use 0.5 as a threshold, if the score is more than 0.5,
the protein is predicted to be crystalizable. TLCrys and DeepCrystal correctly identifies all
the proteins that are able to produce diffraction-quality crystals. However, compared with
DeepCrystal, TLCrys achieves lower probability prediction scores while processing full
length sequences of Sox9 and Sox17, and achieves higher probability prediction scores while
processing Sox9 HMG, Sox17 HMG and Sox17EK HMG. The results suggest that TLCrys is
a more credible protein crystallization predictor compared with current predictors.

Table 5. Predicted probability value of the TLCrys and other predictors for Sox transcription fac-
tor proteins.

Model Sox9 FL (−) Sox9 HMG (+) Sox17 FL (−) Sox17 HMG (+) Sox17 EK-HMG (+)

TLCrys 0.156 0.674 0.260 0.791 0.681
DeepCrystal 0.315 0.676 0.430 0.643 0.633
TargetCrys 0.032 0.045 0.037 0.029 0.031
Crysalis II 0.474 0.55 0.474 0.553 0.555
Crysalis I 0.438 0.482 0.487 0.567 0.557
PPCPred 0.039 0.658 0.089 0.462 0.523
CrystalP2 0.327 0.459 0.470 0.436 0.402

“+” represents crystallizable protein and “−” represents non-crystallizable protein.

4. Conclusions

Crystallization prediction of protein is a significant task in computational biology.
Due to the profound relationship between protein crystallization and protein structure, we
design a novel transfer learning based method for protein crystallization prediction, named
TLCrys. In source domain, TLCrys adopts a multi-task training method in pre-training
procedure to obtain global and local information of protein sequences for protein repre-
sentation learning. In target domain, the representations are regarded as knowledge from
the source domain to enhance the fine-tuning model for protein crystalization prediction.
Besides, the multi-head self-attention mechanism is adopted in fine-tuning. Through the
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comparative experiment of transfer learning and direct learning, the profound relationship
between protein crystallization and protein structure is revealed. The ablation experiments
demonstrate the effectiveness and number of attention modules in the fine-tuning model.
Case study validate the capability of our method for protein crystallization prediction. The
experiments demonstrate that our method significantly outperforms other methods on five
crystallization stages of prediction on test sets. The proposed methodology is generally
applicable and can be used to address any other sequence classification tasks.
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