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Abstract: Cancer is the second-leading cause of death worldwide, and therapeutic peptides that
target and destroy cancer cells have received a great deal of interest in recent years. Traditional wet
experiments are expensive and inefficient for identifying novel anticancer peptides; therefore, the
development of an effective computational approach is essential to recognize ACP candidates before
experimental methods are used. In this study, we proposed an Ada-boosting algorithm with the
base learner random forest called ACP-ADA, which integrates binary profile feature, amino acid
index, and amino acid composition with a 210-dimensional feature space vector to represent the
peptides. Training samples in the feature space were augmented to increase the sample size and
further improve the performance of the model in the case of insufficient samples. Furthermore, we
used five-fold cross-validation to find model parameters, and the cross-validation results showed
that ACP-ADA outperforms existing methods for this feature combination with data augmentation
in terms of performance metrics. Specifically, ACP-ADA recorded an average accuracy of 86.4% and
a Mathew’s correlation coefficient of 74.01% for dataset ACP740 and 90.83% and 81.65% for dataset
ACP240; consequently, it can be a very useful tool in drug development and biomedical research.

Keywords: anticancer peptides; ada-boosting algorithm; data augmentation; binary profile feature;
amino acid index; amino acid composition

1. Introduction

Cancer is currently the second most common cause of death and a leading cause of
morbidity worldwide [1]. Rather than being a single disease, cancer is a heterogeneous set of
complex disorders marked by unchecked cell proliferation and the ability to quickly spread
or invade other parts of the body [2]. Chemotherapy and radiotherapy are two common
conventional cancer treatments that are costly and frequently have negative side effects on
healthy cells. Additionally, resistance to the existing anticancer chemotherapeutic medicines
can develop in cancer cells [3]. Therefore, new anticancer drugs must be developed
regularly to slow cancer cell proliferation. Peptide-based therapy provides significant
benefits over other small molecule therapies due to the high selectivity, improved tumor
penetration capabilities, and minimal toxicity of peptides under normal physiological
settings [4,5].

Anticancer Peptides (ACPs) do not interfere with healthy bodily processes; rather,
they provide new therapeutic options. The discovery of ACPs has opened new avenues for
cancer treatment. ACPs are made up of 10 to 60 amino acids and feature an amphipathic
cationic [6] structure that can interact with the anionic lipid membranes of cancer cells,
enabling targeted treatment. Therefore, the discovery of new ACPs is critical for successful
clinical applications. Experiments have identified and validated an increasing number of
ACPs from protein sequences; however, using the experimental method to identify ACPs is
time-consuming, laborious, and costly [1,7]. As a result, computational methods for ACP
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recognition based on robust composition feature vectors with physicochemical properties
using boosting algorithms are urgently required.

Numerous computational techniques in the domain of bioinformatics are utilized to
solve various types of issues [8]. In particular, Machine Learning-based methods such as
computational methods are used for the identification of ACPs. Based on a support vector
machine, Anti-CP was the first computational tool to utilize binary profiles and sequence-
based features [9]. Chou’s pseudo-amino acid composition (PseAAC) and a local alignment
kernel have been introduced for ACP prediction [10]. A computational model based on
the optimization of a 400-dimensional feature vector of dipeptide residue components
called g-gap features, representing the order and dipeptide composition of amino acids
in peptide sequences was proposed for prediction of ACPs in [11]. An SVM was used to
depict ACPs using amino acid composition, average chemical shifts, and reduced amino
acid composition [12]. In [13], the authors developed a feature representation learning
method using a two-step feature selection method to enhance the prediction of ACPs.
In [14], the authors developed a generalized chaos game feature representation method for
ACP prediction. The applied ensemble learning model for the identification of ACPs used
different features and classifiers, and the classifier output was used as input to the SVM
for the prediction of ACPs [14,15]. In [15], the authors proposed a novel computational
approach for the accurate identification of ACPs using a deep learning algorithm. The
authors of [16] developed a novel method called DRACP, using sequence and chemical
characteristics for the identification of ACPs. In [17], the authors proposed a deep learning
long short-term memory model (LSTM) called ACP-DL to forecast ACPs using high-
efficiency feature representation. AntiCP 2.0, an updated model for the prediction of
ACPs using various features and different classes of machine learning classifiers on two
datasets-ACP740 and ACP240, has been proposed for the prediction of ACPs [18]. A data
augmentation method named ACP-DA, which uses sequential features and a multi-layer
perceptron (MLP) classifier to predict ACPs using sequential physiocochemical features,
has been proposed as well [19].

The number of the ACPs engaged with the above strategies has not surpassed 1000 cases,
which is certainly not a huge number. The prediction performance of this strategy can be
further improved if additional ACPs are included [20]. In the proposed method proposed
in this paper, we use the concatenated features with data augmentation through a boosting
classifier called Adaptive Boosting Classifier (ADA) with a base Random Forest learner,
and further improve the performance of the ACP prediction method via machine learning.
In this method, the binary profile feature (BPF), amino acid index (AAINDEX), and amino
acid composition (AAC), which describe the order and composition of the targets along
with their physicochemical properties, are concatenated to represent the peptides; the
training set is then augmented in the 210-dimensional feature vector. The augmented
training samples are then used to train a machine learning model for ACP prediction.

There are four steps involved in the proposed method, as shown in Figure 1. First,
the given peptide sequences are input and each peptide sequence is preprocessed to an
equal length. Second, we calculate the BPF (140-Dimensional feature vector), AAINDEX
(50-Dimensional feature vector with the features selected based on minimum redundancy–
maximum relevance (mRMR)), and AAC (20-Dimensional feature vector) of the peptides
to contribute a 210-dimensional feature vector. Third, the training samples are augmented
based on the contributing feature vector, and the augmented training samples are used to
train the boosting classifier. Finally, to test the performance of the proposed technique, we
apply five-fold cross-validation to evaluate ACP-ADA based on two benchmark datasets,
ACP740 and ACP240. We assess the effectiveness of this strategy using several classification
matrices and the outcome of augmentation using a different classifier. The results obtained
from the experiment demonstrate that data augmentation based on the concatenated hybrid
feature vector, that is, BPFs, AAINDEX, and AAC, can improve the prediction of ACPs with
the choice of suitable classifiers using data augmentation. Thus, the proposed ACP-ADA
method is suitable for prediction.
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Figure 1. Step flow diagram of ACP-ADA: binary profile feature (BPFs), amino acid index (AAINDEX)
features after feature selection, and amino acid composition (AAC) were integrated to represent
peptides, and the samples in the training set were augmented in the feature space. After data
augmentation, the samples were used to train a machine learning model for the prediction of
anticancer peptides (ACPs).

2. Results

In this section, we illustrate the effects of concatenated features (BPF+AAINDEX+AAC)
on the performance of the proposed method when using different classifiers with and with-
out data augmentation. Finally, we compare the proposed method with existing methods
using a different classifier.

2.1. Parameter Discussion

The parameter affecting the performance of the model is Lx, the peptide length after
pre-processing, which was selected as a length of 40, 50, or 60. In the data augmentation
stage, N is an additional parameter connected to the number of new positive (negative)
samples in the model. Thus, N can be set to 100, 200, or 300 percent of the initial positive
(negative) sample number.

The prediction performance of the model established based on different values of
the Lx parameter, which is the peptide length, and ’N’, which represents the percent-
age of augmentation for databases ACP740 and ACP240, is presented in Tables 1 and 2.
MCC is a threshold-independent performance evaluation metric that generates a high
score only if the classifier correctly predicts most of the positive and negative data in-
stances. Therefore, we chose the best parameters, namely, Lx = 50 and N = 100% for
ACP740 and Lx = 50 and N = 300% for ACP240, according to the maximum MCC value.
Because ACP240 has fewer samples than ACP740, the value of N is larger for ACP240
than for ACP740, implying that more pseudo-samples are required for ACP240 than for
ACP740. In addition, the performance of the model was evaluated on the ACP214 test
dataset. The results for ACP-ADA on the independent test dataset are explained in the
Supplementary Materials Section S2, Figure S2, Section S2.1.
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Table 1. Performance of ACP-ADA with parameters ‘Lx’ and ‘N’ on the ACP740 dataset along with
performance metrics (the best metrics are shown in bold).

Lx N% ACC% PRE% SEN% SPE% MCC%

40 100 85.81 87.60 84.05 87.64 71.77
40 200 86.21 88.13 84.32 88.17 72.64
40 300 85.54 87.55 83.52 87.64 71.25
50 100 86.48 88.63 84.32 88.73 73.19
50 200 85.81 87.82 83.79 87.91 71.81
50 300 85.67 87.83 83.52 87.91 71.58
60 100 86.48 88.61 84.32 88.73 73.05
60 200 85.94 87.84 84.05 87.91 72.05
60 300 86.35 88.33 84.32 88.46 72.86

Table 2. Performance of ACP-ADA with parameters ‘Lx’ and ‘N’ on the ACP240 dataset along with
performance metrics (the best metrics are shown in bold).

Lx N% ACC% PRE% SEN% SPE% MCC%

40 100 87.08 88.29 87.60 86.44 74.06
40 200 87.09 88.15 87.63 86.48 74.21
40 300 86.66 87.15 88.36 84.66 73.19
50 100 88.33 89.18 89.13 87.35 76.57
50 200 88.34 89.28 89.14 87.39 76.81
50 300 90.83 91.46 91.50 90.07 81.65
60 100 90.41 90.78 91.47 89.16 80.75
60 200 89.16 90.51 89.16 89.16 78.30
60 300 90.02 90.67 90.70 89.16 79.91

2.2. Comparison with Different Features Performance

BPF and k-mer sparse matrix have proven to be effective in ACP-DL [17]; here, a
physicochemical property feature descriptor called AAINDEX has been introduced as a
therapeutic peptide predictor (PPTPP) [21]. AAC features were introduced to identify anti-
cancer peptides through an improved hybrid composition using BPF and Physicochemical
properties [22]. BPF, AAINDEX, and AAC are introduced in this methodology to build a
model with robust and explainable features. To obtain a more effective feature combination,
we used the AdaBoost Classifier with random forest as a base learner to build an ACP
prediction model and evaluate the feature performance of each model based on the three
features and their pairwise concatenation both with and without data augmentation in
different peptide models, then chose the best performing classifier as the anticancer peptide
predictor [23,24].

BPFs, AAINDEX, and AAC are the three features. BPF+AAINDEX, BPF+AAC, AAIN-
DEX+AAC, and BPF+AAINDEX+AAC were combined together. The performance of the
models for individual features and their concatenation is depicted in Figure 2. When the
three features were applied separately, BPF and AAC performed the best. Based on the
MCC value, the BPF+AAINDEX+AAC feature combination produced the best results for
ACP740 and ACP240 among the four feature concatenations, as shown in Figure 2. We
chose the BPF+AAINDEX+AAC concatenation to represent the peptide sequence based on
feature concatenation and consequent performance.The feature importance for anticancer
peptide prediction is explained in the Supplementary Materials Section S2.
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Figure 2. Comparison of feature efficacy for prediction using the BPF, AAINDEX, AAC, and their
possible concatenations on the ACP740 and ACP240 datasets.

2.3. Classifier Discussion

We used the concatenated BPF + AAINDEX + AAC as a concatenated feature to
represent peptides. It was then necessary to determine the classifier which worked best
with our strategy. In Figure 3, the horizontal axis represents the classifier and the vertical
axis represents the MCC value for each classifier with and without data augmentation. We
analyzed the performance of the prediction model with and without data augmentation on
seven selected models: Multi-layer Perceptron (MLP), a neural network-based model for
prediction; Support Vector Machine (SVM), which classifies peptides using a hyperplane;
Random Forest (RF), which classifies peptides based on the if–then rule and is a tree-based
model; k-Nearest Neighbours (KN), which separates two different classes using their
number of nearest neighbours; Extremely Randomized Tree (ET), which is a tree-based
hybrid model built using decision trees; Gradient Boosting Classifier (GB), which is a
boosting method that focuses on previous incorrect classification by a weak learner and
tries to improve the prediction; and AdaBoost (Base Learner = RF), which is an adaptive
boosting method constructed using a weak learner random forest. We utilized MCC
to assess and test the models’ performance because it is a comprehensive metric. The
performance of the selected models on the ACP-740 and ACP-240 datasets are shown in
Figure 3.
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Figure 3. Comparison of the prediction models with and without data augmentation on the ACP740
and ACP240 datasets.

Figure 3 confirms that based on the ACP740 dataset the prediction models built using
MLP, RF, ET, GB, and ADA show performance improvements in terms of the MCC value
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used to evaluate the prediction models. However, data augmentation causes performance
degradation in the models based on SVM and KN. On the ACP240 dataset, data augmenta-
tion can enhance the performance of the prediction models developed based on RF, KN,
ET, GB, and ADA, meaning that the relative prediction performance of the models based
on MLP and SVM decreases. Thus, when using RF, ET, GB, and ADA, data augmenta-
tion improved the performance of the ACP prediction model. This finding indicates that
the effectiveness of data augmentation is linked to the classifier selected for prediction.
Therefore, MLP, SVM, and KN were not suitable for our prediction model.

Based on MCC as the comprehensive metric for evaluating the performance of the
model, we chose the AdaBoost classifier (ADA) to build the final predictive model. Though
GB the method achieved the best performance on ACP740, its classification performance
on the ACP240 dataset after data augmentation, which consists of relatively fewer samples,
was much weaker. Therefore, the ADA method was selected as a more robust alternative
for classifying ACPs and non-ACPs on both datasets. ADA shows a better performance
improvement on both datasets after data augmentation compared to the other classifiers.
The method for building the AdaBoost classifier is called ACP-ADA, and has exhibited
outstanding performance in various fields in recent years. The results of our developed
Adaptive Boosting Classifier for the ACP740 and ACP240 peptide datasets show significant
improvement compared with previous state-of-the-art models. It achieves a better perfor-
mance based on both ACC and MCC, which indicates that the proposed ACP-ADA model
can be used as an anti-cancer peptide model for investigating ACPs and non-ACPs.

2.4. Comparison with Existing Methods

To ensure the effectiveness and efficiency of the proposed method, we compared
the performance of ACP-ADA with ACP-DA [19], ACP-DL [17], AntiCP2.0 [18], and
DeepACP [15] while relying on the same main and benchmark datasets and corresponding
classification evaluation metrics.

Compared with ACP-DA, the use of our method has a distinct advantage. It is
accompanied by a concatenated feature vector (BPF+AAINDEX+AAC) representing the
order, composition, and physicochemical properties to represent the peptides with data
augmentation and the boosting classifier, which is an ensemble learner that focuses on
incorrectly classified samples. The proposed method with concatenated hybrid feature
vectors with data augmentation outperforms ACP-DA in most metrics, especially the two
most important performance metrics, ACC and MCC.

As shown in Figure 4, the performance of the proposed method on the ACP740 and
ACP240 datasets was better than that of ACP-DA, ACP-DL, DeepACP, and AntiCP 2.0.
Compared to the ACP-DA as the current guarding model, our method showed improve-
ments in ACC by 5%, PRE by 5%, SPE by 6%, and MCC by 9% for the ACP740 dataset.
For ACP240, the number of samples was lower than for ACP740; nonetheless, our method
improved the ACC by 3%, PRE by 1%, SPE by 2%, and MCC by almost 6%. The proposed
method outperformed the alternatives on the ACP240 dataset in terms of both the ACC and
MCC evaluation metrics, indicating that our strategy is well suited to datasets with a lower
fraction of samples. This method applies the Gaussian noise oversampling method with
the AdaBoost classifier method using random forest as a base learner and a feature vector
representing the order and composition with physicochemical properties, which improves
the prediction of ACPs. In addition, the performance of ACP-ADA and all control methods
was evaluated on the ACP214 test dataset. The details are provided in the Supplementary
Materials Section S2.
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Figure 4. Comparison of ACP-ADA with existing methods on the ACP740 and ACP240 datasets.

3. Discussion

Tracing the etiology of cancer remains challenging because of its ambiguous mecha-
nisms. According to a systematic examination, individual feature vectors do not offer viable
biomarkers for predicting peptide activity. Therefore, in order to investigate a suitable
feature vector, we used BPF, AAINDEX, AAC, and their combination to represent the
order, composition, and physicochemical properties of peptides to obtain suitable feature
representation. From the experiment with features comparison based on the maximum
MCC value for the ACP740 and ACP240 datasets, we selected the concatenation of BPF,
AAINDEX, and AAC to represent the peptides. We extracted 210-dimensional feature
vectors from this feature combination to represent peptides in the feature space. Here,
we propose an ACP prediction method called ACP-ADA which uses a boosting method
along with data augmentation of the training samples. According to the results on the
two datasets, the proposed model has good overall performance. Compared with existing
methods, ACP-ADA had better results in classifying whether the peptides were ACP or
non-ACP; its ACC may be attributed to the following reasons.

First, we used effective feature representation methods to characterize peptide se-
quences. To find the feature combinations, we concatenated three feature representation
methods to form robust features using BPF, AAINDEX, and AAC. Experiments on the
ACP740 and ACP240 datasets show that the concatenated features obtain the best perfor-
mance; therefore, we used triad feature combination to represent the peptide sequences.

Second, to compensate for the lack of samples in the training set, data augmentation
was applied to generate pseudosamples. We generated a pseudosample by adding pertur-
bation to the training samples in the 210-dimension feature space of the original samples.
The feature space of the samples was formed by the concatenation of BPF, AAINDEX, and
AAC as a hybrid feature, resulting in a 210-dimensional numerical feature vector. BPF is
composed of vectors of 1 and 0, which are incompatible with the addition of noise; thus,
we only added noise to AAINDEX and AAC to generate pseudosamples. Augmented
training samples were used to train the machine learning model to further improve the
performance of the prediction model, which showed a significant impact based on the
choice of the classifier.

Finally, the various models showed good performance in many bioinformatic clas-
sifications. However, it remains unclear whether data augmentation can improve the
performance of prediction models using different classifiers. Therefore, we analyzed the
effect of this methodology using seven different classifiers. The results show that data
augmentation is effective when using RF, ET, GB, and ADA classifiers with RF as the base
learner. Therefore, we selected ADA, which is a boosting classifier, as the final classifier
with the best overall performance.

In summary, the proposed method for the identification of ACPs showed improved
performance; it is our hope that ACP-ADA can play an important role in biomedical
research and the development of new anticancer drugs. Furthermore, a comparative
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analysis with other methods showed that ACP-ADA was better than the other methods in
most cases.

To accurately and quickly identify ACPs, a boosting classifier was applied to discrimi-
nate peptide sequences using a 210-dimension feature vector which focuses on incorrectly
classified samples as a sample of priority while constructing a random forest to form
a complete AdaBoost classifier. As an ensemble learning method, boosting effectively
prevents over fitting; it performed well on test data and achieved a comparative improve-
ment in prediction of ACPs. In addition, the secondary and tertiary structure prediction
characteristics of peptides can be added to this model as a feature descriptor, which may
improve the performance of the model with the data augmentation method. Furthermore,
the neural network method can be used for the identification of ACPs with an increase in
the dataset size.

Because of the successful result with data augmentation for the dataset with low
sample proportion (ACP240 dataset), using machine learning boosting methods, we can
conclude that this methodology for peptide data augmentation can be applied for training
deep learning models such as Convolutional Neural Networks, Recurrent Neural Net-
works, Transformer and several language models. Based on our predictive performance
improvement for the dataset with a lower number of positive and negative classes, we can
assert that this method of peptide data augmentation can enhance and quantify predictive
performance on datasets with fewer samples using advanced deep learning models, which
can be further explored for peptide-based research using data augmentation to escalate
model performance. This method can be explored while working with advanced deep
learning models using data augmentation.

4. Materials and Methods
4.1. Data Acquisition

In this study, a machine learning model called the boosting method is proposed
to predict ACPs. Called ACP-ADA, the proposed method uses concatenated features
provided by BPF, AAINDEX, and AAC. We evaluated the predictive performance of ACP-
ADA for ACPs on the ACP740 and ACP240 benchmark datasets. Furthermore, using
the common tool CD-HIT [20], sequences with a similarity of more than 90 percent were
eliminated [20,25]; we used similar configuration as previous works for fair comparison on
the two benchmark datasets. Therefore, there was no duplicate sequence between datasets,
and both were unique and non-redundant. These datasets can be publicly accessed through
the https://github.com/haichengyi/ACP-DL (accessed on 24 September 2021, Korea)
ACP-DL Dataset Repository.

The main dataset, ACP740, includes 364 non-ACPs (negative examples) and 376
experimentally validated ACPs (positive examples).

The alternate dataset, ACP240, includes 111 non-ACPs (negative examples) and 129
experimentally validated ACPs (positive examples).

In addition, we build datasets with an CD-HIT cutoff of 0.35% named ACP614 and
ACP214. A description of the datasets and experimental results are provided in the Supple-
mentary Materials Section S2.

4.2. Preprocessing

The iLearn python package [26] can encode peptides of the same length. The lengths
of the peptides in the ACP740 and ACP240 datasets were statistically analyzed in order
to establish the optimal sequence lengths, which we then used to preprocess the original
peptide sequences. As shown in Figure 5, the majority of the peptides were less than
60 amino acids in length. To retrieve peptides of the same length, each peptide was
processed as follows. For sequences shorter than Lx amino acids, each peptide was padded
with “X” until Lx amino acids were reached. For sequences longer than Lx amino acids, the
extra amino acids after Lx were removed; only the first Lx amino acids were retained. Lx
was set to 40, 50, or 60 [12,19]. We believe that the best length to represent the peptides can

https://github.com/haichengyi/ACP-DL
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be derived from a peptide length of 40, 50, or 60 for the calculation of BPF, AAINDEX, and
AAC.

Figure 5. Histogram of the sequence length of peptides in ACP740 and ACP240 datasets.

4.3. Feature Extraction

First, the physiochemical characteristics of each sequence of amino acids were deter-
mined using the AAINDEX function in the iLearn Python package [27]. Because AAINDEX
results in larger dimensional features, mRMR was then used for feature selection. Similar
to AAINDEX, the AAC feature descriptors in iLearn Python package were used to calculate
AAC features for the entire peptide sequences [28,29]. The BPFs, AAINDEX, and AAC
for each sequence were concatenated to represent the order, physicochemical character-
istics, and composition of the peptides. The integrated feature for the prediction can be
represented as

Feature = BPF + AAINDEX + AAC (1)

BPF represents the residue order, AAINDEX represents the peptides in terms of the
properties of 20 amino acid residues with respect to the physicochemical properties (activity-
based features) and AAC represents the proportion of residues dominant in ACPs and
non-ACPs (which are highly dominant). Thus, the combination collectively represents the
residue order, activity, and percentage of each residue for each peptide. Combining these
features can capture the local residue level order information, structural sequence features,
and proportion of amino acids highly available in ACPs and Non-ACPs as explainable
parameters for the sequence and model. Because of this, we selected and extracted BPF,
AAINDEX, and AAC as a predicting feature in our proposed method. Each individual
feature was used along with the combination of trait features as predictors for the machine
learning model. Finally, the training samples were augmented in the feature vector and
used to train the machine learning model, with the trained model assigning the class level
to the test sets.

The newly constructed datasets ACP614 and ACP214 (with CD-HIT 0.35%) were fea-
tured based on PSSM. The details are explained in the Supplementary Materials Section S2.

4.4. Representation of Peptides

Converting peptides of various lengths into feature vectors of a fixed length is the
primary goal of feature representation. The unprocessed peptide sequence P can be mod-
eled as

P = P[1]P[2]P[3]P[4] . . . P[L] (2)
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where P[1], P[2], P[3], and P[L] in Equation (2) represent the first, second, third and
terminating residue peptide of length ’L’, respectively. To train the machine learning model,
residue P[i] served as a general representation of amino acids in peptides and a component
of the standard amino acid alphabet. The primary step was converting the variable-length
peptides into a fixed length in order to calculate the binary profile feature, amino acid
index, and amino acid composition to represent the peptide sequences. In this study,
we introduced three feature representation methods through the concatenation of BPF
and AAC with physicochemical properties called the AAINDEX, as described below; the
peptides can be expressed in terms of a fixed length ‘Lx’ for sequences, formulated in
Equation (3) as follows:

P = P[1]P[2]P[3]P[4] . . . P[Lx] (3)

4.4.1. BPF

The binary profile has the advantage of providing an order of residues in the peptides,
which is not feasible with composition-based characteristics [30,31]. As a result, binary
profile traits can distinguish peptides that are chemically similar and functionally distinct. It
was difficult to build a fixed-length pattern because the lengths of the peptides employed in
this investigation were different. To solve this problem and generate a fixed-length pattern,
we isolated fixed-length segments from the N-terminus to represent the peptide, with each
amino acid type represented using a 0/1 feature vector. The first type of amino acid in the
alphabet was encoded as f(A) = 1,0,0,0. . . ,0), whereas the second type of amino acid was
encoded as f(C) = (0,1,0,0 . . . ,0). The N-terminus of a particular peptide sequence P with
a length of k amino acids was encoded as the feature vector represented in Equation (4),
expressed as follows:

F(BPF[k]) = [f(P[1],f(P[2], . . . f(P[k])] (4)

where k represents the length of the peptide resembling the N-terminal amino group. The
experiments suggest that setting k to 7 produces the best results [17,19]. As a result, the
BPF vector encoded a particular peptide sequence into a 20 × 7 feature vector.

4.4.2. AAINDEX

The most useful qualities for representing biological reactions are the physicochemical
characteristics of amino acids, which have been widely employed in bioinformatic studies.
Numerous published indices that represent the physicochemical characteristics of amino
acids can be found in the AAINDEX database [4,10,30], including a set of 20 numerical
values for each physicochemical property for all amino acids. The AAINDEX database’s
544 physicochemical attributes were retrieved, returning a total of 531 physicochemical
characteristics to represent each residue in the peptide sequence; any physicochemical
qualities for any of the amino acids that were removed are indicated with “NA”. The
AAINDEX descriptor can be used to encode peptides of the same length [32]. When
Lx is set to 40, the AAINDEX descriptor for a peptide of length 40 produces a feature
vector with a dimension of 21,240, which is excessively high and results in a dimension
disaster. We chose the best 50 feature vectors to represent the peptide sequences and reduce
dimensionality issues using the mRMR approach after the physicochemical properties of
peptides (AAINDEX) were extracted using the iLearn platform.

4.4.3. AAC

The frequency of each residue in the peptide sequence was determined using AAC
encoding. AAC, which demonstrates that particular residues are more prevalent in ACPs
than in non-ACPs, can be used to discriminate between ACPs and non-ACPs. As a result,
the AAC feature was added to represent the peptide, then extracted into a fixed-dimensional
feature vector using the iLearn Python tool. All 20 natural amino acid frequencies (i.e.,
“ACDEFGHIKLMNPQRSTVWY”) can be described by Equation (5):
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F(AAC[N]) =
N(t)
N

, t ∈ (A,C,D, . . . Y) (5)

Here, N(t) is the repetition of an amino acid of type t, N is the length of a protein or
peptide sequence, and F(AAC[N]) results in a 20-dimensional feature vector representing
the AAC of the peptide sequence. A conjoint feature vector was formed to represent
peptides using BPF (140), Amino AAINDEX (50), and AAC (20); the new feature vector
dimension was 140 + 50 + 20 = 210-dimensional feature vector. In addition to sequen-
tial order information features and sequential composition features, we calculated PSSM
features for the newly constructed datasets; a detailed description is provided in the
Supplementary Materials Section S2.

4.5. Data Augmentation

When solving scientific problems, data imbalance and insufficient data are common
issues in machine learning and deep learning technologies [30]. Historically, data augmen-
tation been employed in the field of computer vision to handle this challenge, which can
involve flipping, scaling, zooming, translating, and cropping the original sample [13,18].
Data augmentation can help to solve data imbalance issues. Here, the problem of a small
sample size can be fixed by enhancing the data. Techniques for noise-added oversampling,
which produce faux samples by perturbing the original samples in the feature space, can
be used to create new samples. To enhance the effectiveness of the ACP prediction model,
the number of positive and negative samples in the datasets was increased using peptide
data augmentation techniques. The characteristics of the peptides were divided into three
sections, namely, BPFs, AAINDEX, and AAC. BPFs are binary codes consisting of 0 and 1,
and as such are not suitable for adding perturbations, as adding a noise value to the bits
results in loss of the order information. Only the AAINDEX and AAC are susceptible to
perturbation. The mathematical method for generating new samples F(new) for training
the model is mathematically described by Equation (6):

F(new) = F(i) ∗V ∗ a + F(i) (6)

where F(i) is a random sample from a training sample of peptide sequences, i = 1 . . . , and N
(N) is the total number of positive (negative) samples, representing a 210-dimensional vector
used to generate a perturbation that corresponds to F(i). In order to improve model learning,
we performed peptide augmentation by adding noise to the training samples following
the Gaussian distribution and left the test set without data augmentation. Because test sets
are used for evaluation of model performance, they are not suitable for data augmentation.
Here, V is composed of three parts; one is a 140-dimensional vector of zeros and ones
corresponding to BPFs, and the other consists of a 50-dimensional random vector and a 20-
dimensional random vector with a value between 0 and 1, corresponding to the AAINDEX
and AAC, respectively. Thus, perturbation was added to AAINDEX and AAC and BPFs
were kept unchanged in the pseudo-sample set F (new), where ‘a’ is the coefficient of
perturbation and was set to 0.02 for ACP740 and 0.005 for ACP240.

We tried adding different values of perturbation, and usually preferred a range of
0 to 1 to ensure that the features followed a Gaussian distribution. After training and
testing with different set values, we found 0.02 and 0.005 to be the best values to add for
feature distribution for ACP740 and ACP240, respectively, as these values closely resemble
the AAINDEX and AAC. Augmenting the samples with these values led to improved
prediction performance. Therefore, these fixed values of noise were considered as standard
for augmenting the samples in ACP740 and ACP240. To obtain N new samples, the
sampling process was repeated N times using these noise value for datasets ACP740 and
ACP240.

4.6. Classifier for Prediction

AdaBoost Random Forest Model
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When adaptive boosting is used in conjunction with the random forest approach,
there are two options. The first is “boost in the forest”, in which an AdaBoost classifier is
generated for each random vector k (i.e., a set of variables); a series of ‘simple’ AdaBoost
classifiers, each with a limited number of variables, is then used to arrive at a final result [33].
Here, we instead use a different approach in which a random forest is used as a poor learner.
It is clear from a numerical standpoint that AdaBoost works faster with simple weak learner
algorithms than with forests with trees, which is important for real-time applications; the
philosophical idea behind weak learner algorithms is to find weak assumptions quickly
with a moderate error rate [34,35].

An AdaBoost classifier is a meta-estimator that starts with the original dataset and
then fits new copies on the same dataset while adjusting the weights of poorly classified
instances in order to ensure that succeeding classifiers focus on more difficult cases. Owing
to its excellent performance, this classifier has gained popularity in many fields of bioinfor-
matics [36,37]. To build the model, we used the scikit-learn Python package; we developed
the AdaBoost model with a random state = 121, number of estimators = 406, and learning
rate = 0.04; the other parameters were set to the default values shown in Table 3. This model
introduces a parameter for the base learner (random state = 120, number of estimators = 300,
minimum number of data points placed in the node before the node is split = 10, minimum
number of data points allowed in a leaf node = 1, maximum number of features considered
for splitting a node = auto, method for sampling data points(bootstrap) = False), which
were identified as the best parameters for the model using five-fold cross-validation. In
addition, we evaluated the performance of other classifiers, including MLP (Multi-Layer
Perceptron), SVM (Support Vector Machine), RF (Random Forest), KN (k-Nearest Neigh-
bors), ET (Extremely Randomized Tree), GB (Gradient Boosting Classifier), and ADA (Ada
Boosting Classifier with base learner Random Forest) to build a prediction model based on
the non-augmented data and augmented data in the training set. Among these classifiers,
the ADA classifier works best according to the experimental results obtained from the
comparison with the features and with and without data augmentation.

Table 3. Model Parameters for AdaBoost-Random Forest for ACP Prediction.

Parameters Settings

Base Learner Random Forest
Learning Rate 0.04

Seed 121
Number of Estimators 406

4.7. Evaluation Metrics of the Model

To evaluate the performance of ACP-ADA, we used a five-fold cross-validation strat-
egy. Five performance metrics were used to evaluate the strength of the binary classification
tasks: accuracy (ACC), precision (PRE), sensitivity (SEN), specificity (SPE), and the Math-
ews correlation coefficient (MCC) [21–24]. Mathematically, these metrics can be computed
as follows:

ACC =
(TP + TN)

(TP + TN + FP + FN)
(7)

PRE =
TP

TP + FP
(8)

SEN =
TP

(TP + FN)
(9)

SPE =
TN

(TN + FP)
(10)
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MCC =
(TP ∗ TN)− (FP ∗ TN)√

((TP + FN)(TP + FP)(TN + FP)(TN + FN))
(11)

where FP stands for false positive predictions, FN stands for false negative predictions,
TP stands for correct positive predictions, and TN stands for true negative predictions. In
addition to these metrics, we used the F1-Score to evaluate the performance of the classifiers.
The detailed results are provided in the Supplementary Materials Section S2.

5. Conclusions

The proposed ACP-ADA method can be used to determine whether peptides are
anticancer or non-anticancer based solely on the concatenation of hybrid sequence feature
vectors representing the order, composition, and physicochemical properties with data
augmentation. The predicted results obtained by ACP-ADA via five-fold cross-validation
on the benchmark datasets ACP-740 and ACP-240 indicate that the proposed ACP-ADA
method is comparably better, or at the very least capable of supplementing futuristic
computational models in this area. Because of its success rate on the alternate ACP-240
dataset with a lower number of (positive/negative) samples, ACP-ADA is expected to
become a useful throughput tool that is widely used in drug development and biomedical
research. This confirms the data augmentation method as an alternative approach to
over-sampling techniques, as it can boost the performance of various sequence-based
peptide and non-peptide models based on the choice of features and classifier. In the future,
we intend to consider more complex feature extraction methods and machine learning
algorithms to further improve the performance of ACP peptide prediction models.
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