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Abstract: Adenosine A2A receptors (A2AR) control fear memory and the underlying processes of
synaptic plasticity in the amygdala. In other brain regions, A2AR activation is ensured by ATP-derived
extracellular adenosine formed by ecto-5′-nucleotidase or CD73. We now tested whether CD73 is
also responsible to provide for the activation of A2AR in controlling fear memory and amygdala
long-term potentiation (LTP). The bilateral intracerebroventricular injection of the CD73 inhibitor
αβ-methylene ADP (AOPCP, 1 nmol/ventricle/day) phenocopied the effect of the A2AR blockade by
decreasing the expression of fear memory, an effect disappearing in CD73-knockout (KO) mice and in
forebrain neuronal A2AR-KO mice. In the presence of PPADS (20 µM) to eliminate any modification of
ATP/ADP-mediated P2 receptor effects, both AOPCP (100 µM) and the A2AR antagonist, SCH58261
(50 nM), decreased LTP magnitude in synapses of projection from the external capsula into the lateral
amygdala, an effect eliminated in slices from both forebrain neuronal A2AR-KO mice and CD73-KO
mice. These data indicate a key role of CD73 in the process of A2AR-mediated control of fear memory
and underlying synaptic plasticity processes in the amygdala, paving the way to envisage CD73 as a
new therapeutic target to interfere with abnormal fear-like emotional processing.

Keywords: CD73; ecto-nucleotidases; adenosine; A2A receptors; fear memory; synaptic plasticity;
LTP; P2 receptors

1. Introduction

The function of the amygdala is tightly associated with the encoding of emotional
experiences [1,2]. Accordingly, the amygdala has a central role in processing fear-related
associative processes which are encoded through adaptive synaptic efficiency, namely, long-
term potentiation (LTP), in synapses of the basolateral amygdala receiving cortico-thalamic
sensory information [1,2]. Several modulators are known to fine-tune amygdala LTP to
influence fear memories, and detailing their function is important to devise novel strategies
to interfere with emotional dysfunction and phobia, which are major burdens of disease in
Western countries [3].

Adenosine A2A receptors (A2AR) is one such neuromodulation system that controls
the expression of associative fear memories [4,5] as well as emotional dysfunction [6–10].
The relevance of A2AR in the control of emotional dysfunction is further heralded by the
association of polymorphisms of the ADORA2A gene with panic disorders [11,12], anxiety
(e.g., [13]) and depression [14]. A2AR are present in the amygdala [15,16], mainly in synaptic
contacts [5], where their activation has been reported to control the excitability of principal
neurons [17], the strength of the inhibitory network [18] and the magnitude of LTP in excita-
tory synapses [5], in accordance with the key role of the A2AR transducing system (protein
kinase A and CREB; reviewed in [19]) to control amygdala LTP (e.g., [20,21]). A2AR are
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mostly dedicated to controlling synaptic plasticity in different brain regions [22], and their
activation is ensured by a particular pool of adenosine formed by ecto-nucleotidases [23–26]
coupled to a larger ATP release upon greater frequency or more intense stimulation [27,28].
Importantly, the overactivation of A2AR is associated with the onset of brain dysfunction
(reviewed in [29]), namely of emotional disturbances, as best heralded by the ability of
A2AR antagonists to attenuate mood dysfunction [7,8,10]. However, it has not yet been
tested if the blockade of ecto-5′-nucleotidase or CD73, the rate-limiting ecto-nucleotidase
controlling ATP-derived adenosine formation [30,31], is responsible for the engagement of
amygdala A2AR in controlling fear memory processing, as it is observed in the hippocam-
pus to control spatial memory deficits in animal models of Alzheimer’s disease [25] or in
the striatum to control motor dysfunction in animal models of Parkinson’s disease [32].
Therefore, we have now tested whether a previously validated inhibitor of CD73 (α,β-
methylene ADP, AOPCP) could modify fear memory processing and synaptic plasticity in
the amygdala in an A2AR-dependent manner.

2. Results
2.1. Inhibition of CD73 Attenuates Fear Memory

We previously described that mice injected with AOPCP display a similar pattern of
spontaneous locomotion in the open field compared to control mice [24] as well as a similar
physical performance at low to moderate intensities [33] and a similar spatial reference
memory performance [25]. The impact of AOPCP, applied intracerebroventricularly, was
now tested in fear conditioning memory (Figure 1). We first confirmed that AOPCP-
treated mice had a similar spontaneous locomotion profile in the open field (Figure 2A).
During fear conditioning, mice treated with vehicle or with AOPCP displayed a similar
increased freezing with successive CS–US pairings (F3,42 = 0.952, p = 0.424; Figure 2B). This
observation that the acquisition of fear was similar in both groups of mice suggests that
the inhibition of CD73 did not affect shock perception, responsiveness or formation of the
CS–US association. One day after fear conditioning, saline-treated mice froze 13.03 ± 1.89%
(n = 7) of the total time (12 min) of re-exposure to the conditioning chamber A (Figure 2C);
this was attenuated by AOPCP (n = 9) to 5.81 ± 2.61% of the total time freezing (t11 = 2.227
p = 0.048, two tailed unpaired t-test; Figure 2C). A similar pattern was observed when mice
were placed in a novel context B 2 days after fear conditioning (day 3) and re-exposed to
the same CS (Figure 2D): control mice increased their freezing upon presentation of the CS
(n = 7) (Figure 2D), and this was inhibited by AOPCP (n = 7) (CS1: saline 62.14 ± 8.98%,
AOPCP 41.25 ± 6.66%, p = 0.03; CS2: saline 69.29 ± 7.67%, AOPCP 48.75 ± 5.81%, p = 0.03;
CS3: saline 65.71 ± 8.12%, AOPCP 45.00 ± 6.34%, p = 0.03; CS4: saline 70.00 ± 8.80%,
AOPCP 43.13 ± 8.34%, p = 0.007), as demonstrated by a two-way ANOVA interaction
(F4,52 = 2.87, p = 0.032).

In order to ascertain that the effects of AOPCP were strictly dependent on CD73
inhibition, we tested whether the effects of AOPCP on fear memory were eliminated in
CD73-KO mice. The acquisition of fear conditioning was similar in CD73-KO mice treated
with saline (n = 3) or with AOPCP (n = 3) (F3,32 = 1.036, p = 0.399; Figure 3A). Re-exposure to
the conditioning context A one day after conditioning induced a similar freezing (t4 = 0.503,
p = 0.629, two tailed unpaired t-test) in saline-treated (25.26± 3.62% freezing during 12 min,
n = 5) or AOPCP-treated mice (27.79 ± 3.49% freezing, n = 5) (Figure 3B). When mice were
placed in a novel context B two days after fear conditioning (day 3) and re-exposed to the
same CS, vehicle-treated and AOPCP-treated mice showed similar freezing responses upon
presentation of the CS (Figure 3C).
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Figure 1. Schematic presentation of the fear conditioning protocol. AOPCP (1 nmol per ventricle) or 

vehicle were infused into both lateral ventricles (icv) of mice at a rate of 1 µL/min, once a day, 

throughout 3 consecutive days. On day 3, 1 h after icv infusion and after a habitation period of 2 

min in the conditioning chamber (context A), mice were cued-fear conditioned (a tone (CS) of 80 dB 

was presented during 20 s and terminated with a footshock (US) of 0.5 mA and 2 s duration; 4 CS–

US pairings were presented at 140 s intervals). On day 4, 24 h after fear conditioning, mice were re-

exposed to context A during 12 min to probe for contextual fear memory. On day 5, cued-fear 

memory was tested in a different context (context B) for 12 min by presenting the tone 4 times at 140 

s intervals after a 2 min habituation period. 

 

Figure 2. Pharmacological inhibition of CD73 before fear conditioning decreased contextual and 

cued fear memory in wild type mice. (A) Locomotor activity of AOPCP- and saline-treated wild 

type mice. The icv administration of AOPCP to CD73 wild-type (WT) mice (WT littermates of the 

CD73 knockout colony) did not change the locomotor profile compared to the control (saline-

treated) group. (B) Fear conditioning of AOPCP-treated and saline-treated mice: freezing responses 

Figure 1. Schematic presentation of the fear conditioning protocol. AOPCP (1 nmol per ventricle)
or vehicle were infused into both lateral ventricles (icv) of mice at a rate of 1 µL/min, once a day,
throughout 3 consecutive days. On day 3, 1 h after icv infusion and after a habitation period of
2 min in the conditioning chamber (context A), mice were cued-fear conditioned (a tone (CS) of
80 dB was presented during 20 s and terminated with a footshock (US) of 0.5 mA and 2 s duration;
4 CS–US pairings were presented at 140 s intervals). On day 4, 24 h after fear conditioning, mice were
re-exposed to context A during 12 min to probe for contextual fear memory. On day 5, cued-fear
memory was tested in a different context (context B) for 12 min by presenting the tone 4 times at 140 s
intervals after a 2 min habituation period.
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Figure 2. Pharmacological inhibition of CD73 before fear conditioning decreased contextual and
cued fear memory in wild type mice. (A) Locomotor activity of AOPCP- and saline-treated wild
type mice. The icv administration of AOPCP to CD73 wild-type (WT) mice (WT littermates of the
CD73 knockout colony) did not change the locomotor profile compared to the control (saline-treated)
group. (B) Fear conditioning of AOPCP-treated and saline-treated mice: freezing responses to four
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repeated presentations of a tone (CS- 20 s of white noise, 80 dB) paired with a footshock (US- 2 s,
0.5 mA footshock) were similar between both groups of mice, showing a similar learning curve.
(C) Contextual fear memory: AOPCP-treated mice displayed a lower percentage of freezing behavior
comparing to the control group upon re-exposure to the conditioning chamber (context A) in the
absence of the US, 1 day after fear conditioning. (D) Cued fear memory: AOPCP-treated mice
displayed a lower freezing behavior compared to the control group upon each presentation of the
CS (4 trials after 2 min habituation (H) period) in the absence of the US, in a novel context B, 2 days
after fear conditioning (graph on the left) and an overall lower percentage of freezing throughout
the experiment (graph on the right). The values are mean ± SEM of n = 7–9 experiments; * p < 0.05,
unpaired Student’s t test.
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Figure 3. The effect of AOPCP on fear memory is absent in CD73 knockout mice. (A) Fear condi-
tioning of AOPCP-treated and saline-treated CD73 knockout (KO) mice. The learning curve of cued
fear conditioning was similar between AOPCP- and saline-treated mice lacking CD73; moreover,
both groups significantly increased their freezing behavior at each CS–US trial, showing a normal
acquisition of fear. (B) Contextual fear memory: AOPCP-treated CD73 KO mice displayed simi-
lar freezing behavior comparing to the saline-treated group upon re-exposure to the conditioning
chamber (context A) in the absence of the US, 1 day after fear conditioning. (C) Cued fear memory:
AOPCP-treated CD73 KO mice displayed a cued fear memory, assessed as a percentage of freezing,
similar to saline-treated WT littermates upon presentation of the CS in the 4 trials after a 2 min
habituation (H) period in the absence of the US, in a novel context B, 2 days after fear conditioning.
The values are mean ± SEM of n = 5 experiments.
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Importantly, the impact of AOPCP on context fear conditioning is not recapitulated
in the transgenic CD73-KO mice, which display similar acquisition of fear conditioning
(F3,39 = 1.289, p = 0.292), similar context-dependent fear memory (t14 = 0.23 p = 0.822,
two tailed unpaired t-test) and similar tone-dependent fear memory (F4,52 = 1.143, p = 0.347
n = 11) when compared to WT (Figure 4), possibly because of compensatory alterations
following the elimination of CD73 since conception.
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Figure 4. The genetic deletion of CD73 did not modify fear learning and memory. (A) Fear condi-
tioning of CD73 KO mice and WT littermates. The learning curve of cued fear conditioning was
similar between CD73 KO mice and WT littermates; both groups of mice displayed increased freezing
behavior at each CS–US trial, showing a normal acquisition of fear. (B) Contextual fear memory:
1 day after fear conditioning, CD73 KO mice and WT littermates were re-exposed to the conditioning
chamber (context A) in the absence of the US and displayed similar freezing behavior. (C) Cued fear
memory: CD73 KO mice and WT littermates had similar freezing behavior upon presentation of the
CS (a tone of 80 dB presented during 20 s; 4 trials after 2 min habituation (H) period) in the absence
of the US, in a novel context B, 2 days after fear conditioning (graph on the left) and an overall equal
percentage of freezing throughout the experiment (graph on the right). The values are mean ± SEM
of n = 7–9 experiments.

The effects of AOPCP on fear memory essentially phenocopied the effects of the
pharmacological or genetic blockade of A2AR (see [5]). In order to ascertain that the effects
of AOPCP were dependent on A2AR function, we tested if the effects of AOPCP on fear
memory were eliminated in forebrain neuronal A2AR knockout (fbA2AR-KO) mice. The
acquisition of fear conditioning was similar in fbA2AR-KO mice treated with saline (n = 8)
or with AOPCP (n = 8) (F3,56 = 0.379, p = 0.768; Figure 5A). Re-exposure to the conditioning
context A one day after conditioning induced a similar freezing (t4 = 0.119 p = 0.907, two
tailed unpaired t-test) in saline-treated (12.84 ± 1.75% freezing during 12 min, n = 8) or



Int. J. Mol. Sci. 2022, 23, 12826 6 of 16

AOPCP-treated mice (13.12 ± 1.56% freezing, n = 8) (Figure 5B). When mice were exposed
to a novel context B two days after fear conditioning (day 3) and re-exposed to the same CS,
vehicle-treated and AOPCP-treated fbA2AR-KO mice showed similar freezing responses
upon presentation of the CS (Figure 5C). As previously described [4], fbA2AR-KO mice
displayed a lower tone-dependent fear memory (F4,66 = 4.546, p = 0.003) but a similar
acquisition of fear conditioning (F3,52 = 0.050, p = 0.985) and of context-dependent fear
memory (t14 = 0.074 p = 0.942, two tailed unpaired t-test) when compared to WT.
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Figure 5. The effect of AOPCP on fear memory is absent in forebrain A2AR knockout mice. (A) Fear
conditioning of AOPCP-treated and saline-treated forebrain (fb)A2AR knockout (KO) mice. The
learning curve of cued fear conditioning was similar between AOPCP- and saline-treated mice
lacking A2AR in forebrain neurons; moreover, both groups significantly increased their freezing
behavior at each CS–US trial, showing a normal acquisition of fear. (B) Contextual fear memory:
AOPCP-treated fbA2AR KO mice displayed equal freezing behavior comparing to the saline-treated
group upon re-exposure to the conditioning chamber (context A) in the absence of the US, 1 day
after fear conditioning. (C) Cued fear memory: AOPCP-treated fbA2AR KO mice displayed a cued
fear memory, assessed as a percentage of freezing, similar to the saline-treated WT littermates upon
presentation of the CS in the 4 trials after a 2 min habituation (H) period in the absence of the US, in a
novel context B, 2 days after fear conditioning. The values are mean ± SEM of n = 8 experiments.

2.2. Inhibition of CD73 Blunts A2AR-Mediated Control of Amygdala LTP

The inhibition of CD73 can lead to an extracellular accumulation of adenine nu-
cleotides [34], potentially unbalancing P2 receptors, affecting synaptic plasticity [35] and
amygdala-mediated responses [36] and mood [37]. Thus, the in vitro characterization
of the effects of AOPCP on synaptic transmission and plasticity in EC-LA synapses of
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amygdala slices was carried out in the presence of the generic P2 receptor antagonist
PPADS (20 µM). Importantly, PPADS was devoid of effects on LTP in the amygdala
(45.7 ± 6.90% over baseline without PPADS and 45.5 ± 13.9% over baseline with PPADS;
n = 6; Supplementary Figure S1). AOPCP (100 µM) did not significantly affect basal excita-
tory synaptic transmission (111.4 ± 4.25% modification of synaptic transmission; n = 10,
t0 = 2.054, p = 0.055 vs. 102.4 ± 1.21%, unpaired t-test) in synapses between the exter-
nal capsule and lateral amygdala (EC-LA) of amygdala slices (Figure 6A); likewise, the
input–output curve was also not affected by 100 µM AOPCP (Figure 6B). This excludes an
association of ATP-derived adenosine with A1R activation, which efficiently controls basal
synaptic transmission in the amygdala [38] as heralded by the ability of DPCPX (100 nM)
at EC-LA synapses to increase basal synaptic transmission by 30.4 ± 5.51% (n = 9; p < 0.001
vs. basal of 0%, t-test) while being devoid of effects on the magnitude of LTP (64.3 ± 8.55%
over baseline without and 64.7 ± 9.06% with DPCPX; n = 6, p = 0.937, t-test; Supplemen-
tary Figure S2). In contrast, AOPCP decreased LTP magnitude (from 62.6 ± 7.79% over
baseline without AOPCP to 29.0 ± 5.69% over baseline with AOPCP; n = 6–7, F3,21 = 6.004,
p = 0.018, one-way ANOVA followed by Bonferroni’s post hoc test) in slices from wild type
mice (WT) (Figure 6C,D). This shows that AOPCP selectively affects synaptic plasticity,
rather than basal synaptic transmission, in a manner analogous to the impact of the A2AR
antagonist SCH58261 [5]. In fact, the A2AR antagonist SCH58261 (50 nM) phenocopied the
effect of AOPCP on amygdala LTP (62.6 ± 7.79% without, 28.8 ± 8.29% with SCH58261,
n = 6–7, F3,21 = 6.004, p = 0.004, one-way ANOVA followed by Bonferroni’s post hoc test;
Figure 6C,D). Moreover, AOPCP (100 µM) and SCH58261 (50 nM) did not trigger additive
or synergic effects in their simultaneous presence, i.e., the effect of one drug occluded
the effect of another on EC-LA LTP (Figure 6C,D), further supporting that CD73-derived
adenosine activates A2AR controlling LTP in the amygdala.

As shown in Figure 7, AOPCP was devoid of effects on LTP magnitude in amygdala
slices from CD73-KO mice (n = 5, F2,12 = 0.356, p = 0.708, one-way ANOVA followed by
Bonferroni’s post hoc test; Figure 7A,B), showing that the effect of AOPCP required CD73
activity. Likewise, AOPCP was devoid of effects on LTP magnitude in amygdala slices
from fbA2AR-KO mice (n = 6–7, F2,16 = 2.045, p = 0.162, one-way ANOVA followed by
Bonferroni’s post hoc test; Figure 7C,D), showing that the effect of AOPCP required A2AR
activation. Conversely, the effect on EC-LA LTP of the A2AR antagonist SCH58261 (50 nM)
was eliminated in slices from fbA2AR-KO mice (41.6 ± 5.63% without, 56.0 ± 11.80% with
SCH58261, n = 6–7, F2,16 = 2.045, p = 0.669, one-way ANOVA followed by Bonferroni’s post
hoc test; Figure 7C,D) and was also abrogated in slices from CD73-KO mice (71.6 ± 4.99%
without and 61.9± 9.78% with SCH58261, n = 6–7, F2,16 = 1.827, p = 0.699, one-way ANOVA
followed by Bonferroni’s post hoc test; Figure 7A,B). Overall, this shows that that CD73-
derived adenosine is strictly required for the A2AR-mediated control of amygdala LTP.
Importantly, AOPCP and SCH58261 decreased LTP magnitude in amygdala slices from
both CD73 and fbA2AR WT littermates (Supplementary Figure S3) as observed in WT mice
(Figure 6C,D).

It is worth noting that the similar impact on LTP of the pharmacological inhibition
of CD73 and of the blockade of A2AR is not recapitulated in the transgenic CD73-KO
mice, but it is in fbA2AR-KO mice. Indeed, fbA2AR-KO display decreased LTP magnitude
compared to wild type animals (62.6 ± 7.79% over baseline in WT vs. 41.6 ± 5.63% over
baseline in fbA2AR -KO; n = 7, t0 = 2.180, p = 0.049, unpaired t-test), unlike CD73-KO mice
(62.6 ± 7.79% over baseline in WT vs. 63.6 ± 8.99% over baseline in CD73-KO; n = 6–7,
t0 = 0.088, p = 0.932, unpaired t-test), possibly because the genetic deletion of A2AR in
fbA2AR-KO mice is conditioned by the expression of the CAMKIIα promoter [39,40], which
increases only after the second postnatal week, whereas CD73-KO mice lacked CD73
protein since conception, which likely led to compensatory alterations.
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Figure 6. CD73 derived adenosine activates A2AR controlling LTP in amygdala slices. The CD73
inhibitor, AOPCP (100 µM), did not significantly affect basal transmission (A) or input–output (I/O)
curves (B) at excitatory synapses between projections of the external capsule (EC) and the lateral
amygdala (LA). (C,D) However, the magnitude of LTP at EC-LA synapses induced by high-frequency
stimulation (HFS: 3 × 100 Hz at 5 s intervals) was decreased by AOPCP (100 µM) and by the
antagonist of A2AR (SCH58261, 50 nM), which were added to the aCSF 20 min before HFS and
remained until the end of the experiment; furthermore, there were no synergistic effects between
both tested drugs. The values are mean ± SEM of n = 9–10 for baseline and I/O curves and n = 5–7
for LTP experiments; * p < 0.05, one-way ANOVA followed by Bonferroni’s post hoc test. The insert
in (C) shows representative trace recordings of population spikes recorded at EC-LA synapses before
HFS (dashed lines) and 60 min after HFS (filled lines) without added drugs (black) or in the presence
of either 100 µM AOPCP (blue) or 50 nM SCH58261 (green).
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Figure 7. CD73 derived adenosine activates A2AR controlling LTP in amygdala slices. The effect of
both the CD73 inhibitor, AOPCP (100 µM) and of the A2AR antagonist, SCH58261 (50 nM), on the
magnitude of long-term potentiation (LTP) induced by high-frequency stimulation (HFS: 3 × 100 Hz
at 5 s intervals) at excitatory synapses between projections of the external capsule (EC) and the lateral
amygdala (LA) was eliminated in both CD73 KO mice and in forebrain neuronal (fb)A2AR KO mice.
(A) Time course and (B) average LTP magnitude in slices from CD73 KO mice, showing that both
AOPCP and SCH58261 did not change LTP magnitude. (C) Time course and (D) bar graph of LTP
magnitude in slices from fbA2AR KO mice, showing that both AOPCP and SCH58261 did not change
LTP magnitude. The values are mean ± SEM of n = 5–7 experiments.

3. Discussion

The present study confirms the role of neuronal adenosine A2A receptors (A2AR) in
the control of fear memory and identifies CD73 as the source of extracellular adenosine
responsible for the activation of these A2AR controlling fear memory. Accordingly, the
control by A2AR of LTP magnitude in synapses of excitatory cortico-thalamic afferents into
the amygdala was also identified to be dependent on CD73 activity to form the pool of
extracellular adenosine ensuring the activation of A2AR at excitatory synapses of the lateral
amygdala [5].

We previously showed that A2AR control fear memory and the underlying process of
synaptic plasticity in the amygdala [5]. We now report that the inhibition with AOPCP of the
CD73-mediated formation of extracellular adenosine phenocopies the effect of the selective
inhibition of A2AR with SCH58261 on fear memory and amygdala LTP. Furthermore, we
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observed that the effects of AOPCP on fear memory and the effects of AOPCP and of
SCH58261 on amygdala LTP are eliminated in CD73-KO mice and in fbA2AR-KO mice,
re-enforcing the association of CD73-mediated formation of extracellular adenosine and the
selective activation of A2AR to control fear memory and the underlying LTP in amygdala
synapses receiving sensory information from the external capsule. This prompts the
conclusion that ATP-derived extracellular adenosine is the preferential pathway responsible
for the activation of A2AR in the amygdala to control fear memory, in a manner analogous
to that previously described in other brain circuits, namely of the hippocampus controlling
memory deterioration [25] or of the striatum controlling motor dysfunction [32]. However,
it remains to be investigated what might be the source of extracellular ATP and if the pattern
of ATP release in the amygdala is similar to that reported in other brain regions, such as
the hippocampus [27,28]. The clarification of the spatiotemporal pattern of extracellular
ATP levels in amygdala excitatory synapses will also be paramount to understand if the
main purpose of synaptically released ATP is to serve as a source of extracellular adenosine
to activate A2AR or if extracellular ATP might fulfill additional roles signaling through P2
receptors (reviewed in [22]), which have not yet been investigated in amygdala circuits,
although affecting amygdala-mediated responses [36].

Previous pharmacological manipulations of CD73 have not detected effects of AOPCP
in the brain-associated behavior outputs of normal animals [24,32,41,42]. In contrast, AOPCP
mostly attenuated behavioral deficits caused by noxious stimuli to the brain [32,42–45].
Likewise, CD73-KO mice have no major brain-related phenotype unless subjected to stressful
situations [24,25,32,33,46,47]. Overall, these observations are in agreement with the concept
that extracellular ATP is a danger signal in the brain [48], and thus, a role of CD73 can only
be made evident in stressful conditions in which there is sufficient ATP release to increase
the activity of the ecto-nucleotidase pathway. Curiously, AOPCP controlled the expression of
fear memories, suggesting that CD73-mediated formation of extracellular adenosine might
have a particular relevance in the control of the processing of emotional memories when
compared to other types of memory processing, such as spatial reference memory, which is
only affected by AOPCP when perturbed by noxious stimuli [25]. Thus, this different impact
of CD73-mediated formation of extracellular adenosine may offer potential therapeutic
opportunities to target CD73 to selectively manipulate emotional memory processing.

The control by A2AR of the processing of fear stimuli likely involves an impact of A2AR
in different brain regions [4]. This is most evident in the acquisition of fear conditioning,
where selective A2AR antagonists are devoid of effects, whereas the downregulation of
A2AR selectively in the amygdala attenuates the acquisition of fear learning. We now ob-
served that the inhibition of CD73-mediated formation of extracellular adenosine mimicked
the lack of effect of SCH58261 on the acquisition of fear conditioning; this implies that the
association of CD73-mediated formation of extracellular adenosine with the activation of
A2AR does not occur selectively in the amygdala but might be widespread though circuits
in different brain areas. Indeed, previous studies have described a similar tight association
between CD73 activity and the activation of A2AR during neurodevelopment [49], in cir-
cuits of the dorsal striatum [32,50] and of the normal [25] or diseased hippocampus [26,51],
supported by the physical association of A2AR and CD73 in the striatum [24]. A similar
association of CD73 and A2AR was concluded in other cells or tissues such as neuromus-
cular junction [52], astrocytes [53], “activated” microglia [54,55], neutrophils [56], B cell
lymphocytes [57], T cell lymphocytes [58], fibroblasts [59], cardiac valve interstitial cells [60]
or mesenchymal stem cells [61]. Overall, this evidence supports a general association of
CD73-mediated formation of extracellular adenosine with the activation of A2AR, although
an association of CD73 activity with A2BR has been described in some tissues/cells where
A2BR-mediated responses are predominant, such as osteoblasts [62], dendritic cells [63] or
glioblastoma cells [64].

In conclusion, the presently identified pathway of CD73 activity as a source of ex-
tracellular adenosine sustaining the activation of A2AR to control amygdala LTP and fear
memory prompts consideration of the manipulation of CD73 as a new possibility to phar-
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macologically correct different behavioral responses that are proposed to be dependent on
the function of amygdala A2AR, in particular, abnormal fear memory processing [5], social
interactions [8], anxiety [6] or binge eating [65].

4. Materials and Methods
4.1. Animals

CD73-knockout (KO) mice and forebrain neuronal (fb)A2AR-KO mice were generated
in a C57bl\6 background and crossbred as previously described [24,25]. Male C57BL/6
mice (Charles River, Barcelona, Spain), KOs (CD73-KO and fbA2AR-KO) and wild type
littermates of 8–12 weeks old were used in the experiments. Mice were kept in groups of
three to four per cage in a temperature-controlled room (22 ± 1 ◦C), with a 12 h light/12 h
dark cycle (lights on at 7:00 AM) and with free access to food and water. All manipulations
followed the principles and procedures outlined as “3 Rs” in the EU guidelines (210/63)
and were approved by the Animal Care Committee of the Center for Neuroscience and
Cell Biology (ORBEA 238_2019/14102019).

4.2. Intracerebroventricular Drug Administration

The animals were anaesthetized with avertin (1.3% tribromoethanol, 0.8% tert-amyl
alcohol) and placed in a stereotactic apparatus (Stoelting, Wood Dale, IL, USA). Then,
mice were subjected to icv cannulation (x = −0.22 mm; y = −1 mm; z = −2.25 mm). This
procedure consisted of the application of a cannula (Plastics One, Roanoke, VA, USA), which
allowed us to administrate/infuse 1 nmol AOPCP (at a rate of 1 µL/min), reaching each
of the lateral ventricles of the brain; AOPCP was bilaterally administered three different
times (at 24 h intervals) before (the third time was 1 h before starting the acquisition in fear
conditioning protocol) and after (the first time was administrated immediately after the
acquisition) the start of the fear conditioning protocol (see Figure 1).

4.3. Behavioral Analysis—Fear Conditioning

Behavioral tests were conducted between 9:00 AM and 1:00 PM (light phase) in a
sound attenuated room with 15 lux illumination, where the mice had been habituated for
1 h before beginning the tests. The apparatus and objects were cleaned with a 70% alcohol
solution and rinsed with water after each session. The behavior was video-monitored with
ANY-mazeTM (Stoelting, Wood Dale, IL, USA). Locomotion was evaluated in an open-field
arena, measuring the distance travelled during a 10 min period, as previously described [7].

Fear conditioning was performed as previously described [5]. Mice were first placed
in context A with four successive presentations of an auditory conditioned stimulus (CS;
80 dB for 20 s at 4 kHz) paired with a foot-shock unconditioned stimulus (US; 0.5 mA
for 2 s, delivered 20 s after the beginning of CS) and with a 120 s inter-trial interval, for
a total time of 12 min (acquisition session). At day 2, mice were returned to context A
to test their contextual freezing behavior for 12 min. At day 3, mice were placed in a
completely different chamber (different environment and lux conditions; context B), the CS
was presented as it was previously in context A and the freezing behavior was measured
for 12 min. Thus, we evaluated two types of conditioned fear: contextual fear conditioning
and cued fear conditioning through the analysis of the time spent freezing, defined as
“absence of movement except for respiration”. The outline of this fear conditioning protocol
is presented in Figure 1.

4.4. Electrophysiology

Electrophysiological recordings were carried out as previously described [5]. Briefly,
each mouse was killed by decapitation and the brain was quickly removed and placed in
ice-cold modified artificial cerebrospinal fluid (aCSF) containing (in mM); 124 NaCl, 4.5 KCl,
2 CaCl2, 1 MgCl2, 26 NaHCO3, 1.2 NaH2PO4 and 10 D-glucose, bubbled with a gas mixture
of 95% O2 and 5% CO2. The brain was then sectioned into 400 µm thick horizontal slices
(cut from the ventral towards the dorsal part of the brain) with a vibratome (1500, Leica,
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Wetzlar, Germany). Brain slices were allowed to equilibrate in gassed aCSF for 1 h kept at
32 ◦C and another 40 min at room temperature before being transferred to a submerged
recording chamber and continuously superfused with gassed aCSF (3 mL/min) kept at
30 ± 1 ◦C. Visual control through a magnifier (World Precision Instruments, Hertfordshire,
UK) allowed the correct placement of the electrodes. Extracellular field recordings were
obtained using borosilicate micropipettes filled with a 4 M NaCl solution (2–4 MΩ), placed
at the lateral amygdala (LA), and test stimuli were delivered via a S44 stimulator (Grass
Instruments, West Warwick, RI, USA) at a frequency of 0.05 Hz through a bipolar twisted
tungsten wire placed at the external capsule (EC). The population spike (PS) response
was used to estimate synaptic efficacy, and its amplitude was measured as the distance
from the maximal negative peak to a line tangent to the lower and upper shoulders of
the PS. Recordings were obtained with an ISO-80 amplifier (World Precision Instruments,
Hertfordshire, UK) and digitized using an ADC-42 board (Pico Technologies, Pelham, NY,
USA). Averages of three consecutive responses were continuously monitored on a PC-type
computer using the WinLTP 1.01 software [66].

To evaluate basal neurotransmission, input–output curves (I/O) were first acquired by
continuously increasing the current applied to the EC fibers and recording the amplitude
of the evoked PS response at the LA, starting with a current which elicited no response and
terminating when the evoked PS amplitude stabilized at a maximal amplitude. The I/O
curve allowed choosing a stimulus that evoked a signal of circa 40% of the maximal PS
amplitude. The effect of drugs, added through the aCSF, on baseline was calculated as the
percentage of change of the PS amplitude in the presence versus absence of the drug by
comparing the average of the signal in the last 5 min in the presence of the drug (after the
signal plateaued) with the average of the signal in the last 5 min in the absence of the drug.

LTP was induced by high frequency stimulation (HFS) consisting of three trains of
pulses of 100 Hz delivered with a 5 s inter-train interval. The magnitude of LTP was
calculated by comparing the average of PS amplitudes 50–60 min after HFS with the
average of the PS amplitudes 10 min before the HFS (baseline). Drugs were added to the
aCSF 20 min before the application of the LTP protocols and maintained until the end of
the experiments. The effect of drugs on LTP was assessed by comparing the magnitude
of LTP in the absence and presence of the drug in experiments carried out in different
slices from the same animal. The values are presented as mean ± SEM of n (number of
animals) experiments.

4.5. Drugs

For the in vivo studies, adenosine 5′-(α,β-methylene)diphosphate (AOPCP, selective
inhibitor of CD73; Sigma-Aldrich, Sintra, Portugal) was made up to a 10 mM stock so-
lution in saline and used at a supra-maximal and selective dose of 1 nmol/µL [43]. For
the in vitro studies, the following drugs were used in previously defined supramaximal
and selective concentrations: AOPCP (100 µM; [25]), pyridoxalphosphate-6-azophenyl-
2′,4′-disulfonic acid tetrasodium salt (PPADS, 20 µM, non-selective antagonist of ATP P2
receptors; [67]), 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo [1,5-
c]pyrimidine (SCH58261, 50 nM; A2AR selective antagonist; [23]), 4-[2-[[6-amino-9-(N-ethyl-
β-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochlo-
ride (CGS21680, 30 nM; A2AR selective agonist; [68]), 8-cyclopentyl-1,3-dipropylxanthine
(DPCPX, 100 nM; A1R selective antagonist; [69]) and N6-cyclopentyladenosine (CPA, 100 nM;
A1R selective agonist; [70]). PPADS, SCH58261, CGS21680, DPCPX and CPA were purchased
from Tocris Bioscience (Biogen Cientifica, Madrid, Spain) and AOPCP from Sigma-Aldrich
(Sintra, Portugal). DPCPX, CPA, SCH58261 and CGS21680 were first prepared as stock
solutions in dimethylsulfoxide (Sigma-Aldrich, Sintra, Portugal) and then were diluted to
the final concentration in aCSF; the stock solutions of AOPCP and PPADS were prepared in
milliQ water and then diluted in aCSF to their final concentration.
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4.6. Statistical Analysis

Each analyzed parameter was estimated based on experiments carried out in four
or more animals, and the individual sample size (n = number of animals) is specified for
each experiment. All data are displayed as mean ± SEM and significance was considered
with 95% confidence using either a one-sample t test to assess the effect of any individual
drug or treatment in electrophysiological experiments, a two-way Student’s t test with
Welsh correction for comparison between two groups and one-way ANOVA (followed by a
Bonferroni’s post hoc test) or two-way ANOVA (followed by a Newman–Keuls post hoc
test) to compare multiple groups.
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