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Abstract: NK-lysin (NKL) is a family of antimicrobial proteins with an important role in innate
and adaptive immunity. In this study, a non-canonical NK-lysin (NKLnc) was identified in the
Japanese flounder (Paralichthys olivaceus), which shares low sequence identities (15.8–20.6%) with
previously reported fish NKLs and was phylogenetically separated from the canonical NKLs in
teleost. NKLnc expression was upregulated in flounder tissues during bacterial infection, and
interference with NKLnc expression impaired the ability of flounder cells to eliminate invading
bacteria. When expressed in Escherichia coli, NKLnc was detrimental to the host cells. P35, a peptide
derived from the saposin B domain (SapB) of NKLnc, bound major bacterial surface molecules and
killed both Gram-negative and Gram-positive bacteria by inflicting damage to bacterial cell structure
and genomic DNA. The bactericidal activity, but not the bacteria-binding capacity, of P35 required
the structural integrity of the alpha 2/3 helices in SapB. Furthermore, P35 induced the migration of
flounder peripheral blood leukocytes, inhibited bacterial dissemination in fish tissues, and facilitated
fish survival after bacterial challenge. Together our study reveals that NKLnc plays an important
part in flounder immune defense, and that NKLnc peptide exerts an antimicrobial effect via multiple
mechanisms by targeting both bacteria and fish cells.

Keywords: NK-lysin; Paralichthys olivaceus; antimicrobial peptide; bactericidal

1. Introduction

The emergence of multidrug-resistant bacteria and the prevalence of large-scale an-
timicrobial resistance, mainly caused by the misuse of traditional antibiotics, have become
a serious threat to public health and environmental safety [1–3]. As a result, it is imperative
to search for new antimicrobial agents that are less prone to resistance development. One of
the promising alternatives to conventional antibiotics is gene-coded natural antimicro-
bials represented by antimicrobial peptides (AMPs). AMPs are evolutionarily conserved
innate immune factors present in almost all life domains [4]. Generally, AMPs are short
(<100 amino acids), amphiphilic peptides with abundant positively charged amino acid
residues and hydrophobic residues [5]. AMPs constitute the first-line of immune defense
against the infection of a broad spectrum of bacteria, fungi, parasites, and viruses [5].
The antimicrobial mechanisms of AMPs depend largely on their ability to directly alter
or destroy the cytoplasmic membranes of the target organisms [6]. In addition, AMPs
can also target intracellular molecules such as DNA and protein [6–9]. To date, nearly
1900 AMPs have been identified or chemically synthesized based on the sequences of
diverse living organisms, including microbes, insects, plants, fish, amphibians, birds, and
mammals [5,10–14]. Owing to their biochemical and pharmacodynamic properties, AMPs
are much less prone to resistance development compared to conventional antibiotics and,
therefore, are good candidates for translational applications [15].

Int. J. Mol. Sci. 2022, 23, 12722. https://doi.org/10.3390/ijms232112722 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms232112722
https://doi.org/10.3390/ijms232112722
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://doi.org/10.3390/ijms232112722
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms232112722?type=check_update&version=2


Int. J. Mol. Sci. 2022, 23, 12722 2 of 15

NK-lysin (NKL), or granulysin in humans, is a type of potent AMP that belongs to the
saposin (Sap)-like protein superfamily [14,16]. In human, granulysin is secreted, together
with the pore forming protein perforin, from the granules of cytotoxic T lymphocytes
(CTLs). Granulysin is synthesized as a precursor protein that is processed by an unknown
protease to generate a 9 kDa protein with pore forming activity [17]. Similar to most AMPs,
the 9 kDa granulysin is highly cationic, but the molecular mechanism of its pore formation
is unclear [17]. Structurally, NKL homologues possess a SapB domain and amphipathic
α-helical structures. The human granulysin adopts five alpha helices, with α2 and 3 being
functionally essential [17]. In addition to human granulysin, NKL homologues from pig,
chicken, and cattle were studied, which showed that the peptides derived from NKLs
exhibited antimicrobial activities against various microbes [14,18,19]. Some of the NKL
peptides interacted with the bacterial plasma membrane and formed transmembrane pores
that led to bacterial death [16,20].

In fish, studies of NKL homologues were reported in a number of teleost, including ze-
brafish (Danio rerio), tongue sole (Cynoglossus semilaevis), common carp (Cyprinus carpio), tur-
bot (Scophthalmus maximus), Atlantic salmon (Salmo salar), Nile tilapia (Oreochromis niloticus),
rainbow trout (Oncorhynchus mykiss), large yellow croaker (Larimichthys crocea), chan-
nel catfish (Ictalurus punctatus), yellow catfish (Pelteobagrus fulvidraco), golden pom-
pano (Trachinotus ovatus), European sea bass (Dicentrarchus labrax), and mudskipper
(Boleophthalmus pectinirostris) [21–33]. Similar to mammalian NKLs, fish NKLs possess the
conserved SapB domain with the ability to form α-helix. Based on the NKL sequences, a num-
ber of antimicrobial peptides were synthesized and shown to display antimicrobial activity.

In Japanese flounder (Paralichthys olivaceus), a NKL homologue was reported in
2007, and a NKL-based peptide (JF-NK-2) was shown to inhibit the growth of Gram-
negative bacteria (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and
Photobacterium damselae subsp. piscicida), but had no effect on the growth of Gram-positive
bacteria [34]. In the present study, we identified a non-canonical NKL (named NKLnc) from
the Japanese flounder that shares low sequence identities with the previously reported
fish NKLs, including the flounder NKL described above. We examined the structure,
expression, and antimicrobial properties of NKLnc and investigated the bactericidal activity
and mechanism of NKLnc-derived peptides in vitro and in vivo.

2. Results
2.1. Identification of a Non-Canonical NKL in Flounder

A NK-lysin ortholog was identified in the genome of the flounder. The encoded protein
sequence shared 18.1% identity with the flounder NKL reported in 2007 [34]. Phylogenetic
analysis showed that the newly identified NKL was excluded from the clade formed by the
canonical fish NKLs, which include almost all the reported fish NKLs (Figure 1A). Based
on this observation, we named this flounder NKL non-canonical NKL (NKLnc). NKLnc
contains 134 amino acids with a calculated molecular weight of 15.06 kDa and an isoelectric
point (pI) of 9.68. It contains an N-terminal signal peptide (1–19 aa) and a SapB domain
(57–132 aa), in which six cysteine residues were predicted to form three disulfide bonds
(C58-C132, C61-C126, and C89-C94) (Figure 1B). Multiple sequence alignment showed that
NKLnc shares 15.8–20.1% sequence identities with the canonical NKLs. NKLnc also differs
from the canonical NKLs at the signal peptide cleavage site (Figure 1B).
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Figure 1. Phylogenetic and sequence analyses of NKLnc. (A) Phylogenetic analysis of NKLnc. The
values at the forks indicate the percentage of trees in which this grouping occurred after bootstrapping
(1000 replicates; shown only when the values were >50%). Scale bar, the number of substitutions
per base. (B) Sequence alignment of fish NKL homologues. The residues that are >50% identical
are shaded, with identical residues shaded in dark blue. The alignment gaps are indicated with “-”.
The predicted cleavage site for the signal peptide is indicated with “↓”. The conserved six cysteine
residues are marked with “F”. The cysteine residues that form a disulfide bond are linked by a
blue line.

2.2. NKLnc Expression Is Regulated by Bacterial Pathogen and Required for Effective Blocking of
Bacterial Infection

RT-qPCR showed that NKLnc expression was detected in eight issues of flounder,
with the highest levels found in the spleen and kidney and the lowest levels in the muscle
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and brain (Figure 2A). NKLnc expressions in the gill, blood, and liver were abundant,
though lower than that in the spleen and kidney. Upon infection by Vibrio harveyi (a
common fish pathogen), NKLnc expression was significantly altered in the kidney, spleen,
and liver of the flounder (Figure 2B). In the kidney and spleen, NKLnc expression was
significantly increased at 6, 12, 24, and 48 hpi, with the peak expression occurring at 12 hpi.
In the liver, NKLnc expression peaked at 6 hpi and then rapidly declined to a normal
level. To determine the role of NKLnc in antimicrobial immune defense, NKLnc expression
in flounder cells (FG-9037 cells) was knocked down by RNAi before V. harveyi infection.
Subsequent bacterial recovery analysis showed that the bacterial loads in FG-9037 cells
with NKLnc knockdown were significantly higher than that in the control cells (Figure 2C).

Figure 2. NKLnc expression and its effect on bacterial infection. (A) NKLnc expression in flounder
tissues under normal physiological conditions was determined by RT-qPCR. The expression levels
are presented relative to that in the muscle. (B) Flounder were infected with or without (control)
Vibrio harveyi for different numbers of hours, and the expression of NKLnc in the kidney, spleen,
and liver was determined by RT-qPCR. (C) FG-9307 cells were treated with or without (control)
NKLnc-targeting siRNA (siR1 or siR2) or the negative control siRNA (NCS) and then infected with
V. harveyi for different numbers of hours. The bacterial recovery was determined. For panels (B,C),
values are the means of replicate experiments and shown as means ± S.D. *** p < 0.001; ** p < 0.01.
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2.3. NKLnc Expression Is Detrimental to Host Bacteria

To examine the potential antimicrobial effect of NKLnc, the NKLnc gene was intro-
duced into E. coli in a manner that NKLnc expression was inducible by IPTG (isopropyl-β-
D-thiogalactoside). In the presence of IPTG, the growth of the NKLnc-expressing E. coli
was dramatically inhibited compared to that of the control E. coli (Figure 3A). Consistently,
the number of NKLnc-expressing E. coli cells was much lower than that of the control cells
(Figure 3B,C). These results indicated that expression of NKLnc was lethal or detrimental
to the host bacterial cells.

Figure 3. The effect of NKLnc expression on host bacterial growth. (A) Escherichia coli was transformed
with the backbone vector or the vector carrying the NKLnc gene inducible by IPTG. The bacteria were
cultured in the presence of IPTG and determined for growth at different hours. (B,C) The above E. coli
cells were plated in an agar plate supplemented with or without IPTG, and bacterial growth was
observed after overnight incubation. Scale bar, 1 cm (B). The percentages of bacterial survival were
determined (C). Values are the means of triplicate assays and shown as means ± S.D. *** p < 0.001.

2.4. A NKLnc-Derived Peptide Is Bactericidal in a Manner That Depends on Two Alpha Helices
of SapB

Since, in human granulysin, the α2 and α3 helices in the core region of the SapB
domain are functionally essential, two peptides (P35 and P17) corresponding to these
alpha helices in the SapB of NKLnc were synthesized. P35 is composed of 35 residues
and derived from the α2 and α3 of the SapB domain, while P17 is a truncated version of
P35 and lacks α3 (Figure 4A). P35 and P17 were predicted to adopt two and one α helix,
respectively. In the helical wheel views of P35 and P17, the predominant polar residues and
hydrophobic residues were clustered separately (Figure 4B). Electrostatic surface potential
showed that P35 exhibited more abundant positive charge than P17 (Figure 4C), indicating a
stronger cationic nature of P35. P35 inhibited the growth of both Gram-negative and Gram-
positive bacteria, including the common fish pathogens Vibrio anguillarum, Vibrio harveyi,
and Streptococcus iniae (Table 1). The most potent inhibitory activity was detected against
V. anguillarum and B. subtilis. P35 killed V. anguillarum, V. harveyi, and S. iniae but had
no apparent effect on the viability of E. tarda (Figure 4D). P35 bound to Gram-positive
and Gram-negative bacteria, the latter including E. tarda, in a dose-dependent manner
(Figure 4E). Consistently, P35 bound to bacterial cell wall components of both Gram-
negative and Gram-positive bacteria, i.e., peptidoglycan (PGN) and lipoteichoic acid (LTA),
and lipopolysaccharide (LPS) (Figure 4F). Compared to P35, P17 exhibited much weaker
antimicrobial activities (Table 1, Figure 4D) but similar binding activities towards bacterial
cell wall components and bacterial cells (Figure S1).
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Figure 4. NKLnc peptide structure and antimicrobial activity. (A) Secondary-structure-based align-
ment of the SapB domain sequences in human granulysin (HsGNLY) and NKLnc. The conserved
amino acid residues are highlighted in red (100% identical) or boxed. The secondary structure is
indicated on the top of the aligned sequence. P35 and P17 are underlined in blue and red, respec-
tively. (B,C) The helical wheels (B) and electrostatic surface potentials (C) of P35 and P17. In (B), the
residues that are positively charged, negatively charged, and hydrophobic are in blue, red, and yellow,
respectively. In (C), the positive- and negative-charged regions are in blue and red, respectively.
(D) Vibrio anguillarum, Vibrio harveyi, Edwardsiella tarda, and Streptococcus iniae were incubated with
P17, P35, the negative control peptide (NCP), or PBS for 2 h. Bacterial survival was determined by
plate count. The bacterial numbers (shown as colony forming unit, CFU) are shown on the right
panels. Scale bar, 1 cm. (E) Bacteria binding to different doses of P35 or control peptide (40 µM) was
determined by ELISA. (F) LPS, LTA, and PGN binding to P35 or control peptide were determined by
ELISA. For panels (D–F), values are the means of triplicate experiments and shown as means ± S.D.
*** p < 0.001; ** p < 0.01; * p < 0.05.
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Table 1. The minimal bacterial inhibitory concentration (MIC) of P35 and P17.

Strains P35 MIC (µM) P17 MIC (µM) Strains P35 MIC (µM) P17 MIC (µM)

Gram-positive Gram-negative
Bacillus subtilis 5 — Edwardsiella tarda 40 —
Bacillus cereus — — Escherichia coli 10 40

Micrococcus luteus 10 40 Pseudomona fluorescens 20 —
Staphylococcus aureus 10 40 Vibrio anguillarum 5 20

Streptococcus iniae 10 40 Vibrio harveyi 10 40

“—“: no inhibition detected at 40 µM.

2.5. P35 kills Bacteria by Damaging Bacterial Plasma Membrane and Chromosomal DNA

To investigate the bactericidal mechanism of P35, we first examined the effect of P35
on the cellular integrity of the target bacteria. Propidium iodide (PI) staining showed that
V. harveyi treated with P35 became highly susceptible to PI (Figure 5A), implying cytoplasm
membrane disruption. Consistently, scanning electron microscopy (SEM) and transmission
electron microscopy (TEM) revealed that P35-treated V. harveyi exhibited broken cellular
structure and much lighter intracellular density due to loss of cellular contents (Figure 5B,C).
We next examined the effect of P35 on the stability of bacterial genomic DNA (gDNA).
When treated with P35 in vitro, the gDNA of V. harveyi degraded in a manner that correlated
with the dose of P35 (Figure 5D). Likewise, when live V. harveyi was treated with P35, the
intracellular gDNA was degraded in a time dependent manner (Figure 5E).

Figure 5. The damaging effect of P35 on bacterial structure and DNA. (A–C) Vibrio harveyi was
incubated with P35, the negative control peptide (NCP), or PBS for 2 h and then subjected to PI
staining (A), scanning electron microscopy (B), and transmission electron microscopy (C). Scale bars,
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30 µm (A), 1 µm (B), and 200 nm (C). (D) V. harveyi genomic DNA was incubated with different con-
centrations of P35 or with control peptide for 1 h and then subjected to electrophoresis. (E) V. harveyi
was incubated with P35 for 0 to 8 h or with control peptide for 8 h. The genomic DNA of the bacteria
was subjected to electrophoresis.

2.6. P35 Possesses Chemotactic Activity and Promotes Bacterial Clearance from Fish Tissues

In addition to bacteria, we also examined the effect of P35 on fish immune cells and fish
immune defense. We found that the presence of P35 induced the migration of flounder PBL
in a dose-dependent manner (Figure 6A). When flounder were infected with V. harveyi in the
presence of P35, the bacterial loads in the kidney, spleen, and liver significantly decreased
at 36 hpi (Figure 6B). Consistently, the presence of P35 delayed the onset of mortality in
the flounder and prolonged the survival of the fish. Although, similar to the control fish,
P35-treated fish exhibited 100% mortality after prolonged infection, the death process of
P35-treated fish was significantly slowed compared to that of the control fish (Figure 6C).

Figure 6. The effect of P35 on PBL migration and flounder immune defense. (A) The migration of
flounder PBL in the presence of different doses of P35 or the negative control peptide was determined
with a transwell migration assay. The migrated cells were observed with a microscope. Scale bar, 20 µm.
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(B) Flounder were infected with Vibrio harveyi in the presence of P35, the negative control pep-
tide (NCP), or PBS for different numbers of hours, and bacterial loads (shown as colony forming
unit, CFU) in the kidney, liver, and spleen were determined. Values are shown as means ± SD.
*** p < 0.001. (C) The flounder were infected with V. harveyi as above and monitored daily for mortal-
ity. The significance between the survival of P35-treated fish and control fish was determined with
log rank test. n = 30. *** p < 0.001.

3. Discussion

To date, NK-lysin homologues were reported in at least 14 fish species, which, with the
exception of the NKL from large yellow croaker (LCNKL2), are closely related and belong
to the same phylogenetic group. These canonical fish NKLs include the flounder NKL
reported in 2007 [34]. In the present study, we identified and characterized a non-canonical
NKL, NKLnc. NKLnc possesses structural features conserved in human granulysin and
mammalian/teleost NKLs, including the SapB domain and the six disulfide bond-forming
cysteine residues, which define NKLnc as a member of the NK-lysin family. However,
NKLnc shares low sequence identities with the canonical fish NKLs and belongs to a
phylogenetic group distinctly separated from that formed by the canonical fish NKLs.
In addition, the signal peptide cleavage site of NKLnc is markedly different from that
of canonical NKLs. These characteristics indicate that NKLnc represents a novel type of
fish NKL. Nevertheless, the presence in NKLnc of the conserved structures suggests the
conservation of basic NKL functions.

In zebrafish, there exist four NKL genes (NKLa, b, c, and d) in the genome. These or-
thologues exhibited different patterns of tissue specific expression and differed in response
to the infection of Spring Viraemia of Carp Virus, which promoted the expression of NKLa
and d but not the other two orthologues [21]. In large yellow croaker, two NKL homologs,
LcNKL1 and LcNKL2, were identified that belong to canonical and non-canonical NKL, re-
spectively. LcNKL1 and LcNKL2 displayed similar expression profiles in several tissues but
not in the brain, in which LcNKL2 was undetectable [32,35]. During Cryptocaryon irritans
infection, LcNKL1 and LcNKL2 showed similar expression patterns in immune related
tissues [32,35]. In flounder, the expression of the canonical NKL was relatively high in the
gills, heart, head kidney, intestines, and spleen and low or absent in the liver and was not
inducible by LPS [34]. The constitutive expression pattern of NKLnc was largely similar
to that of the canonical flounder NKL in most tissues, except the liver, in which NKLnc
expression was abundant. During V. harveyi infection, NKLnc expression was significantly
upregulated in flounder tissues, indicating involvement of NKLnc in pathogen-induced
immune response. In agreement, interference with the normal NKLnc expression in floun-
der cells significantly reduced the ability of the cells to eliminate invading V. harveyi. These
results support an antibacterial role of NKLnc in flounder.

NKL peptides are known to kill various microorganisms [22,25,28,32,36]. JF-NKL-2,
the peptide based on the canonical flounder NKL, inhibited the growth of Gram-negative
bacteria but had no effect on Gram-positive bacteria [34]. In the present study, we found
that P35 derived from NKLnc bound well to typical pathogen associated molecular pattern
(PAMP) of both Gram-positive and Gram-negative bacteria. Consistently, P35 bound and
killed bacteria of both Gram-positive and Gram-negative natures. Plasma membrane
disruption is a common antimicrobial mechanism utilized by many AMPs. Likewise, for
P35, both PI staining and electron microscopy revealed that P35 increased the membrane
permeability of the target bacteria, which led to loss of membrane potential, collapse of
bacterial cellular structure, and release of the intracellular contents. In addition to targeting
the bacterial membrane, P35 was also found to induce degradation of bacterial DNA
both in vitro and in vivo. It is likely that the highly cationic nature of the peptide likely
contributed to the interaction with DNA.

Alpha helix is broadly present in many AMPs, and some AMPs are composed of a
single helix [37]. Human granulysin has five α helices, of which, α2 and α3 are vital to
their function. In this study, we found that NKLnc could adopt similar structures, and that
P35, which contains the region corresponding to the α2 and 3 helices and was predicted
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to form two α helices, displayed effective bactericidal activity, whereas P17, which retains
the α2 region but lacks the α3 region, exhibited markedly reduced bactericidal activity,
suggesting an essential role of the α3 region in P35 activity. This is probably due to the
fact that α3 not only confers on P35 the higher (compared to P17) cationic electrostatic
surface potential but also provides a conserved Cys residue that enables the formation of a
disulfide linkage within the peptide. However, despite its impaired bactericidal activity,
P17 bound well to bacteria and PAMPs, implying that the α3 region is not required for
bacterial/PAMP interaction. Since P17 still retains an amphipathic structure conferred
by the α2 region, it is likely that P17 could exert electrostatic interaction with the anionic
bacterial surface molecules, which led to stable bacterial binding but not further penetration
into and disruption of the plasma membrane.

In addition to acting as bactericides, AMPs can also play other roles. For example,
human cathelicidin LL-37 is able to regulate cell migration and modulate immune response
and biofilm development [38,39]. In our study, we found that P35 could direct the traffick-
ing of flounder PBL, implying a chemotactic property. This property, together with the
bactericidal activity, endowed P35 with the potential of an effective in vivo antimicrobial.
Indeed, in vivo infection showed that when flounder were infected with V. harveyi in the
presence of P35, the bacterial burdens in fish tissues were significantly reduced, and fish
survival was prolonged.

4. Materials and Methods
4.1. Animals

Clinically healthy Japanese flounder (Paralichthys olivaceus) were purchased from a
commercial farm. The fish were acclimatized in the laboratory, as reported previously [40],
for one week prior to the study. When tissue dissection was involved, the fish were
anesthetized with tricaine methane sulfonate (Sigma, St. Louis, MO, USA).

4.2. Bacteria and Cell Line

The bacteria used in this study were reported previously [41]. Vibrio anguillarum,
Vibrio harveyi, Pseudomona fluorescens, and Edwardsiella tarda were cultured in Luria-Bertani
(LB) broth at 28 ◦C. Streptococcus iniae was cultured in Tryptic Soy Broth (TSB) at 28 ◦C.
Bacillus cereus and Bacillus subtilis were cultured in marine 2216E medium at 28 ◦C.
Escherichia coli, Micrococcus luteus, and Staphylococcus aureus were cultured in LB broth
at 37 ◦C. All bacteria were grown overnight in appropriate media and temperature; the
cultures were then diluted 1:100 in fresh medium and cultured to the mid-logarithmic
phase. The bacteria were harvested by centrifugation and washed three times with PBS.
The Japanese flounder cell line FG–9307 [42] was cultured at 24 ◦C in L-15 medium (Sigma,
St Louis, MO, USA) containing 10% FBS (ExCell Bio, Shanghai, China), 100 units/mL
penicillin, and 100 µg/mL streptomycin.

4.3. Sequence and Structure Analyses

All gene and protein sequences were obtained from the National Center for Biotech-
nology Information (NCBI). The GenBank accession number of NKLnc is XP_019940439.1.
The signal peptide cleavage site was predicted with SignalP 4.1 (http://www.cbs.dtu.dk/
services/SignalP/). The disulfide bond was predicted with Prosite (http://prosite.expasy.org/).
The protein domain and secondary structure were predicted using SMART (http://smart.
emblheidelberg.de/) and Jpred 4 (http://www.compbio.dundee.ac.uk/jpred/index.html). The
multiple sequence alignment was performed using ClustalW (http://clustalw.ddbj.nig.ac.jp/)
and generated using ESPript 3.0 (http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi). The
phylogenetic analysis was conducted using MEGA7. The three-dimensional (3D) models
of NKLs were predicted using Iterative Threading Assembly Refinement (https://zhanglab.
ccmb.med.umich.edu/I-TASSER/) and visualized with PyMOL (PyMOL Molecular Graphics
System, Version 2.5.0, Schrödinger, Tokyo, Japan) [43]. Electrostatic surface potentials were
determined with Adaptive Poisson–Boltzmann Solver (APBS) and visual molecular dynamics

http://www.cbs.dtu.dk/services/SignalP/
http://www.cbs.dtu.dk/services/SignalP/
http://prosite.expasy.org/
http://smart.emblheidelberg.de/
http://smart.emblheidelberg.de/
http://www.compbio.dundee.ac.uk/jpred/index.html
http://clustalw.ddbj.nig.ac.jp/
http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi
https://zhanglab.ccmb.med.umich.edu/I-TASSER/
https://zhanglab.ccmb.med.umich.edu/I-TASSER/
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(VMD) [44]. Peptide helical wheels were generated with HeliQuest (https://heliquest.ipmc.
cnrs.fr/cgibin/ComputParams.py). The NKL sequences used for phylogenetic analysis and
sequence alignment are listed in Table S1.

4.4. Quantitative Real Time PCR (qRT-PCR)

To determine NKLnc expression in healthy fish tissues, the brain, gill, intestine, kidney,
spleen, liver, blood, and muscle were dissected from healthy flounder. Total RNA extraction,
cDNA synthesis, and qRT-PCR were carried out as previously reported [45]. To determine
NKLnc expression during bacterial infection, flounder were injected intraperitoneally with
100 µL 1 × 106 CFU V. harveyi in PBS or 100 µL PBS (control). At 6, 12, 24, and 48 h
post-infection (hpi), the kidney, spleen and liver were collected. β-actin was used as an
internal reference for healthy fish, and 18S rRNA, α-tubulin, and GAPDH were used as
internal references for the fish with bacterial infections [46]. The primers used are listed
in Table S2.

4.5. The Effect of NKLnc Expression on the Growth and Survival of Host Bacteria

To determine the effect of NKLnc expression on host bacterial cells, the coding se-
quence of NKLnc was PCR amplified with primers NKLnc-F/R (Table S2), and the PCR
product was inserted into pET-30a (+) vector (Novagen, Madison, WI, USA). The resulting
recombinant plasmid was introduced into E. coli Transetta (DE3) (TransGen, Beijing, China).
The transformant was cultured to OD600 0.6–0.8 in LB medium and the culture was then
divided into groups. Isopropyl β-D-1-thiogalactopyranoside (IPTG) (0.3 mM) was added
into one group to induce NKLnc expression. The two groups were cultured for various
hours, and bacterial growth at different time points was recorded by measuring OD600. For
plate counting, the above E. coli transformant was plated on LB agar plates supplemented
with or without 0.3 mM IPTG. After incubation at 37 ◦C overnight, the colony numbers
were calculated.

4.6. Peptides

First, 5′-FITC labeled P17 (5′-KLIRQACNKIIGHFKRK-3′) and P35 (5′-SKEKIDRLL-
NKACNGIKCKLIRQACNKIIGHFKRK-3′) were chemically synthesized by Science Peptide
Biological Technology Co., Ltd. (Shanghai, China). The negative control peptide (NCP)
P86P15 [23,36] was synthesized similarly. The peptides were purified by high-performance
liquid chromatography to 95% of purity. Before use, the peptides were dissolved in PBS.

4.7. Effect of NKLnc Knockdown on Bacterial Infection in Flounder Cells

The siRNAs used in this study were synthesized by GenePharma (Shanghai, China).
The sequences of the siRNAs are listed in Table S3. Gene knockdown by RNA interference
was performed as described previously [47]. Briefly, FG-9307 cells were transfected with or
without (control) the NKLnc-specific siR1 or siR2, or the negative control siRNA (NCS) for
24 h using Lipofectamine RNAiMAX (Invitrogen, Carlsbad, CA, USA). Gene knockdown
was verified by qRT–PCR (Figure S2). The NKLnc-knockdown cells and control cells
were infected with V. harveyi, as reported previously [47] with slight modification. Briefly,
V. harveyi was prepared as described above and resuspended in PBS. The bacteria were
added to the above FG-9307 cells in a 96-well plate (Nest Biotechnology, Wuxi, China) at a
multiplicity of infection (MOI) of 3:1. At 2, 4, and 8 hpi, the cells were lysed with 1% Triton
X–100, and the lysate was plated onto LB agar plates. The plates were incubated at 28 ◦C
for 24 h, and the number of colonies was counted.

4.8. Antibacterial Activity of NKLnc Peptides

The binding of the peptides to bacteria and bacterial cell wall components, i.e., lipopolysac-
charide (LPS), peptidoglycan (PGN) and lipoteichoic acid (LTA), was determined by enzyme-
linked immunosorbent assay (ELISA), as described previously [48]. The minimal inhibitory
concentration (MIC) and bactericidal activity of the peptides were determined as reported

https://heliquest.ipmc.cnrs.fr/cgibin/ComputParams.py
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previously [49]. Briefly, the bacteria were diluted in medium to a final concentration of
1.0 × 105 CFU/mL, and a 100 µL aliquot of the bacteria suspension was added to 96-well
plates. Serial dilutions of the peptides (80, 40, 20, 10, 5, 2.5 µM) were prepared, and an
aliquot of 100 µL of each dilution was added to above 96-well plates. The plates were
incubated at appropriate temperatures for 24 h. MIC was determined by visual inspection
of bacterial growth.

4.9. Propidium Iodide (PI) Uptake

V. harveyi was cultured as above and resuspended in PBS to 1 × 107 CFU/mL. Peptide
or PBS (control) was mixed with 100 µL V. harveyi suspension in a 96-well plate. After
incubation at room temperature for 2 h, the cells were stained with PI (Invitrogen, Carlsbad,
CA, USA) for 5 min in the dark. The bacteria were observed with a microscope.

4.10. Electron Microscopy

V. harveyi was prepared as described above and resuspended in PBS to 1 × 108 CFU/mL.
P35 or NCP was added to the bacterial suspension at a final concentration of 10 µM. After
incubation at room temperature for 2 h, the bacteria were fixed with 2.5% glutaraldehyde
in PBS, followed by washing three times with PBS. The bacteria were dehydrated through
an increasing concentration of ethanol (30, 50, 70, 80, 90 and 100%). The bacteria were
resuspended in isopentyl acetate and observed with a scanning electron microscope (SEM)
(Hitachi, S-3400N, Tokyo, Japan) and a transmission electron microscope (TEM) (Hitachi,
HT7700, Japan).

4.11. Effect of NKLnc on Bacterial Genomic DNA (gDNA)

Bacterial gDNA was extracted using the Bacterial DNA kit (Sparkjade Biotechnology
Co. Ltd., Shandong, China) according to the instructions of the manufacturer. Degradation
of V. harveyi gDNA by P35 was assayed as previously described [36]. Briefly, for in vitro
assay, 1 µg gDNA was mixed with an increasing amount (0, 1.25, 2.5, 5, 10, 20, and 40 µM) of
P35 or NCP, followed by incubation at room temperature for 1 h. The mixture was applied
to a 1.2% agarose gel electrophoresis. For the in vivo assay, V. harveyi was suspended in
PBS to 1.0 ×108 CFU/mL. P35 or NCP was added to the bacterial suspension (100 µL) at a
final concentration of 10 µM and incubated at 28 ◦C for 0, 1, 2, 4, or 8 h. After incubation,
V. harveyi gDNA was extracted and examined as above by electrophoresis.

4.12. Chemotaxis Assay

Japanese flounder peripheral blood leukocytes (PBL) were prepared as reported previ-
ously [39]. Briefly, the blood of the flounder was placed on top of 61% Percoll (Solarbio,
Beijing, China) and centrifuged at 600 g for 10 min. The layer of PBL was collected and
washed with PBS. The cells were then resuspended in L-15 medium. The chemotaxis assay
was performed as reported previously [50]. P35 or NCP was diluted to 0.25~10 µM with
L15 medium, and 500 µL of the diluted peptide was added into the lower wells of a 24-well
Transwell plate (Corning Costar Co., Cambridge, MA, USA), which were covered with
nitrocellulose filter membrane. Then, PBL were added to the upper chamber and incubated
at room temperature for 4 h. The cells that migrated to the lower chamber were examined
using a microscope.

4.13. In Vivo Effect of P35 on Bacterial Infection and Host Survival

To examine the effect of P35 on bacterial dissemination in fish tissues, P35 and NCP
were resuspended in PBS to 20 µg/mL. V. harveyi was cultured as above and resuspended
in PBS, P35, or NCP to 1.0 × 107 CFU/mL. Three groups of flounder (n = 12) were injected
intraperitoneally with 100 µL V. harveyi, V. harveyi-P35 mixture, or V. harveyi-NCP mixture.
At 12 and 36 hpi, the kidney, liver and spleen were collected from the fish (5 fish/time
point) and examined for bacterial recovery by plate count. The effect of P35 on fish
survival after infection was performed as previously described [51]. The flounder were
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randomly divided into three groups (n = 30). The fish were infected as above with V. harveyi
(1.0 × 106 CFU/fish) in the absence (control) or presence of P35 or NCP or P35. The fish
were monitored daily for mortality.

4.14. Statistical Analysis

Statistical analyses were performed with GraphPad Prism 7 (www.graphpad.com/).
Student’s t test and one-way analysis of variance (ANOVA) were used for comparisons
between groups. Log-rank was used for the analysis of fish survival. Statistical significance
was defined as p < 0.05.

5. Conclusions

In this study, we identified a novel fish NKL and demonstrated its participation in
pathogen-induced immune response and optimal defense against bacterial infection in
flounder. The NKLnc peptide is both a structure-dependent AMP and a chemotactic
factor that kills bacteria in vitro and reduces bacterial infection in vivo. The multi-action
mechanism of P35 indicates a low possibility of resistance development in bacteria. These
results, along with the observation that P35 has a strong bactericidal effect against the
most common and severe aquaculture pathogens of a wide variety of fish and invertebrate
marine animals, suggest an application potential of P35 in the control of bacterial diseases
in aquaculture and other relevant fields.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms232112722/s1.

Author Contributions: L.S. conceived the study, obtained the funding, and edited the manuscript;
H.X. conducted the experiments, analyzed the data, and wrote the first draft of the manuscript; Z.Y.
conducted the sequence analysis. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the National Key Research and Development Project of China
(2018YFD0900500) and the Taishan Scholar Program of Shandong Province.

Institutional Review Board Statement: The animal study was approved by the Ethics Committee of
Institute of Oceanology, Chinese Academy of Sciences (permit No. MB2108-1).

Informed Consent Statement: Not applicable.

Data Availability Statement: All data in the paper are present in the paper or the Supplementary Materials.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, Y.; Guarnieri, M.T.; Vasil, A.I.; Vasil, M.L.; Mant, C.T.; Hodges, R.S. Role of peptide hydrophobicity in the mechanism of

action of alpha-helical antimicrobial peptides. Antimicrob. Agents Chemother. 2007, 51, 1398–1406. [CrossRef]
2. Alanis, A.J. Resistance to antibiotics: Are we in the post-antibiotic era? Arch. Med. Res. 2005, 36, 697–705. [PubMed]
3. Heymann, D.L. Resistance to anti-infective drugs and the threat to public health. Cell 2006, 124, 671–675. [CrossRef] [PubMed]
4. Jenssen, H.; Hamill, P.; Hancock, R.E. Peptide antimicrobial agents. Clin. Microbiol. Rev. 2006, 19, 491–511. [PubMed]
5. Pasupuleti, M.; Schmidtchen, A.; Malmsten, M. Antimicrobial peptides: Key components of the innate immune system. Crit. Rev.

Biotechnol. 2012, 32, 143–171.
6. William, C.W. Describing the Mechanism of Antimicrobial Peptide Action with the Interfacial Activity Model. ACS Chem. Biol.

2010, 10, 905–917.
7. Bustillo, M.E.; Fischer, A.L.; LaBouyer, M.A.; Klaips, J.A.; Webb, A.C.; Elmore, D.E. Modular analysis of hipposin, a histone-

derived antimicrobial peptide consisting of membrane translocating and membrane permeabilizing fragments. Biochim. Biophys.
Acta 2014, 1838, 2228–2233. [CrossRef]

8. Mardirossian, M.; Grzela, R.; Giglione, C.; Meinnel, T.; Gennaro, R.; Mergaert, P.; Scocchi, M. The host antimicrobial peptide
Bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis. Chem. Biol. 2014, 21, 1639–1647.

9. Haney, E.F.; Petersen, A.P.; Lau, C.K.; Jing, W.; Storey, D.G.; Vogel, H.J. Mechanism of action of puroindoline derived tryptophan-
rich antimicrobial peptides. Biochim. Biophys. Acta 2013, 1828, 1802–1813.

10. Guani-Guerra, E.; Santos-Mendoza, T.; Lugo-Reyes, S.O.; Teran, L.M. Antimicrobial peptides: General overview and clinical
implications in human health and disease. Clin. Immunol. 2010, 135, 1–11.

www.graphpad.com/
https://www.mdpi.com/article/10.3390/ijms232112722/s1
https://www.mdpi.com/article/10.3390/ijms232112722/s1
http://doi.org/10.1128/AAC.00925-06
http://www.ncbi.nlm.nih.gov/pubmed/16216651
http://doi.org/10.1016/j.cell.2006.02.009
http://www.ncbi.nlm.nih.gov/pubmed/16497576
http://www.ncbi.nlm.nih.gov/pubmed/16847082
http://doi.org/10.1016/j.bbamem.2014.04.010


Int. J. Mol. Sci. 2022, 23, 12722 14 of 15

11. Hwang, J.S.; Lee, J.; Kim, Y.J.; Bang, H.S.; Yun, E.Y.; Kim, S.R.; Suh, H.J.; Kang, B.R.; Nam, S.H.; Jeon, J.P.; et al. Isolation and
Characterization of a Defensin-Like Peptide (Coprisin) from the Dung Beetle, Copris tripartitus. Int J. Pept. 2009, 2009, 136284.
[CrossRef] [PubMed]

12. Rollins-Smith, L.A. The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global
amphibian declines. Biochim. Biophys. Acta 2009, 1788, 1593–1599. [PubMed]

13. Berrocal-Lobo, M.; Molina, A.; Rodriguez-Palenzuela, P.; Garcia-Olmedo, F.; Rivas, L. Leishmania donovani: Thionins, plant
antimicrobial peptides with leishmanicidal activity. Exp. Parasitol. 2009, 122, 247–249. [CrossRef] [PubMed]

14. Andersson, M.; Gunne, H.; Agerberth, B.; Boman, A.; Bergman, T.; Olsson, B.; Dagerlind, A.; Wigzell, H.; Boman, H.G.;
Gudmundsson, G.H. Nk-Lysin, Structure and Function of a Novel Effector Molecule of Porcine T and Nk Cells. Vet. Immunol.
Immunop. 1996, 54, 123–126. [CrossRef]

15. Lazzaro, B.P.; Zasloff, M.; Rolff, J. Antimicrobial peptides: Application informed by evolution. Science 2020, 368, eaau5480.
[CrossRef] [PubMed]

16. Jean-Marie, R.; Erik, G.; HombleLa, F.; Mats, A.; Edvards, L.; Gottfried, O. Lipid Membrane Binding of Nk-Lysin. FEBS Lett. 1998,
425, 341–344.

17. Dotiwala, F.; Lieberman, J. Granulysin: Killer lymphocyte safeguard against microbes. Curr. Opin. Immunol. 2019, 60, 19–29.
[CrossRef]

18. Kim, W.H.; Lillehoj, H.S.; Min, W. Evaluation of the Immunomodulatory Activity of the Chicken NK-Lysin-Derived Peptide
cNK-2. Sci. Rep. 2017, 7, 45099. [CrossRef]

19. Endsley, J.J.; Furrer, J.L.; Endsley, M.A.; McIntosh, M.A.; Maue, A.C.; Waters, W.R.; Lee, D.R.; Estes, D.M. Characterization of
bovine homologues of granulysin and NK-lysin. J. Immunol. 2004, 173, 2607–2614. [CrossRef]

20. Yan, J.; Wang, K.; Dang, W.; Chen, R.; Xie, J.; Zhang, B.; Song, J.; Wang, R. Two hits are better than one: Membrane-active and
DNA binding-related double-action mechanism of NK-18, a novel antimicrobial peptide derived from mammalian NK-lysin.
Antimicrob. Agents Chemother. 2013, 57, 220–228.

21. Pereiro, P.; Varela, M.; Diaz-Rosales, P.; Romero, A.; Dios, S.; Figueras, A.; Novoa, B. Zebrafish Nk-Lysins: First Insights about
Their Cellular and Functional Diversification. Dev. Comp. Immunol. 2015, 51, 148–159. [CrossRef] [PubMed]

22. Shan, Z.; Yang, Y.; Guan, N.; Xia, X.; Liu, W. NKL-24: A novel antimicrobial peptide derived from zebrafish NK-lysin that inhibits
bacterial growth and enhances resistance against Vibrio parahaemolyticus infection in Yesso scallop, Patinopecten yessoensis.
Fish Shellfish Immunol. 2020, 106, 431–440. [CrossRef] [PubMed]

23. Zhang, M.; Long, H.; Sun, L. A NK-lysin from Cynoglossus semilaevis enhances antimicrobial defense against bacterial and viral
pathogens. Dev. Comp. Immunol. 2013, 40, 258–265. [CrossRef] [PubMed]

24. Wang, G.L.; Wang, M.C.; Liu, Y.L.; Zhang, Q.; Li, C.F.; Liu, P.T.; Li, E.Z.; Nie, P.; Xie, H.X. Identification, expression analysis,
and antibacterial activity of NK-lysin from common carp Cyprinus carpio. Fish Shellfish Immunol. 2018, 73, 11–21. [CrossRef]
[PubMed]

25. Lama, R.; Pereiro, P.; Costa, M.M.; Encinar, J.A.; Medina-Gali, R.M.; Perez, L.; Lamas, J.; Leiro, J.; Figueras, A.; Novoa, B. Turbot
(Scophthalmus maximus) Nk-lysin induces protection against the pathogenic parasite Philasterides dicentrarchi via membrane
disruption. Fish Shellfish Immunol. 2018, 82, 190–199. [CrossRef] [PubMed]

26. Acosta, J.; Roa, F.; Gonzalez-Chavarria, I.; Astuya, A.; Maura, R.; Montesino, R.; Munoz, C.; Camacho, F.; Saavedra, P.;
Valenzuela, A.; et al. In vitro immunomodulatory activities of peptides derived from Salmo salar NK-lysin and cathelicidin in
fish cells. Fish Shellfish Immunol. 2019, 88, 587–594. [CrossRef]

27. Huang, Y.; Zheng, Q.; Niu, J.; Tang, J.; Wang, B.; Abarike, E.D.; Lu, Y.; Cai, J.; Jian, J. NK-lysin from Oreochromis niloticus
improves antimicrobial defence against bacterial pathogens. Fish Shellfish Immunol. 2018, 72, 259–265. [CrossRef]

28. Ding, F.F.; Li, C.H.; Chen, J. Molecular characterization of the NK-lysin in a teleost fish, Boleophthalmus pectinirostris: An-
timicrobial activity and immunomodulatory activity on monocytes/macrophages. Fish Shellfish Immunol. 2019, 92, 256–264.
[CrossRef]

29. Ma, H.; Han, Y.C.; Palti, Y.; Gao, G.; Liu, S.; Palmquist, D.E.; Wiens, G.D.; Shepherd, B.S. Structure and regulation of the NK-lysin
(1-4) and NK-lysin like (a and b) antimicrobial genes in rainbow trout (Oncorhynchus mykiss). Dev. Comp. Immunol. 2021, 116, 103961.
[CrossRef]

30. Zhu, R.; Wu, Y.S.; Liu, X.X.; Lv, X.; Wu, Y.Q.; Song, J.J.; Wang, X.G. Membrane disruptive antimicrobial potential of NK-lysin from
yellow catfish (Pelteobagrus fulvidraco). Fish Shellfish Immunol. 2020, 97, 571–580. [CrossRef]

31. Liu, B.; Liu, G.D.; Guo, H.Y.; Zhu, K.C.; Guo, L.; Liu, B.S.; Zhang, N.; Jiang, S.G.; Zhang, D.C. Functional characterization of
NK-lysin in golden pompano Trachinotus ovatus (Linnaeus 1758). Dev. Comp. Immunol. 2020, 107, 103658. [CrossRef] [PubMed]

32. Zhou, Q.-J.; Wang, J.; Mao, Y.; Liu, M.; Su, Y.-Q.; Ke, Q.-Z.; Chen, J.; Zheng, W.-Q. Molecular structure, expression and antibacterial
characterization of a novel antimicrobial peptide NK-lysin from the large yellow croaker Larimichthys crocea. Aquaculture 2019,
500, 315–321. [CrossRef]

33. Valero, Y.; Arizcun, M.; Cortes, J.; Ramirez-Cepeda, F.; Guzman, F.; Mercado, L.; Esteban, M.A.; Chaves-Pozo, E.; Cuesta, A.
NK-lysin, dicentracin and hepcidin antimicrobial peptides in European sea bass. Ontogenetic development and modulation in
juveniles by nodavirus. Dev. Comp. Immunol. 2020, 103, 103516. [CrossRef]

http://doi.org/10.1155/2009/136284
http://www.ncbi.nlm.nih.gov/pubmed/20721297
http://www.ncbi.nlm.nih.gov/pubmed/19327341
http://doi.org/10.1016/j.exppara.2009.03.019
http://www.ncbi.nlm.nih.gov/pubmed/19361504
http://doi.org/10.1016/S0165-2427(96)05677-2
http://doi.org/10.1126/science.aau5480
http://www.ncbi.nlm.nih.gov/pubmed/32355003
http://doi.org/10.1016/j.coi.2019.04.013
http://doi.org/10.1038/srep45099
http://doi.org/10.4049/jimmunol.173.4.2607
http://doi.org/10.1016/j.dci.2015.03.009
http://www.ncbi.nlm.nih.gov/pubmed/25813149
http://doi.org/10.1016/j.fsi.2020.08.020
http://www.ncbi.nlm.nih.gov/pubmed/32810530
http://doi.org/10.1016/j.dci.2013.03.005
http://www.ncbi.nlm.nih.gov/pubmed/23524198
http://doi.org/10.1016/j.fsi.2017.11.030
http://www.ncbi.nlm.nih.gov/pubmed/29162543
http://doi.org/10.1016/j.fsi.2018.08.004
http://www.ncbi.nlm.nih.gov/pubmed/30086378
http://doi.org/10.1016/j.fsi.2019.03.034
http://doi.org/10.1016/j.fsi.2017.11.002
http://doi.org/10.1016/j.fsi.2019.06.021
http://doi.org/10.1016/j.dci.2020.103961
http://doi.org/10.1016/j.fsi.2019.10.046
http://doi.org/10.1016/j.dci.2020.103658
http://www.ncbi.nlm.nih.gov/pubmed/32087193
http://doi.org/10.1016/j.aquaculture.2018.10.012
http://doi.org/10.1016/j.dci.2019.103516


Int. J. Mol. Sci. 2022, 23, 12722 15 of 15

34. Hirono, I.; Kondo, H.; Koyama, T.; Arma, N.R.; Hwang, J.Y.; Nozaki, R.; Midorikawa, N.; Aoki, T. Characterization of Japanese
flounder (Paralichthys olivaceus) NK-lysin, an antimicrobial peptide. Fish Shellfish Immunol. 2007, 22, 567–575. [CrossRef]
[PubMed]

35. Zhou, Q.J.; Wang, J.; Liu, M.; Qiao, Y.; Hong, W.S.; Su, Y.Q.; Han, K.H.; Ke, Q.Z.; Zheng, W.Q. Identification, expression and
antibacterial activities of an antimicrobial peptide NK-lysin from a marine fish Larimichthys crocea. Fish Shellfish Immunol. 2016,
55, 195–202. [CrossRef]

36. Zhang, M.; Li, M.F.; Sun, L. NKLP27: A teleost NK-lysin peptide that modulates immune response, induces degradation of
bacterial DNA, and inhibits bacterial and viral infection. PLoS ONE 2014, 9, e106543. [CrossRef] [PubMed]

37. Browne, K.; Chakraborty, S.; Chen, R.; Willcox, M.D.; Black, D.S.; Walsh, W.R.; Kumar, N. A New Era of Antibiotics: The Clinical
Potential of Antimicrobial Peptides. Int. J. Mol. Sci. 2020, 21, 7047. [CrossRef]

38. Bahar, A.A.; Ren, D. Antimicrobial peptides. Pharmaceuticals 2013, 6, 1543–1575. [CrossRef]
39. Bucki, R.; Leszczynska, K.; Namiot, A.; Sokolowski, W. Cathelicidin LL-37: A multitask antimicrobial peptide. Arch. Immunol.

Ther. Exp. 2010, 58, 15–25. [CrossRef]
40. Cheng, S.; Zhang, W.W.; Zhang, M.; Sun, L. Evaluation of the vaccine potential of a cytotoxic protease and a protective immunogen

from a pathogenic Vibrio harveyi strain. Vaccine 2010, 28, 1041–1047. [CrossRef]
41. Wang, Y.; Zhang, J.; Sun, Y.; Sun, L. A Crustin from Hydrothermal Vent Shrimp: Antimicrobial Activity and Mechanism.

Mar. Drugs 2021, 19, 176. [CrossRef] [PubMed]
42. Wang, Y.; Zhang, J.; Sun, Y.; Sun, L. The Establishment and Partial Characterization of a Continuous Fish Cell Line Fg-9307 from

the Gill of the Flounder Paralichthys olivaceus. Aquaculture 1997, 156, 327–333.
43. Yang, J.; Yan, R.; Roy, A.; Xu, D.; Poisson, J.; Zhang, Y. The I-TASSER Suite: Protein structure and function prediction. Nat. Methods

2014, 12, 7–8. [CrossRef] [PubMed]
44. Willy, W.; Klaus, S. Protein Domain Movements: Detection of Rigid Domains and Visualization of Hinges in Comparisons of

Atomic Coordinates. Proteins 1997, 29, 1–14.
45. Yu, C.; Zhang, P.; Li, X.-p.; Sun, L. Japanese flounder Paralichthys olivaceus interleukin 21 induces inflammatory response and

plays a vital role in the immune defense against bacterial pathogen. Fish Shellfish Immunol. 2020, 98, 364–373. [CrossRef]
46. Zheng, W.J.; Sun, L. Evaluation of housekeeping genes as references for quantitative real time RT-PCR analysis of gene expression

in Japanese flounder (Paralichthys olivaceus). Fish Shellfish Immunol. 2011, 30, 638–645. [CrossRef]
47. Li, H.; Sun, B.; Jiang, S.; Sun, L. Cytokines Induced by Edwardsiella tarda: Profile and Role in Antibacterial Immunity. Biomolecules

2021, 11, 1242. [CrossRef]
48. Zhang, T.; Jiang, S.; Sun, L. A fish galectin-8 possesses direct bactericidal activity. Int. J. Mol. Sci. 2020, 22, 376. [CrossRef]
49. Gu, H.J.; Sun, Q.L.; Jiang, S.; Zhang, J.; Sun, L. First characterization of an anti-lipopolysaccharide factor (ALF) from hydrothermal

vent shrimp: Insights into the immune function of deep-sea crustacean ALF. Dev. Comp. Immunol. 2018, 84, 382–395. [CrossRef]
50. Li, H.; Sun, Y.; Sun, L. A Teleost CXCL10 Is Both an Immunoregulator and an Antimicrobial. Front. Immunol. 2022, 13, 917697.

[CrossRef]
51. Xu, H.; Jiang, S.; Yu, C.; Yuan, Z.; Sun, L. GSDMEa-mediated pyroptosis is bi-directionally regulated by caspase and required for

effective bacterial clearance in teleost. Cell Death Dis. 2022, 13, 491. [CrossRef] [PubMed]

http://doi.org/10.1016/j.fsi.2006.08.003
http://www.ncbi.nlm.nih.gov/pubmed/17046282
http://doi.org/10.1016/j.fsi.2016.05.035
http://doi.org/10.1371/journal.pone.0106543
http://www.ncbi.nlm.nih.gov/pubmed/25180858
http://doi.org/10.3390/ijms21197047
http://doi.org/10.3390/ph6121543
http://doi.org/10.1007/s00005-009-0057-2
http://doi.org/10.1016/j.vaccine.2009.10.122
http://doi.org/10.3390/md19030176
http://www.ncbi.nlm.nih.gov/pubmed/33807037
http://doi.org/10.1038/nmeth.3213
http://www.ncbi.nlm.nih.gov/pubmed/25549265
http://doi.org/10.1016/j.fsi.2020.01.043
http://doi.org/10.1016/j.fsi.2010.12.014
http://doi.org/10.3390/biom11081242
http://doi.org/10.3390/ijms22010376
http://doi.org/10.1016/j.dci.2018.03.016
http://doi.org/10.3389/fimmu.2022.917697
http://doi.org/10.1038/s41419-022-04896-5
http://www.ncbi.nlm.nih.gov/pubmed/35610210

	Introduction 
	Results 
	Identification of a Non-Canonical NKL in Flounder 
	NKLnc Expression Is Regulated by Bacterial Pathogen and Required for Effective Blocking of Bacterial Infection 
	NKLnc Expression Is Detrimental to Host Bacteria 
	A NKLnc-Derived Peptide Is Bactericidal in a Manner That Depends on Two Alpha Helices of SapB 
	P35 kills Bacteria by Damaging Bacterial Plasma Membrane and Chromosomal DNA 
	P35 Possesses Chemotactic Activity and Promotes Bacterial Clearance from Fish Tissues 

	Discussion 
	Materials and Methods 
	Animals 
	Bacteria and Cell Line 
	Sequence and Structure Analyses 
	Quantitative Real Time PCR (qRT-PCR) 
	The Effect of NKLnc Expression on the Growth and Survival of Host Bacteria 
	Peptides 
	Effect of NKLnc Knockdown on Bacterial Infection in Flounder Cells 
	Antibacterial Activity of NKLnc Peptides 
	Propidium Iodide (PI) Uptake 
	Electron Microscopy 
	Effect of NKLnc on Bacterial Genomic DNA (gDNA) 
	Chemotaxis Assay 
	In Vivo Effect of P35 on Bacterial Infection and Host Survival 
	Statistical Analysis 

	Conclusions 
	References

