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Abstract: One of the major pathophysiologies of malaria is the development of anemia. Although
hemolysis and splenic clearance are well described as causes of malarial anemia, abnormal ery-
thropoiesis has been observed in malaria patients and may contribute significantly to anemia. The
interaction between inadequate erythropoiesis and Plasmodium parasite infection, which partly occurs
in the bone marrow, has been poorly investigated to date. However, recent findings may provide
new insights. This review outlines clinical and experimental studies describing different aspects of
ineffective erythropoiesis and dyserythropoiesis observed in malaria patients and in animal or in vitro
models. We also highlight the various human and parasite factors leading to erythropoiesis disorders
and discuss the impact that Plasmodium parasites may have on the suppression of erythropoiesis.
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1. Introduction

Malaria is one of the most important human infectious diseases and particularly
affects populations living in tropical and subtropical countries. Nowadays, although some
antimalarial drugs are available, malaria remains a major public health problem with
241 million cases and 627,000 deaths per year [1]. This infection is caused by the protozoan
parasite Plasmodium. Five species are responsible for malaria in human beings: P. vivax,
P. malariae, P. ovale, P. knowlesi or P. falciparum. While P. vivax is the most widespread,
P. falciparum is responsible for almost the totality of severe and lethal malaria cases. Other
species can also infect vertebrates including mice, such as P. berghei, P. chabaudi, P. vinckei and
P. yoelii. Malaria clinical symptoms result largely from the replication of asexual parasite
stages. Signs of infection are mainly fever, flu-like symptoms associated with a mild to
profound anemia, which can lead to serious complications and even death in the case of
severe malaria [2].

At the end of the 19th century, Laveran detected for the first time the parasite respon-
sible for malaria in human blood [3]. Then, the presence of the parasite was confirmed
in patient autopsies, showing parasites sequestered in deep organs [4]. Several studies
have explored the location of parasites through human tissues. Different parasite reservoirs
were first discovered by microscopy and later by molecular analysis, among them the
brain, liver, the spleen and the bone marrow (BM) [5–8]. The presence of Plasmodium
parasites in the BM raises questions about their impact on erythropoiesis, which is the
process leading to the production of red blood cells (RBCs) from hematopoietic stem cells
(HSCs) in the BM. Erythropoiesis is a very dynamic process able to generate 3 × 106 RBCs
per second, taking place in the erythroblastic island. This specialised niche in the BM
is formed by a nursing macrophage surrounded by erythroblasts at different stages of
differentiation. HSCs first generate common myeloid and lymphoid progenitors and then
give rise to lineage-restricted progenitors. The MEP (Megakaryocyte Erythroid Progenitor)
differentiate into erythroid progenitors, BFU-E (Burst Forming Unit–Erythroid) and then
CFU-E (Colony Forming Unit–Erythroid). Terminal adult erythropoiesis begins with the
differentiation of CFU-E in proerythroblasts (Pro-E), which then are differentiated into
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early basophilic-1 erythroblasts (Baso-E1), late basophilic erythroblasts (Baso-E2), poly-
chromatophilic erythroblasts (Poly-E) and orthochromatic erythroblasts (Ortho-E). Finally,
Ortho-E enucleate and generate reticulocytes and pyrenocytes. Reticulocytes mature first in
the BM and then are directed into the blood circulation where they finally become discoid
red cells [9,10].

Although malarial anemia is thought to be largely caused by hemolysis and splenic
clearance of infected and uninfected erythrocytes [11–15], abnormal erythropoiesis has
been observed in malaria patients and could potentially be instrumental in anemia [16]. The
relation between erythropoietic defects and malarial anemia has been poorly investigated
so far; however, recent findings may provide new insights.

This review summarises the erythropoiesis abnormalities observed in malaria, either
in vivo in malaria-infected patients and in murine malaria models, or ex vivo in hematopoi-
etic stem and progenitor cells (HSPCs) and erythroid cell lines. We review our current
knowledge of the causes of erythropoietic disorders and discuss how Plasmodium infection
may impact this process.

Plasmodium Parasite Sequestration in the Bone Marrow

Plasmodium has a complex life cycle with asexual and sexual stages that develop
through various tissues in intermediate and definitive hosts (Figure 1). First, sporozoites
are transmitted from female Anopheles bites to human beings. Sporozoites migrate into
hepatocytes where they multiply for several days, leading to numerous merozoites that are
released into the bloodstream. Then, merozoites invade RBCs, where the developmental
asexual cycle occurs: parasites mature from rings to trophozoites and become schizonts
within 48 h. RBCs infected with mature asexual parasites (trophozoites and schizonts)
adhere to endothelial cells, causing their sequestration in capillaries and venules of sev-
eral organs [17–19]. In contrast, RBCs containing ring-stage parasites are not retained in
vasculature and circulate in the bloodstream. During each round of asexual replication, a
sub-population of parasites differentiates into sexual stages, called gametocytes, which are
responsible for transmission from human beings to mosquitoes. Gametocyte maturation
takes about ten days and is classically divided into five morphological stages (I–V). Im-
mature gametocytes are absent from the bloodstream and are sequestered in deep tissues
whereas only mature gametocytes (stage V) appear in the peripheral blood where they
are accessible for mosquito bites. Then, parasite sporogonic development continues in the
mosquito [20].

Several case studies analysed the distribution of asexual and sexual parasites in dif-
ferent organs. Microscopy analysis of BM and blood from Gambian children showed that
P. falciparum asexual and mature gametocytes (stage V) were equally present in the BM
and the blood, whereas immature gametocytes (stage I–IV) were preferably localised in the
BM [6]. Although this latter study solely relied on parasite morphology, accumulation of
P. falciparum in the BM was recently confirmed by immunohistochemical or immunofluores-
cent labelling approaches and quantified by qRT-PCR [7,8,21]. As observed for P. falciparum,
P. vivax immature gametocytes are enriched in BM aspirations in comparison to periph-
eral blood but to a lesser extent [22,23]. The total asexual parasitemia seems identical in
peripheral blood compared to BM, although an enrichment of ring stages and immature
gametocytes is observed. The presence of ring stages in the BM is probably due to the strict
preference of P. vivax for invading young reticulocytes expressing high levels of Cluster
of Differentiation 71 (CD71) that are essentially present in this compartment [24]. Recent
studies from splenectomised patients suggest that the main reservoir for P. vivax is probably
not the BM but rather the spleen, and further investigations will be necessary to confirm
this interesting data [25,26]. Plasmodium asexual parasite and gametocyte enrichment in
the BM and the spleen was confirmed in distinct vertebrate species: in mice infected by
P. berghei [27] as well as in a humanised mouse model infected by P. falciparum [28], and in
non-human infected primates where accumulation of P. vivax parasites was observed in the
BM [29].
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Figure 1. Plasmodium life cycle. During its meal, infected female Anopheles inject sporozoites into
human beings. Sporozoites reach the liver and multiply for several days, resulting in the release
of merozoites into the bloodstream. Then, merozoites invade RBCs and mature from rings to
trophozoites and schizonts (asexual stages). A small portion of parasites differentiates in gametocytes
(sexual stages). Gametocyte development is divided into five morphological stages (I–V), I–IV are
sequestered in the BM and stage V is released into the peripheral blood, enabling the transmission to
the mosquito.

Importantly, histological analyses of ex vivo and autopsy specimens from P. falciparum
malaria-infected patients revealed the presence of immature gametocytes in the BM ex-
travascular space [7,30]. More precisely, parasites are located near to the erythroid precursor
cells in contact with the erythroblastic islands [7]. These observations suggest that parasites
may sequester in this niche either by adhering to the erythroblasts or by infecting them.
The hypothesis of cell–cell adhesion is not favoured since gametocyte-infected erythro-
cytes do not adhere to erythroblasts [31] and several studies clearly demonstrated the
ability of Plasmodium to invade erythroid precursors. Indeed, P. vivax and P. falciparum
asexual stages were observed in vitro in erythroblasts derived from CD34+ HSPCs. Asex-
ual parasites were detected at the polychromatic, orthochromatic and reticulocyte stages,
in which the entire asexual cycle can be achieved [32–35]. Furthermore, a recent study
suggested that the erythroblast could serve as a host cell for P. falciparum gametocytes [21].
In this study, in vitro infections of human primary erythroblasts derived from granulo-
cyte colony-stimulating factor–mobilised peripheral blood or from BM aspirate revealed
that gametocytes could fully develop in human erythroblasts from the Poly-E, confirming
previous evocative observations [34]. This discovery was supported by in vivo analyses
of BM smears from a malaria-infected patient with a gametocyte marker, anti-Pf11.1 anti-
body [36], showing the presence of gametocytes inside nucleated erythroid cells [21]. In
line with these observations, recent studies in mice reported that P. berghei could also invade
murine erythroblasts [37,38]. These results suggest that the infection of erythroblasts likely
contributes to Plasmodium parasite sequestration in the BM, in addition to infected-RBC
adhesion to BM mesenchymal stem cells [39] and mechanical retention due to the important
stiffness of the infected RBCs (iRBCs) [40–42]. The erythroid niche in the BM may provide a
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unique environment where the parasite finds appropriated metabolites and concentration
of oxygen.

2. Ineffective Erythropoiesis and Dyserythropoiesis in Malaria

Ineffective erythropoiesis is described as an abnormal proportion of erythroblasts in
the BM leading to anemia. During steady-state human erythropoiesis, the normal ratio
between erythroblasts is of 1 for Pro-E; 2 for Baso-E1; 4 for Baso-E2; 8 for Poly-E and
16 for Ortho-E. In the case of ineffective erythropoiesis, these ratios are unbalanced, leading
to a decreased number of red cells. In contrast, dyserythropoiesis refers to qualitative
abnormality of erythropoiesis with morphological defects of erythroblasts, which may
finally be responsible for a decreased erythrocytes production. Ineffective erythropoiesis
associated to dyserythropoiesis are general features found in malaria in several Plasmodium
species. All stages of erythropoiesis are impacted by Plasmodium infection. A drastic
decrease in progenitors (BFU-E and CFU-E) has been observed in murine BM after infection
by P. berghei [43] and in patients infected by P. falciparum [44]. Other studies described
impaired erythropoietic response to anemia with a low rate of red cell precursors and RBCs
in human malaria patients [45–47] and these data were later confirmed in murine BM [48].
More recently, molecular studies in patients infected with P. vivax showed an abnormal
ratio of erythroblasts [22,23].

Low reticulocytosis is also a striking mark of ineffective erythropoiesis in patients.
The low and inadequate percentage of reticulocytes was first described in patients with
P. falciparum and P. vivax infections [45,49,50] and was confirmed in mice infected with
P. berghei, P. chabaudi or P. yoelii [43,48,51–53], as well as in monkeys infected by P. vivax [54].
The low reticulocyte production was also detected in in vitro culture of P. falciparum-infected
human primary erythroblasts derived from HSPCs [21].

Ineffective erythropoiesis is also associated with an inhibition of the erythroid cell
proliferation and cellular division [47,53,55]. A deregulation of the cell cycle was first
observed in children infected with P. falciparum, in which a decreased number of cells
in G1 and a decreased S/G2 ratio occurred in Baso-E. This latter observation was also
reported in Poly-E, using 3H-thymidine autoradiography, suggesting an accumulation
in the G2 phase [56]. Conversely, a prolonged S phase was reported in murine erythroid
precursors using propidium iodide incorporation [48]. Further investigations will be
necessary to decipher more precisely the cell cycle for each stage of erythroid differentiation
in malaria patients.

Erythropoietin (EPO) is the key regulator of erythropoiesis, sustaining the proliferation
and survival of late erythroid progenitors and precursors. In the case of low RBC count,
the resulting hypoxia causes an increase in serum EPO levels leading to the expansion
of the erythroid progenitors and precursors, to reticulocytosis and eventually a restored
RBC count. Interestingly, the inhibition of BM erythropoiesis in patients infected by
P. falciparum [57] or in mice infected with rodent malaria parasites [53,58] occurs despite
increased levels of EPO in blood, suggesting that Plasmodium infection causes suppression
of the BM response to EPO.

Besides disrupting the efficiency of erythropoiesis, malaria parasites are also associated
with dyserythropoietic features in BM. Light and electron microscopic observations of
BM aspirates from patients infected with P. falciparum revealed erythroid hyperplasia
and ultrastructural nuclear abnormalities such as multinuclearity, nuclear fragmentation,
internuclear bridges and irregular nuclear shapes [8,47,56,59–61]. Infection with P. vivax also
generates dyserythropoiesis as described in adult BM aspirates from patients with abnormal
nucleus (multiple nuclei, budding nuclei, . . . ) as well as intercytoplasmic bridge [22,23,50].

Some molecular studies highlighted the significant erythropoietic suppression con-
tributing to malarial anemia. Microarray and RT-qPCR analyses of infected murine spleen
and BM, the two primary sites of erythropoiesis, revealed a downregulation of erythroid-
specific transcripts. Among them, a decrease in major transcription factors (Gata-1, Nfe2,
Eklf or Gfi1b), erythroid-specific markers (Gpa, Band3) and transcripts involved in heme
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biosynthesis pathways confirmed suppressed erythropoiesis [62,63]. More recently, tran-
scriptional changes were also observed in BM from P. vivax-infected patient aspirates,
using RNA sequencing and RT-qPCR. This study reported a decrease in transcripts of
genes involved in erythropoiesis (TAL1, GATA1, NFE2, ARID3A, ALAS1 and ALAS2)
while those related to cytokine secretion or complement cascade were upregulated [23].
A microarray profiling performed during in vitro co-culture of P. falciparum parasites and
Ortho-E showed that many erythroid genes were upregulated, a large number of them
encoded mediators of metabolism, NRF2-mediated oxidative response, cellular stress re-
sponse or mitochondrial dysfunctional pathways. These data suggest that upon infection,
erythroblasts may respond and adapt to parasite factors by modifying gene expression [64].

3. Human and Parasite Factors Affecting Erythropoiesis
3.1. Extracellular Vesicles

Extracellular vesicles (EVs) are small membrane-bound vesicles involved in cellular
communication, physiological processes, and immune regulation in many species [65,66].
EVs can be secreted by various cell types; interestingly, it has been described that in the
BM, the most abundant EVs originate from erythroid cells [67]. EVs are classified in
different groups depending on their cellular origin, size and biological functions. Apoptotic
bodies, the biggest ones with 5000 nm, are secreted from the cell surface during apoptosis;
microvesicles, between 100–1000 nm, are released by budding or shedding from the plasma
membrane; and exosomes, the smallest vesicles (range from 30 to 150 nm), are derived
from the endosomal system [68–70].

EVs are present in healthy individuals, but their secretion is enhanced under patholog-
ical conditions, such as parasite infection [71]. In the case of Plasmodium infection, a major
increase in EVs derived from iRBCs (iEVs) in the plasma of patients is reported, correlat-
ing with disease severity [72–74]. According to the analytical approaches recommended
in the guidelines of vesicle identification [75], EVs released during malaria infection are
exosomes [76,77]. EVs released from Plasmodium-iRBCs are then internalised by other
cells: endothelial cells, spleen fibroblasts, immune cells, or erythroid cells. EVs allow an
exchange of material that modify the biological functions of these cells, by altering the
vascular functions, facilitating cytoadherence, activating the immune cells, modulating
mechanical properties of RBCs or regulating erythropoiesis [21,78–81]. When EVs are incu-
bated in vitro with Ortho-E, they induce a delay of enucleation and an increase in oxidative
stress [21]. In P. falciparum-infected erythroblasts, infection increases the production of
EVs by erythroblasts to a similar level as by erythrocytes, inducing as well a reduction in
reticulocytes production by bystander erythroblasts [21].

The content carried by EVs depends on the parasitic stage [82] and on in vitro growing
density of the parasite [83]. Recently, Abou Karam et al. demonstrated that two EVs
subpopulations of distinct size are secreted by P. falciparum-iRBCs, differing in their protein
content and specific membrane composition. Their results suggest that these EVs may have
the ability to fuse to distinct target cells [84]. EVs from Plasmodium-iRBCs contain proteins,
lipids, metabolites, and nucleic acids, originating from both the host and the parasite. The
protein composition of EVs from malarial iRBCs is well described, via proteomic approaches
on EVs from P. falciparum-iRBCs cultivated in vitro [78,81] and from in vivo models with
EVs from the plasma of P. falciparum-infected malaria patients [85] or from the plasma of
P. yoelii or P. berghei-infected mice [76,77,86]. These studies highlighted that there are far
more proteins in patient EVs than in control EVs and that they have a role in metabolic
processes, host immune response, structure, or adhesion of the parasite. Several studies
have described that EVs represent a mechanism by which the parasite promotes immune
escape and can modify the host immune responses by increasing cytokines production;
Interleukin (IL)-6, IL-12, IL-1, IL-10, tumor necrosis factor α (TNFα) and interferon γ

(IFNγ) [78,87–89]. These inflammatory cytokines could severely impact erythropoiesis, as
described in Section 3.3. Cytokines.
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Small RNAs contained in EVs could also contribute to erythropoiesis suppression.
The small RNA composition of EVs from iRBCs during Plasmodium infection is well charac-
terised, using RNA sequencing of EVs from RBCs infected with P. falciparum in vitro [90,91]
and using RT-qPCR on EVs from P. falciparum or P. vivax-infected malaria patients [92].
Different categories of small regulatory RNAs were found in iEVs originating either from
the host or the parasite: miRNAs, tRNA, Y-RNA, vault-RNA, SRP-RNA, U-RNA, Piwi-RNA
and sno-RNA. A high level of host miRNAs was observed, which regulate the expression
of several genes at the post-transcriptional level. The Ago2-miRNAs complex has also been
found in iEVs allowing the formation of the RISC complex, which can silence parasite and
host target genes [79].

All miRNAs detected in EVs from iRBCs originate from the host cell since Plasmodium
parasites have no RNAi machinery and cannot produce their own miRNAs [93,94]. In-
terestingly, the main miRNAs found in EVs produced by iRBCs are the same as those
in uninfected RBCs, but at different concentrations [91,95]. These miRNAs (miR-451a,
miR-486-5p, miR-144-3p or miR-92a-3p) are known to have an important impact on erythro-
poiesis, as a regulator of erythroid cell differentiation [96–100]. They are also associated
with oxidative stress and severe anemia [101,102]. Accordingly, the release of miRNAs from
Plasmodium-infected RBCs can modify erythroblasts gene expression and may regulate
erythropoiesis [93,103]. Overall, EVs are playing an important role in malarial anemia
by manipulating the erythroid host. EVs act either directly on erythroblasts or indirectly
essentially through the inflammatory response mediated by immune cells and the secretion
of cytokines (Figure 2).
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3.2. Hemozoin

Hemozoin (Hz), a malaria pigment crystal, is a scaffold of heme dimers and polyun-
saturated fatty acids [104]. It is formed in the food vacuole of Plasmodium parasites during
the digestion of the host RBC hemoglobin. The parasites digest up to 75% of hemoglobin,
which is the main source of parasite nutrients. The digestion of hemoglobin produces
free heme, which is then polymerised into Hz to avoid heme toxicity [105,106]. During
the parasite life cycle, the malaria pigment is released with merozoites during the rupture
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of parasitised-RBC and then is phagocytised by macrophages, monocytes, neutrophils or
dendritic cells [107]. In Plasmodium infections, high levels of Hz are found in the BM and a
correlation between Hz accumulation in this compartment and the severity of the anemia
is observed in patients [8,108,109] and in murine models [110].

Several in vitro experiments indicated that Hz disrupts the development of erythroid
cells. Upon incubation with Hz, decreased numbers of BFU-E and CFU-E were observed in
colony forming cells assay from human HSPCs [111,112]. Moreover, this ex vivo culture
of erythroblasts showed that Hz delays cell cycle progression, resulting in a decreased
proliferation of erythroid progenitors [111,112]. In addition, Reactive Oxygen Species (ROS)
production induced by Hz in Baso and Poly-E leads to cell apoptosis mediated through
the activation of caspases (caspases 3, 9 and 8) [113]. Furthermore, lipid peroxidation of
Hz induces the production of 4-hydroxynonenal (4-HNE), which is a bioactive aldehyde
molecule able to bind to proteins and DNA, thus forming 4-HNE adducts [114,115]. 4-HNE,
like its precursor Hz, has an inhibitory effect on erythropoiesis: it induces a reduction in the
number of erythroid progenitors, an accumulation of cells in the G0/G1 phase and a delay
in erythroid differentiation [111,112]. Proteins associated with Hz may also contribute to
the suppression of erythropoiesis [116].

In the presence of Hz, microarray analysis showed an upregulation of the transcription
factors controlling red cell differentiation and apoptosis, as well as survival during cell
stress, such as DNA damage-induced transcript 3 (DDIT3) and DNA damage-induced
transcript 4 (DDIT4). In addition, a downregulation of genes implicated in cell cycle, nuclear
mRNA splicing, and apoptosis was observed [117]. A similar study previously showed the
dysregulation of genes involved in cell cycle (p53, p21) or erythroid development (GATA1,
TfR1, SCFR, IL3R and EPOR) in the presence of Hz and 4-HNE [112].

In addition to the direct effect of Hz on the development of erythroid cells, the immune
responses generated by Hz may also indirectly impact erythropoiesis. Hz is a major regu-
lator of the innate immune response, stimulating the secretion of cytokines, chemokines,
and peroxides by these phagocytic cells. This process has a protecting effect for the host
against malaria, but may also have detrimental consequences on erythroblasts, which lead
to anemia [110,118,119] (see part 3.3. cytokines). Furthermore, some reports suggested that
the Hz inflammatory effects are due to the oxidative stress generated by the production
of ROS via heme catabolism and the Fenton reaction. Indeed, ROS have been detected in
phagocytic cells and erythroblasts after incubation with Hz [113,120,121].

3.3. Cytokines

After Plasmodium infection, the innate immune system rapidly detects the parasite
and induces a strong inflammatory response. Inflammatory mediators such as cytokines,
chemokines, or nitric oxide (NO) are highly produced by monocytes/macrophages from
distinct organs in order to eliminate infected RBCs. These mediators act as an antimalar-
ial host defense by mediating immune response while having a negative impact in the
BM by repressing erythropoiesis. For example, TNFα and IFNγ are potent inhibitors
of erythropoiesis [122]: TNFα significantly decreases human erythroid progenitor cell
proliferation [123] while IFNγ inhibits the proliferation and the differentiation of erythrob-
lasts [124]. P. vinckei infection induces a drastic increase in TNFα in the serum of mice and
TNFα injection provokes a dyserythropoiesis in the BM and an enhanced phagocytosis of
erythroblasts [125]. In P. falciparum malaria, a significant increase in IFNγ plasma levels
was reported [126], suggesting that this cytokine may contribute to malarial anemia by in-
hibiting erythropoiesis. However, a P. vivax in vitro study using erythroblasts derived from
HSPCs demonstrated that the parasite can inhibit erythroid development independently of
these two cytokines [55].

The levels of Interleukins are also clearly modified during Plasmodium infection with
consequences on erythropoiesis. Low levels of Interleukin-10 (IL-10) and an abnormal
low ratio of IL-10/TFNα in patient serum are associated with the severity of malarial
anemia [127,128]. Indeed, IL-10 downregulates TNFα leading to the stimulation of erythro-
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poiesis [129] and upon Plasmodium infection, a reduced level of IL-10 may result in erythro-
poiesis repression. Interleukin-12 (IL-12) is a direct stimulator of erythropoiesis increasing
the production of BFU-E and CFU-E, leading to an enhanced erythrocyte count [130]. Ac-
cordingly, mice infected with P. chabaudi showed a deficient production of IL-12, resulting in
anemia and fatal malaria, whereas treatment with IL-12 is able to correct the anemia [131].
Furthermore, polymorphisms in the IL-12/IL-12 receptor genes are associated with protec-
tion against severe malarial anemia [132]. Moreover, serum levels of Interleukin-6 (IL-6)
were elevated in patients with P. falciparum infection [133]. This inflammatory cytokine
acts indirectly on erythroblasts and contributes to the regulation of iron homeostasis by
increasing hepcidin expression in the liver. The hepcidin hormone is the major regulator
of iron metabolism and an increase in hepcidin leads to a decrease in iron availability for
erythropoiesis [134,135].

Plasma MIF (macrophage migration inhibitory factor), another pro-inflammatory
cytokine, is also enhanced in malaria-infected patients and is associated with the severity
of anemia. MIF suppresses erythroid colony formation (BFU-E, CFU-E) at concentration
found in the plasma of patients and synergises with known antagonists of erythropoiesis
such as TNFα and IFNγ [136,137].

Several evidences show that chemotactic cytokines, such as the chemokines Macrophage
Inflammatory Proteins (MIP) MIP-1α, MIP-1 β and regulated on activation, normal T-cell
expressed and secreted (RANTES) are also involved in malarial anemia by erythropoietic
suppression [138,139]. Circulating levels of MIP-1α and MIP-1β are elevated in patients
with mild and severe malaria, whereas those of RANTES are decreased with increasing
anemia severity [118]. These chemokines may contribute to the ineffective erythropoiesis
since MIP-1 has a suppressive effect on erythroid progenitors [140] and RANTES prevents
their apoptosis [141].

Finally, the pro-inflammatory mediator NO inhibits the proliferation and the erythroid
differentiation of human primary erythroblasts and contributes to anemia [142,143]. Several
studies reported the elevation of NO in blood upon Plasmodium infection in children with
malarial anemia [144,145]. Interestingly, recent data show that P. falciparum gametocytes
are phagocytosed by immortalised mouse BM-derived macrophages and late gametocytes
initiate the production of NO, cytokines, and chemokines [146]. Although these data have
to be confirmed in a more physiological human setting, they suggest that gametocytes may
stimulate the secretion of erythropoiesis-inhibiting factors by macrophages constituting the
erythroblastic islands, which are the specialised niches for erythropoiesis.

4. Conclusions

Anemia is an important clinical manifestation of malaria due to the increased lysis
of RBC and to decreased RBC production as a result of ineffective erythropoiesis and
dyserythropoiesis. The mechanisms responsible for the suppression of erythropoiesis are
multiple and complex and a better understanding of them may provide comprehensive
insight in the pathophysiology of malaria, leading to discoveries for future treatments
of anemia.
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Abbreviations

Baso-E1 Early basophilic erythroblast
Baso-E2 Late basophilic erythroblast
BFU-E Burst Forming Unit–Erythroid cells
BM Bone Marrow
CFU-E Colony Forming Unit–Erythroid cells
EPO Erythropoietin
EV Extracellular Vesicle
4-HNE 4-hydroxynonenal
Hz Hemozoin
iEVs EVs derived from iRBCs
IL Interleukin
iRBC Infected Red Blood Cell
IFNγ Interferon γ

HSCs Hematopoietic Stem Cells
HSPCs Hematopoietic Stem and Progenitor Cells
MEP Megakaryocyte Erythroid Progenitor
MIP Macrophage inflammatory protein
MIF macrophage migration inhibitory factor
NO Nitric Oxide
Ortho-E Orthochromatic erythroblast
P. falciparum Plasmodium falciparum
P. vivax Plasmodium vivax
Poly-E Polychromatophilic erythroblast
Pro-E Proerythroblast
RANTES Regulated on activation, normal T-cell expressed and secreted
RBCs Red Blood Cells
ROS Reactive oxygen species
sHz Synthetic hemozoin
TNFα Tumor Necrosis Factor α
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