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Abstract: Irradiated murine induced-pluripotent stem cells (iPSCs) elicit the antitumor response
in vivo. However, it is unclear whether human iPSCs would elicit antitumor effects. In the present
study, we investigated the capability of human iPSC lysate (iPSL)-pulsed dendritic cells (DCs)
(iPSL/DCs) to induce cancer-responsive cytotoxic T lymphocytes (CTLs) in vitro. iPSCs and DCs were
induced from peripheral blood mononuclear cells isolated from a human leukocyte antigen (HLA)-
A33 homozygous donor. The iPSL was pulsed with immature DCs, which were then stimulated to
allow full maturation. The activated DCs were co-cultured with autologous CTLs and their responses
to SW48 colorectal carcinoma cells (HLA-A32/A33), T47D breast cancer cells (HLA-A33/A33), and
T98G glioblastoma cells (HLA-A02/A02) were tested with enzyme-linked immunospot (ELISPOT)
assays. Comprehensive gene expression analysis revealed that the established iPSCs shared numerous
tumor-associated antigens with the SW48 and T47D cells. Immunofluorescent analysis demonstrated
that the fluorescent-labeled iPSL was captured by the immature DCs within 2 h. iPSL/DCs induced
sufficient CTL numbers in 3 weeks for ELISPOT assays, which revealed that the induced CTLs
responded to SW48 and T47D cells. Human iPSL/DCs induced cancer-responsive CTLs on HLA-
A33-matched cancer cells in vitro and could be a promising universal cancer vaccine for treating and
preventing cancer.

Keywords: cancer vaccine; dendritic cell (DC); induced pluripotent stem cell (iPSC); cytotoxic
lymphocyte (CTL); cancer immunotherapy

1. Introduction

Harnessing the immune system to eradicate malignant cells is becoming a powerful
new approach to cancer therapy. Checkpoint receptor antibodies that include the pro-
grammed cell death (PD)-1 antibody for treating multiple cancers have greatly advanced
basic research and clinical studies in cancer immunotherapy. Despite the success of check-
point blockade therapy, more than 50% of patients with cancer nevertheless fail to respond
to it [1].

The advent of new technologies such as next-generation sequencing has enhanced
our ability to search for new immune targets in onco-immunology and has accelerated
immunotherapy development with a potentially broader coverage of patients with cancer.
Recently, several immunotherapy approaches targeted the antigens encoded by tumor-
specific mutated genes (neoantigens) derived via whole-genome sequencing from mu-
tations unique to individual patients’ tumors [2]. Neoantigens are newly synthesized
in tumors and recognized as non-self. Immune-mediated tumor rejection is associated
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with cytotoxic responses to neoantigen-derived peptides in a noncovalent association with
self-human leukocyte antigen (HLA) molecules. By targeting neoantigens, T cells can
attack and kill cancer cells [3–5]. There is strong evidence that neoantigen-based therapies,
such as adoptive T-cell therapy, have the potential to induce remission in patients with
treatment-resistant metastatic breast cancer [6].

Neoantigen-based cancer vaccines are similarly designed to elicit or amplify antigen-
specific T-cell populations and stimulate directed antitumor immunity, but neoantigen
selection and prioritization remain challenging. Bioinformatic algorithms can predict
tumor neoantigens from somatic mutations, insertion–deletions, and other aberrant peptide
products, but this often leads to hundreds of potential neoepitopes unique to the tumor [2].
Designing hundreds of neoantigen-related peptides in accordance with a patient with
cancer is difficult in terms of cost and time. Furthermore, the tumor-associated antigens
(TAAs) including neoantigens that will be expressed in cancer tissues in the future cannot
be targeted.

With their large amounts of characterized and uncharacterized T-cell epitopes available
for activating CD4+ T helper (Th) and CD8+ cytotoxic lymphocytes (CTLs) simultaneously,
whole-tumor antigens in tumor cells represent an attractive alternative source of antigens
to full-length recombinant tumor proteins and tumor-derived peptides [7,8]. Dendritic cell
(DC) vaccines are a promising method for generating a therapeutic antitumor immune
response. DCs are professional antigen-presenting cells and can initiate T cells function.
DCs derived in vitro from peripheral blood mononuclear cells (PBMCs) can be primed
against tumor antigens in culture; upon subsequent vaccination in tumor-bearing hosts,
they can elicit antitumor immunity [9]. DCs loaded with patient-derived cancer cell lysates
are a feasible treatment in several cancers [10]; however, these are limited by tumor burden.
If abundant TAA-expressing cells were established, they could be an ideal material for
DC vaccines.

Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are remarkably
similar to cancer cells. Cancer cells share many cellular and molecular features with
ESCs [11], including a rapid proliferation rate [12], upregulated telomerase activity [13],
increased expression levels of oncogenes such as c-MYC [14] and Krüppel-like factor 4
(KLF4) [15], similar overall gene expression profiles [16,17], microRNA signatures [18], and
epigenetic statuses [19]. These ESC features resemble the hallmarks of cancer cells that
have sustained proliferative and immortality abilities [20]. The discovery of iPSCs [21,22]
revolutionized stem cell research and the scientific field. Reprogrammed human iPSCs from
somatic tissues share near identical gene expression profiles as ESCs [23–26], which presents
a possible solution to the ethical objections against the use of human ESCs in many countries.
Similar to ESCs, iPSCs share genetic and transcriptomic characteristics with cancer cells [27].
Human iPSCs were first generated by the transduction of fibroblasts with four transcription
factors: OCT4, SOX2, c-MYC, and KLF4 [22]. c-MYC is a well-known oncogene [26,28]
and the other three factors are upregulated in multiple cancer types [29–34]. Moreover,
these genes are associated with tumor progression and poor prognosis in certain tumor
types [35], which suggests that targeting these genes in cancers could be therapeutically
beneficial. Recently, it was reported that irradiated iPSCs elicited an anti-tumor response in
murine melanoma via the immune system in vivo as the iPSCs expressed large amounts of
TAAs with several cancer cells [27,36]. However, it remains unclear whether human iPSCs
elicit the antitumor response via the induction of cancer-responsive T cells.

The administration of irradiated human iPSCs to humans in vivo is ethically controver-
sial and difficult to perform immediately. Therefore, as a first step, we investigated whether
iPSCs could induce cancer-cell-responsive T cells through DCs in vitro. This approach
would also confirm the feasibility of the clinical application of iPSC-pulsed DC vaccination
for cancer immunotherapy.
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2. Results
2.1. Human iPSCs Expressed Tumor-Specific and Tumor-Associated Antigens

We attempted to establish iPSCs derived from human peripheral blood using episomal
gene expression vectors carrying six genes (OCT3/4, KLF4, SOX2, L-MYC, LIN28, and
mouse p53 dominant negative form). Approximately 20 days later, we observed distinct
colonies that were flat and resembled human iPSC colonies. The colonies were picked up,
disaggregated into single cells with enzymatic digestion, and passaged > 10 times, and
they exhibited a similar morphology to human iPSCs (Figure 1a) and expressed alkaline
phosphatase (Figure 1b). The pluripotent stem cell marker expression analysis revealed that
the colonies expressed human-ESC-specific surface antigens, including SSEA-3, SSEA-4,
and TRA-1-60 and the nuclear proteins NANOG and OCT3/4. The colonies did not express
SSEA-1 (Figure 1c,d). Generally, except for a few cells at the edge of the colonies, the human
iPSCs did not express SSEA-1 [22,37].
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Figure 1. Stem cell marker expression in the established colonies. (a) The colonies underwent
> 10 passages. (b) Alkaline phosphatase staining. Pink indicates positive alkaline phosphatase
staining. (c) Immunostaining of stem cell markers expressed in and on the colonies. Green (green
fluorescence) and blue (DAPI) indicate positive staining for individual antigens and the nucleus,
respectively. (d) Flow cytometric analysis of stem cell markers. Light blue and white histograms
depict specific antigens and isotype controls, respectively. White bar = 100 µm in all photos.

To determine the differentiation ability of human iPSCs in vitro, we generated EBs
using suspension cultures as described previously with brief modifications [21,38]. After
cultivation in suspension culture, the colony cells formed sphere structures that were simi-
lar to EBs (Figure 2a). Microarray analysis of the gene expression of the EB-like spheroids
as compared to the established colonies demonstrated that the EB-like spheroids had down-
regulated self-renewal-related genes (CXCL5, DNMT3B, HESX1, IDO1, LCK, SOX2, and
TRIM22, >2-fold changes), and upregulated ectoderm-associated genes (COL2A1, NR2F1,
and ZBTB16, >2-fold changes), mesoderm-related genes (ALOX15, CDH5, HAND1, HEY1,
HOPX, IL6ST, ODAM, PDGFRA, RGS4, SNAI2, and TBX3, >2-fold changes), and endoderm-
associated genes (AFP, ELAVL3, EOMES, FOXP2, GATA6, HMP19, KLF5, LEFTY2, PHOX2B,
RXRG, SOX17, and SST, >2-fold changes) (Figure 2b). These results demonstrated that the
established colonies represented pluripotency and could differentiate into the three germ
layers and were defined as iPSCs.



Int. J. Mol. Sci. 2022, 23, 12992 4 of 15

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 4 of 16 
 

 

Figure 1. Stem cell marker expression in the established colonies. (a) The colonies underwent >10 
passages. (b) Alkaline phosphatase staining. Pink indicates positive alkaline phosphatase staining. 
(c) Immunostaining of stem cell markers expressed in and on the colonies. Green (green fluores-
cence) and blue (DAPI) indicate positive staining for individual antigens and the nucleus, respec-
tively. (d) Flow cytometric analysis of stem cell markers. Light blue and white histograms depict 
specific antigens and isotype controls, respectively. White bar = 100 µm in all photos. 

 
Figure 2. Relative expression of self-renewal and differentiation genes in EB-like spheroids derived 
from the established colonies. (a) EBs induced by the established colonies in the specific culture 
conditions. White bar = 100 µm. (b) Change in gene expression during EB-like spheroid formation 
with the established colonies. Gene expression of EB-like spheroids formed from the established 
colonies in 7-day cultures was determined using microarray analysis. Gene expression was reported 
as the relative fold change between the established colonies and EB-like spheroids. The change from 
red to light purple indicates fold changes (Fc) from 100 to 10, 10 to 2, 2 to −2, −2 to −10, and −10 to 
−100. 

2.2. The Established iPSCs-Expressed TAAs 
We performed microarray analysis on the established human iPSCs to compare the 

expression profiles of T47D (human breast cancer) and SW48 cells (human colorectal can-
cer) and fibroblasts from the National Center for Biotechnology Information (NCBI) GEO 
database. The high-expression genes (gene expression levels > 5) in the iPSCs and T47D 
and SW48 cells and low-expression genes in the fibroblasts (gene expression levels ≤ 5) 
were selected. The 99 genes that were commonly highly expressed in iPSCs and T47D and 
SW48 cells but with low expression in fibroblasts are depicted in Figure 3. The heat map 
depicts the genes included in the cancer-related antigen ranking reported by the US Na-
tional Cancer Institute (NCI), which were selected based on therapeutic function, immu-
nogenicity, antigen role in oncogenicity, specificity, expression level and percent of anti-
gen-positive cells, stem cell expression, number of patients with antigen-positive cancers, 
number of antigenic epitopes, and cellular location of antigen expression [39]. The iPSCs 
also expressed PSMA1, PSMA2, PSMA4, PSMA6, PSMA7, EPCAM, PSAP, and CCNB1, 
which were present in the NCBI cancer antigen ranking (Figure 4). 

Figure 2. Relative expression of self-renewal and differentiation genes in EB-like spheroids derived
from the established colonies. (a) EBs induced by the established colonies in the specific culture
conditions. White bar = 100 µm. (b) Change in gene expression during EB-like spheroid formation
with the established colonies. Gene expression of EB-like spheroids formed from the established
colonies in 7-day cultures was determined using microarray analysis. Gene expression was reported
as the relative fold change between the established colonies and EB-like spheroids. The change
from red to light purple indicates fold changes (Fc) from 100 to 10, 10 to 2, 2 to −2, −2 to −10, and
−10 to −100.

2.2. The Established iPSCs-Expressed TAAs

We performed microarray analysis on the established human iPSCs to compare the
expression profiles of T47D (human breast cancer) and SW48 cells (human colorectal cancer)
and fibroblasts from the National Center for Biotechnology Information (NCBI) GEO
database. The high-expression genes (gene expression levels > 5) in the iPSCs and T47D
and SW48 cells and low-expression genes in the fibroblasts (gene expression levels ≤ 5)
were selected. The 99 genes that were commonly highly expressed in iPSCs and T47D
and SW48 cells but with low expression in fibroblasts are depicted in Figure 3. The heat
map depicts the genes included in the cancer-related antigen ranking reported by the
US National Cancer Institute (NCI), which were selected based on therapeutic function,
immunogenicity, antigen role in oncogenicity, specificity, expression level and percent
of antigen-positive cells, stem cell expression, number of patients with antigen-positive
cancers, number of antigenic epitopes, and cellular location of antigen expression [39].
The iPSCs also expressed PSMA1, PSMA2, PSMA4, PSMA6, PSMA7, EPCAM, PSAP, and
CCNB1, which were present in the NCBI cancer antigen ranking (Figure 4).
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iPSC data were obtained from microarray analysis. The SW48 and T47D cell and fibroblast data were
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order of highest gene expression in the iPSCs.
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2.3. Autologous iPSL/DCs-Induced Tumor-Cell-responsive CTLs Derived from a HLA-A33 Donor

To determine whether human iPSCs could induce tumor-responsive CTLs, we pre-
pared iPSL/DCs generated from peripheral blood cells carrying HLA-A33 and co-cultured
them with CD8+ T lymphocytes in vitro. The CD8+ T lymphocytes were reacted with
cancer cell lines with or without HLA-A33 (Figure 5).
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Figure 5. Schematic representation of CTLs induced by iPSL/DCs. iPSL was prepared by freeze–
thawing and sonication. DCs were induced by rhGM-CSF and rhIL-4 for 4 days. The immature
DCs were loaded with iPSL for 8 h and activated for 24 h with rhTNF-α. The iPSL/DCs were
co-cultured with CTLs in the presence of rhIL-7, re-stimulated by iPSL/DCs, rhIL-2, or rhIL-7 weekly,
and cultured for 3 weeks.

iPSL was prepared by freeze–thawing and sonication. Before the CTL induction
experiments, FITC-labeled annexin V-stained iPSL was co-cultured with immature DCs
and recorded under phase-contrast, fluorescent inverted microscopy to confirm whether
the DCs had captured the iPSL. Annexin V binds to phosphatidylserine in the cell mem-
brane [40]. Accordingly, the iPSL bound by the FITC-labeled annexin V was captured by
the immature DCs within 2 h (Figure 6a and Supplement Video S1). Subsequently, flow
cytometry of the TNF-α-activated iPSL/DCs revealed that the cells were positive for CD80,
CD83, CD86, and HLA class II expression (Figure 6b). The iPSL/DCs were co-cultured
with CTLs, where the CTLs gathered around the DCs and activated (Figure 7). Following
a 3-week culture, sufficient numbers of CTLs were obtained for ELISPOT assays, which
revealed that there were IFNγ-producing cells in 360 ± 87, 100 ± 48, and 35 ± 4 iPSL/DC-
activated CTLs per 5× 105 CTLs co-cultured with SW48, T47D, and T98G cells, respectively.
SW48 and T47D-responding CTLs were increased compared to T98G-responding CTLs. By
contrast, the IFNγ-producing cells in the DC-activated CTLs without iPSL pulsing were
not detectable against each cell line. These results indicated that iPSL/DCs induced CTLs
that reacted with cancer cells carrying HLA-A33 as compared to CTLs that reacted with
cell lines without HLA-A33 (Figure 8).
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Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 6. Immature DCs-captured iPSL and phenotyping characterization of activated iPSL/DCs. 
(a) The photo depicts entrapped FITC-labeled annexin-V-binding iPSL in an immature DC. The 
photo was captured within 2 h after co-culture. (b) Flow cytometric characterization of TNF-α-acti-
vated DCs. The activated DCs expressed the activated markers CD80, CD83, CD86, and HLA-DR. 

  
Figure 7. The CTLs induced by iPSL/DCs. The photo was taken from a 2-week co-culture of CTLs 
with iPSL/DCs. White bar = 200 µm. 

Figure 7. The CTLs induced by iPSL/DCs. The photo was taken from a 2-week co-culture of CTLs
with iPSL/DCs. White bar = 200 µm.



Int. J. Mol. Sci. 2022, 23, 12992 8 of 15
Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 16 
 

 

 

 

Figure 8. CTLs induced by iPSL/DCs respond to cancer cells carrying HLA-A33. (a) Representative 
photos of IFNγ-based ELISPOT assays. Top row depicts IFNγ-producing spots of iPSL/DC-induced 
CTLs co-cultured with cancer cells. Rightmost photo depicts the positive control of IFNγ-producing 
cells stimulated by anti-CD3 and anti-CD28 antibody. Bottom row depicts DC-induced CTLs. (b) 
The graph depicts the frequency of IFNγ-producing cells in 5 × 105 CTLs. Data are the mean ± SD of 
3–4 experiments with at least > 2 independent experiments. The significance of differences was de-
termined by the Mann–Whitney U test. * p < 0.05. 

3. Discussion 
The concept of irradiated murine iPSCs as a prophylactic cancer vaccine has been 

evaluated and elicited antitumor effects in lung cancer [41,42], melanoma [27,43], and pan-

Figure 8. CTLs induced by iPSL/DCs respond to cancer cells carrying HLA-A33. (a) Representative
photos of IFNγ-based ELISPOT assays. Top row depicts IFNγ-producing spots of iPSL/DC-induced
CTLs co-cultured with cancer cells. Rightmost photo depicts the positive control of IFNγ-producing
cells stimulated by anti-CD3 and anti-CD28 antibody. Bottom row depicts DC-induced CTLs. (b) The
graph depicts the frequency of IFNγ-producing cells in 5 × 105 CTLs. Data are the mean ± SD
of 3–4 experiments with at least > 2 independent experiments. The significance of differences was
determined by the Mann–Whitney U test. * p < 0.05.

3. Discussion

The concept of irradiated murine iPSCs as a prophylactic cancer vaccine has been
evaluated and elicited antitumor effects in lung cancer [41,42], melanoma [27,43], and
pancreatic ductal adenocarcinoma [36]. These studies revealed that ESCs also present
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immunogenic features [44,45], where the results implied that the vaccines should be evalu-
ated in humans. However, vaccinating humans with irradiated human iPSCs and ESCs is
ethically controversial and challenging to perform immediately. Therefore, we investigated
as an initial step whether human iPSCs can induce a CTL response to cancer cells via DCs
in vitro. We considered that the experiment could at least present the possibility that human
iPSCs contain abundant functional TAAs that would generate cancer immune responses.
To our knowledge, this is the first report of iPSL/DCs, where both cells were derived
from human PBMCs carrying HLA-A33, and the induced autologous CTLs responded to
HLA-A33-carrying human cancer cells. Our experiment demonstrated that the iPSL/DCs
induced cancer-responsive CTLs, which strongly responded to SW48 cells and responded
less strongly to T47D cells. The CTL response to T98G cells was extremely low. This result
indicated that the iPSL/DCs elicited CTLs that responded to HLA-A33-matched cancer
cells. DCs without iPSL pulsing did not induce CTLs against any of the tested cancer
cells. These results implied that the iPSL/DCs induced cancer-responsive CTLs in an
HLA-A33-unrestricted manner, albeit slightly.

DC vaccines are a promising method of generating a therapeutic antitumor immune
response. DCs are professional antigen-presenting cells and can initiate CTL function. DCs
derived in vitro from PBMCs can be primed against tumor antigens in culture and can elicit
antitumor immunity upon subsequent vaccination in tumor-bearing hosts [46]. DC therapy
is a safe and well-tolerated immunotherapeutic method that can elicit immunity even in
patients with advanced-stage cancer [10] and can obtain a clinical response, yet not in all
patients with cancer, such as melanoma, prostate cancer, malignant glioma, and renal cell
carcinoma [46,47].

Although generating autologous iPSCs for each patient appears to be less feasible and
a prophylactic cancer vaccine currently appears to be less relevant to clinical medicine, the
iPSL/DC-based cancer vaccine described in our study has significant merits as a future
immune therapy in clinical settings under certain scenarios. In a prophylactic setting,
the iPSC/DC vaccine can be generated to treat people at high risk for developing cancer,
such as patients with hereditary chronic pancreatitis, Lynch syndrome, and Li–Fraumeni
syndrome [48–51]. Such patients have a much higher likelihood of developing cancer
in their lifetime and are potentially suitable candidates for prophylactic iPSL/DC cancer
vaccines. Furthermore, the iPSL/DCs can be used as an adjuvant immunotherapy. As an
adjuvant, the irradiated iPSC vaccine inhibited melanoma recurrence at the resection site
and reduced metastatic tumor load [27]. The iPSL/DCs could be developed at diagnosis
and made available in surgical or chemo/radiotherapy treatment of cancer. Under these
situations, the clinical development of cancer vaccines using the iPSL/DCs described in
our study is warranted.

Human iPSCs share abundant TAAs in several cancer cells [27,36]. Here, we demon-
strated that genes that were commonly highly expressed in iPSCs and T47D and SW48 cells
were lowly expressed in fibroblasts (Figure 3). CD24, CXADR, CDH1, EPCAM, ZIC2, F11R,
FAM60A, TNNT1, LOC728715, SLC7A3, GLDC, ESRP1, MYCN, CHD7, SORL1, FGFR2,
NMU, MAL2, ANK3, and FZD3 were the top 20 high-expression genes in the iPSCs and
were candidates for TAAs in iPSL/DC vaccination. The iPSCs also expressed PSMA1,
PSMA2, PSMA4, PSMA6, PSMA7, EPCAM, PSAP, and CCNB1, which were in the NCBI
cancer antigen rankings (Figure 4). These results indicated that the previously reported
candidate TAAs were abundant in iPSCs. However, the expression of Wilms tumor 1 (WT1),
the most useful cancer-related antigen in the NCBI ranking, is very low in iPSCs [39]. On
the other hand, if iPSCs expressed the same genes as normal cells, then the iPSC-reactive
CTLs could attack normal cells. This point is a crucial point of iPSCs or ESCs used for the
TAA source. We do not believe the point to be a major issue. The central positive selection
in the thymus occurs in vivo to prevent normal cells from being attacked by self-active
T cells [52]. Therefore, it is highly possible that iPSCs cannot induce self-reactive T cells
in vivo, which ensures safety.



Int. J. Mol. Sci. 2022, 23, 12992 10 of 15

Taken together, our data demonstrate the feasibility of obtaining broad tumor im-
munity against multiple cancers using an iPSL/DC vaccine that presents the immune
system with large quantities of tumor antigens. Compared to current immunotherapy
strategies, our iPSL/DC vaccine can be generated within a few weeks after diagnosis
without surgery. Given these advantages, iPSC/DC vaccines could be an option for person-
alized immunotherapy immediately following primary treatment of conventional cancers.
Moreover, iPSC/DC vaccines can be generated to prevent high-risk individuals from
developing cancer.

Our study has some limitations. First, we only evaluated the autologous setting in
a donor carrying HLA-A33. If iPSL/DCs are to be applied to a wider range of patients,
it is necessary to evaluate the reactivity of donors with other HLA phenotypes and not
only HLA-A33. In addition, the CD8+ CTL response was limited; therefore, confirming
CD4+ Th cells is an important issue to be addressed in the future. Further, more extensive
in vivo confirmation using humanized mice should be needed. Second, we only evaluated
autologous iPSCs. Allogenic iPSCs are a more attractive tool in iPSL/DC vaccination as
iPSC libraries are stocked and available in several countries. However, autologous iPSCs
may provide a more accurate and representative panel of a patient’s tumor immunogens
than allogenic iPSCs. We believe that resolving these issues would present the possibility
of conducting future clinical trials.

4. Conclusions

Human iPSL/DCs induced cancer-responsive CTLs in an HLA-A33 dependent manner
in vitro. iPSL/DCs could be a promising universal cancer vaccine against several cancers
and a prophylactic cancer vaccine.

5. Materials and Methods
5.1. Ethics

Peripheral blood was collected from a healthy volunteer with the approval of the Nara
Medical University Ethics Committee (No. 1058) and in accordance with its guidelines.
Informed consent was obtained according to the tenets of the Declaration of Helsinki.

5.2. Peripheral Blood Mononuclear Cells

The PBMCs were prepared by density gradient centrifugation (Lymphoprep; Axis-
Shield PoC AS, Oslo, Norway). HLA typing was performed using PCR-sequencing-based
typing (PCR-SBT) at Special Reference Laboratory (Tokyo, Japan).

5.3. Human Cell Lines

The SW48 (colorectal cancer: HLA-A33), T47D (breast cancer: HLA-A33), and T98G
(glioblastoma: HLA-A02) cell lines were obtained from American Type Culture Collec-
tion (Manassas, VA, USA). The cells were maintained in Dulbecco’s modified Eagle’s
medium (DMEM; Thermo Fisher Scientific, Waltham, MA, USA) supplemented with
10% heat-inactivated fetal bovine serum (FBS; MP Biomedicals, Tokyo, Japan), 100 U/mL
of penicillin, and 100 µg/mL of streptomycin (Thermo Fisher Scientific) at 37 ◦C in a
humidified atmosphere containing 5% CO2.

5.4. Generation of iPSCs and Lysate Production
5.4.1. iPSC Generation and Passage

iPSCs were established from PBMCs from an HLA-A33 homozygous donor using
Human iPS Cell Generation Episomal Vector Mix (Takara Bio, Shiga, Japan) with reference
to the protocol of the Center for iPS Cell Research and Application (CiRA) of Kyoto
University, Japan.

Briefly, episomal vectors (OCT3/4, KLF4, SOX2, L-MYC, and LIN28 mouse p53 domi-
nant negative form) were electroporated to 2 × 105 PBMCs using a Human T Cell Nucleo-
fector Kit (Lonza, Basel, Switzerland). The electroporation was performed by Nucleofector
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2B (Lonza), program number V-024. The electroporated cells were cultured in AIM-V
medium (Thermo Fisher Scientific) supplemented with 200 IU/mL of recombinant human
interleukin-2 (rhIL-2; Primmune Inc., Kobe, Japan) in 6-well plates coated with human
laminin 511E8 fragment (iMatrix-511; Nippi, Tokyo, Japan). Then, Human T-Activator
CD3/CD28 (Thermo Fisher Scientific) was added for T cell activation. The medium was
replenished with StemFit AK02N (Ajinomoto, Tokyo, Japan) on days 2, 4, and 6, and the
culture medium was completely changed to StemFit AK02N on day 8. Thereafter, the
medium was changed every 2 days.

Colonies appeared after 20 days and were picked up by pipettes under a stereomi-
croscope (SZ61, Olympus, Tokyo, Japan). The colony-derived cells were incubated for
10 min in TrypLE select (Thermo Fisher Scientific) to prepare for single-cell suspensions.
The cells were cultured in StemFit AK02N supplemented with 10 µM ROCK inhibitor
(Y-27632; FUJIFILM Wako, Tokyo, Japan) in 6-well plates coated with human laminin 511E8
fragment. The next day, the medium was changed to fresh StemFit AK02N without ROCK
inhibitor. The medium was changed to every 2 days until the cells were confluent. The
cellular characterization was performed after >10 passages.

5.4.2. Cellular Characterization of iPSCs

Alkaline phosphatase staining was performed on the culture plates with a Leukocyte
Alkaline Phosphatase Kit based on naphthol AS-MX phosphate and fast blue RR salt
(Sigma-Aldrich, MO, USA).

The immunofluorescent detection of the stem/progenitor cell markers was performed
by flow cytometry and immunocytochemistry. In flow cytometry, the cells were stained
with the following primary antibodies: phycoerythrin (PE)-conjugated mouse anti-human
stage-specific embryonic antigen (SSEA)-4 (clone MC-480; BioLegend, San Diego, CA, USA),
PE-conjugated mouse anti-human tumor-related antigen (TRA)-1-60-R (BioLegend), and
PE-conjugated mouse anti-human SSEA-1 (MC-480, BioLegend). Intracellular NANOG
and OCT3/4 expression was detected with a BD Pluripotent Stem Cell Transcription
Factor Analysis kit (BD Biosciences, Franklin Lakes, NJ, USA). The flow cytometric data
were acquired by a BD FACSCalibur unit (BD Biosciences) and analyzed using CellQuest
software version 6.0 (BD Biosciences) or FlowJo (BD Biosciences).

In the immunocytochemistry, the primary antibodies were mouse anti-human SSEA-4
(813-70; Santa Cruz Biotechnology, TX, USA), mouse anti-human TRA-1-60 (MAB4360;
Merck Millipore, Billerica, MA, USA), mouse anti-human SSEA-1 (MC480; BioLegend),
rabbit anti-human NANOG (ReproCELL, Kanagawa, Japan), and mouse anti-human
OCT3/4 (C-10; Santa Cruz Biotechnology). The secondary antibodies were Alexa Fluor
488-conjugated goat anti-mouse IgG (H+L) (Thermo Fisher Scientific) and Alexa Fluor
488-conjugated goat anti-rabbit IgG H&L (Abcam, Cambridge, UK). Nuclear staining
was performed using 4′,6-diamidino-2-phenylindole dihydrochloride (DAPI; Dojin, Ku-
mamoto, Japan). Phase-contrast and fluorescent images were captured by an IX83 inverted
microscope (Olympus) and analyzed with cellSens imaging software (Olympus).

5.4.3. Preparation of iPS Lysate

iPSC lysate (iPSL) was prepared as previously reported [47]. Briefly, iPSCs were
harvested from confluent culture flasks and resuspended at 1 × 107/mL in phosphate-
buffered saline (PBS). The iPSL was produced via five freeze–thaw cycles and subsequent
sonication by a Q700 sonicator (Qsonica, Newtown, CT, USA) to produce a homogeneous
lysate. The sonication setting was as follows: amplitude 20 and pulse time 7 s. For
confirmation of iPSL phagocytosis by DCs, 2 × 105 iPSLs was stained with 20 µL of
fluorescein isothiocyanate (FITC)-labeled annexin V (BioLegend).
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5.5. Comprehensive Gene Expression Analysis
5.5.1. RNA Extraction and Microarray Gene Expression Assay

The total RNA of the cells was extracted with a NucleoSpin RNA kit (MACHEREY-
NAGEL, Düren, Germany). The gene expression of the RNA samples was analyzed by
Takara Bio using the Affymetrix Human Genome U133 Plus 2.0 Array (Affymetrix, Santa
Clara, CA, USA). The microarray data were obtained from the established iPSCs and
embryoid bodies (EBs) and deposited in the Gene Expression Omnibus (GEO) database.
The iPSC and EB accession numbers were GSE213687, respectively.

5.5.2. Differentiation Ability of iPSCs into Ebs

Ebs were induced from iPSCs in Primate ES Cell Medium (ReproCELL) supplemented
with KnockOut™ Serum Replacement (Thermo Fisher Scientific) at an EZSPHERE 6-well
plate (IWAKI, Sizuoka, Japan) for 7 days. Differentiation ability was confirmed by the
expression of three germ layer markers in the Ebs via microarray gene expression assays.
Differential expression analysis was performed by Transcriptome Analysis Console (TAC)
software (Thermo Fisher Scientific) using the gene set below. These gene contents were
based on published work and were validated against multiple human ES and iPS lines [23].

Self-renewal: CXCL5, DNMT3B, HESX1, IDO1, LCK, NANOG, SOX2, TRIM22.
Ectoderm: CDH9, COL2A1, DMBX1, DRD4, EN1, LMX1A, MAP2, MYO3B, NOS2,

NR2F1, OLFM3, PAPLN, PAX3, POU4F1, PRKCA, SDC2, SOX1, TRPM8, WNT1, ZBTB16.
Mesoderm: ABCA4, ALOX15, BMP10, CDH5, CDX2, COLEC10, ESM1, FCN3, FENDRR,

HAND1, HAND2, HEY1, HOPX, IL6ST, NKX2-5, ODAM, PDGFRA, PLVAP, RGS4, SNAI2,
TBX3, TM4SF1.

Endoderm: AFP, CABP7, CDH20, CLDN1, CPLX2, ELAVL3, EOMES, FOXA1, FOXA2,
FOXP2, GATA4, GATA6, HHEX, HMP19, HNF1B, HNF4A, KLF5, LEFTY1, LEFTY2,
NODAL, PHOX2B, POU3F3, PRDM1, RXRG, SOX17, SST.

5.5.3. Comparison of the Expression Patterns of Tumor-associated Genes in iPSCs

The comprehensive gene expression data of the iPSCs were obtained from GEO
database accession numbers GSM829481 and GSM829481, GSM274652 and GSM2318773
(T47D cells), GSM1400240 and GSM844713 (SW48 cells), and GSM1868517 and GSM1868518
(fibroblasts). Differential expression analysis was performed with TAC software.

5.6. Preparation of iPSL-Loaded DCs and CTL Induction

To prepare the DCs, 5 × 106 PBMCs carrying HLA-A33 from a homozygous donor
were suspended in AIM-V medium supplemented with 10% autologous plasma in a 6-well
plate (Corning, CA, USA). The cells were enriched by adherence and cultured with AIM-V
supplemented with 800 IU/mL of rh granulocyte–monocyte colony-stimulating factor
(rhGM-CSF; Primmune Inc.) and 500 IU/mL of rhIL-4 (Primmune Inc.). After 2 days,
800 IU/mL of rhGM-CSF and 500 IU/mL of rhIL-4 were added and cultured for another
2 days.

Immature DCs (2× 105) were loaded with 6× 105 iPSLs in AIM-V medium containing
10% autoplasma for 8 h and activated by a 24 h culture with 20 ng/mL of rh tumor necrosis
factor alpha (rhTNF-α; Miltenyi Biotech, Bergisch Gladbach, Germany). The activated
DCs were stained with FITC-conjugated anti-human CD80 (clone B7-1, BD Biosciences),
PE-conjugated anti-human CD83 (BL11, BD Biosciences), PI-conjugated anti-human CD86
(B70/B7-2, BD Biosciences), and FITC-conjugated anti-human HLA-DP, DQ, and DR (Tü39,
BD Biosciences). Flow cytometric analysis was performed with a BS FACSMelody unit (BD
Biosciences). Paired IgG isotype controls (BD Biosciences) were used.

The 8 × 104 iPSL-pulsed DCs (iPSL/DCs) were co-cultured with 2 × 106 purified
CD8+ T cells isolated with an EasySep Human CD8+ T Cell Isolation Kit (STEMCELL
Technologies, Vancouver, Canada) in the presence of 10 ng/mL of rhIL-7 (Miltenyi Biotech)
and re-stimulated by 8 × 104 iPSL/DCs, or 10 IU/mL of rhIL-2 or rhIL-7 weekly and
cultured for 3 weeks.
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5.7. ELISPOT Assays

Interferon (IFN) γ-secreting cells were detected with a Human IFNγ Single-Color
Enzyme-Linked ImmunoSpot (ELISPOT) kit (Immunospot; Cellular Technology Limited,
Shaker Heights, OH, USA) according to the manual. Briefly, nitrocellulose plates were
coated with mouse anti-human IFNγ antibody overnight at 4 ◦C. The wells were washed
with PBS and iPSL/DC-stimulated CTLs were co-cultured with SW48, T47D, or T98G cells
at an effector-to-target cell ratio of 2:1. The positive control was IFNγ released by CTLs
stimulated with CD3/CD28 beads (Thermo Fisher Scientific). After 20 h of incubation at
37 ◦C and 5% CO2, staining and color development were performed. Color spots were
determined by counting under stereomicroscopy.

5.8. Statistics

Statistical analyses were performed using GraphPad Prism 8 (GraphPad Software Inc.,
La Jolla, CA, USA). The data are reported as the mean ± standard deviation (SD). The
significance of differences was determined by the Mann–Whitney U test. We considered
p < 0.05 statistically significant.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ijms232112992/s1, Video S1: Immature DC captured iPSL.
The video shows an immature DC entrapping FITC-labeled annexin V-binding iPSL. The video was
captured under fluorescent and inverted microscopy 4 h after co-culture.
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