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Abstract: Muscarinic acetylcholine receptors are membrane receptors involved in many physiological
processes. Malfunction of muscarinic signaling is a cause of various internal diseases, as well
as psychiatric and neurologic conditions. Cholesterol, neurosteroids, neuroactive steroids, and
steroid hormones are molecules of steroid origin that, besides having well-known genomic effects,
also modulate membrane proteins including muscarinic acetylcholine receptors. Here, we review
current knowledge on the allosteric modulation of muscarinic receptors by these steroids. We give
a perspective on the research on the non-genomic effects of steroidal compounds on muscarinic
receptors and drug development, with an aim to ultimately exploit such knowledge.
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1. Introduction

Muscarinic acetylcholine receptors (mAChRs) are members of the G-protein-coupled
receptor (GPCR) family, and are represented by five distinct receptor subtypes, M1–M5 [1].
When activated by their endogenous agonist acetylcholine (ACh), mAChRs exert their
functions through second messenger cascades by coupling to specific classes of G-proteins
(Figure 1). The M1, M3 and M5 subtypes preferentially activate phospholipase C (PLC)
and promote calcium mobilization through Gq/11, while M2 and M4 receptors inhibit the
activity of adenylyl cyclase and thus cAMP synthesis via the Gi/o family of G-proteins [2].

Given the distribution of individual mAChRs subtypes, their expression levels and
activation of distinct signaling cascades, these receptors play an important role in me-
diating a wide range of physiological functions in the central and peripheral nervous
systems [3]. Malfunction or dysregulation of cholinergic signaling mediated by these recep-
tors is strongly associated with the development of multiple pathological conditions and, as
a consequence, targeting individual mAChRs subtypes represents a promising therapeutic
approach for the treatment of neurologic and psychiatric conditions, e.g., Alzheimer’s dis-
ease, Parkinson’s disease, schizophrenia, substance abuse (for review see [4]) and diseases
such as type 2 diabetes, asthma, cardiovascular diseases, and incontinence [5–7].
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the receptor between ECL2 and ECL3 [8]. Ach—acetylcholine; ECL—extracellular loop; TM—trans-
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adenylyl cyclase; PLC—phospholipase A. 
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tetrandrine [19], and 9-methoxy-α-lapachone [20], along with many others. The allosteric 
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Figure 1. Schematic structure of mAChRs and their preferential signaling pathways. Classi-
cal allosteric modulators of mAChRs, such as gallamine or alcuronium, bind to the extracellular
part of the receptor between ECL2 and ECL3 [8]. Ach—acetylcholine; ECL—extracellular loop;
TM—transmembrane α-helix; ICL—intracellular loop; DAG—diacylglycerol; IP3—inositol triphos-
phate; AC—adenylyl cyclase; PLC—phospholipase A.

The mAChRs are also characterized by the highly conserved structure of their orthos-
teric binding sites; thus, it is virtually impossible to selectively activate individual subtypes
of the receptor. This issue directed the research toward the development of compounds
which act as allosteric modulators of mAChRs. By definition, allosteric modulators bind
to a site spatially distinct from that of the endogenous transmitter; they change receptor
conformation, leading to alterations in binding properties of the specific ligand (ACh for
mAChRs), i.e., its affinity and ultimately potency and efficacy [9,10]. Allosteric binding
sites of mAChR are far less conserved in their structures and thus offer a possibility for
the development of mAChRs subtype-specific compounds [11]. Consequently, in the past
decades, a great effort has been dedicated to the research and development of allosteric
modulators that bind to these less conserved sites.

The most studied allosteric modulators of muscarinic receptors are neuromuscu-
lar blockers, such as gallamine [12,13], alcuronium and pancuronium [14]. According
to the literature, many other allosteric modulators have been described. For example,
thiochrome [15], verapamil [16], strychnine, [17], (−)-eburnamonine [18], fangicholine
and tetrandrine [19], and 9-methoxy-α-lapachone [20], along with many others. The
allosteric modulation of muscarinic receptors has been studied in a variety of patholog-
ical states [21–23]. As result of an enormous study, selective allosteric modulators have
been identified. For example, benzylquinoline carboxylic acid (M1-selective allosteric
modulators) [24,25] and compounds VU0010010, VU0152099, VU0152100, and LY2033298
(M4-selective allosteric modulators) have all been determined as such [26–28]. The selective
positive allosteric modulation is considered a druggable target for the potential treatment
of psychiatric and neurologic disorders, like Alzheimer’s disease or schizophrenia.

Multiple reports have shown that the interaction of steroids with mAChRs affects
the ligand binding and functional responses of these receptors. It was demonstrated that
molecules of membrane cholesterol (CHOL) change the affinity of muscarinic ligands
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and affect mAChRs activation dynamics [29–31]. CHOL represents a structural building
block for all endogenous steroids, including steroid hormones (SHs) [32–35]. Typically,
SHs (corticosteroids, sex steroids, bile acids) exert their well-known regulatory effects via
activation of nuclear receptors (NRs), resulting in gene transcription and protein synthesis.
This accounts for their long-lasting genomic effects from hours to days. It is noteworthy
that SHs are also known to directly bind to and activate their specific membrane recep-
tors, such as the progesterone receptor (mPR) or androgen receptor (mAR), along with
estrogen membrane receptors α and β (mERα and mERβ), as well as the GPCR receptor
GPR30 [36,37]. However, direct binding and modulation of actions of membrane-located re-
ceptors is a much faster process than the classic genomic effects, and lasts from milliseconds
to minutes [36].

The non-genomic properties are characteristic of steroids synthesized de novo from
the CHOL in the nervous system, in particular for neurosteroids (NSs) and also SHs [38].
Their synthetic analogues, which employ the same mode of action, are called neuroactive
steroids (NASs). By acting through numerous ligand-gated ion channels, voltage-gated ion
channels, or GPCRs, NSs produce various effects on the central and peripheral nervous
system (CNS and PNS) [33,39]. Among NSs, SHs are also known to affect ACh release
and cholinergic neurotransmission via interaction with mAChRs, improving memory
and cognition [40,41]. Multiple reports describe that SHs bind to mAChRs and inhibit
the interaction with muscarinic ligands at micromolar or higher concentrations [42–45],
suggesting that steroids present in the body at physiological, i.e., nanomolar concentrations,
cannot modulate mAChRs. However, it was recently proven otherwise. SHs can also act
as NSs, i.e., progesterone and corticosterone, which have been shown to bind to mAChRs
and modulate them in an allosteric manner at nanomolar concentrations [46]. Moreover,
presumed binding sites of NSs and NAS at mAChRs were also identified [47].

There is a growing need for summarization and discussion of previous reports con-
cerning the effects of steroids on mAChRs. Until now, an exact mechanism of action and a
manner of steroids binding to these receptors has not been fully understood. In this review,
therefore, we will focus on the mAChRs in the CNS and the allosteric modulation of their
activity by endogenous and exogenous steroids. In particular, we describe the direct and
indirect modulation of mAChRs by CHOL, SHs, NSs and NASs.

2. Cholesterol, Neurosteroids and Neuroactive Steroids
2.1. Cholesterol

A steroidal molecule is characterized by a tetracyclic cyclopenta[a]phenanthrene
skeleton that has a specific position numbering and ring letters (Figure 2). The primary
function of CHOL is structural. It serves as the main building block for synthesizing various
SHs (gonadal sex hormones and adrenal glucocorticoids and mineralocorticoids), vitamin
D, bile acids, and also NSs. A simplified scheme of steroid biosynthesis is summarized
in Figure 3.

CHOL is also an essential component of the cell membranes, maintaining their fluidity
and integrity. Within the membrane, a polar C-3 hydroxyl group of CHOL interacts with
surrounding phospholipids and proteins, while the tetracyclic steroid skeleton with the
lipophilic C-17 substituent interacts with the fatty acids. This enables the integration
of CHOL into the lipid bilayer and secures its integrity [48]. Molecules of CHOL are
distributed throughout the plasma membranes and may form dimers, as detected in X-ray
crystal structures of membrane proteins [49], or concentrate in specialized sphingolipid-
rich domains known as lipid rafts [50]. Fractions of membranes rich in CHOL are thicker
and more rigid. Near the receptors, lipid rafts interfere with the machinery of signal
transduction [50], diminishing the availability of signaling molecules and affecting the
activity of the receptors [51]. Thus, the close interaction of CHOL with membrane proteins,
including ion channels and GPCRs, affects processes of ligand binding, receptor activation
and signal transduction [52–54].
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Lipid molecules are frequently found in X-ray and cryo-EM structures of GPCRs,
indicating that these lipids may specifically interact with GPCRs in their membrane envi-
ronment [54]. If so, then they may allosterically modulate ligand binding to the receptors
and the functional response of receptors to agonists. As CHOL binds to multiple specific
binding sites on many GPCRs, it can be considered their allosteric modulator [55–57].
Indeed, membrane CHOL was found to co-crystallize with various GPCRs for distinct
classes of agonists as published in the RCSB database (https://www.rcsb.org/ (accessed
on 20 February 2022)). As for the mAChRs, CHOL was not found in the crystal structures
of the receptors. However, its binding site was revealed using molecular docking [31].

https://www.rcsb.org/
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The molecules of CHOL can directly influence GPCR activity by altering the binding of
a specific ligand, affecting receptor activation as well as a receptor-to-G-protein coupling.
CHOL can also affect GPCRs indirectly through changes in the membrane organization,
such as alterations in the fluidity of the membrane surrounding the receptor and thus
effectors available for signaling (signal trafficking). For review, see [10,58,59].

2.2. NSs, NASs–Functions and Their Genomic and Non-Genomic Effects

As mentioned previously, NSs represent a class of endogenous compounds synthe-
sized de novo in CNS from CHOL or steroidal precursors imported from peripheral
endocrine glands. NSs are known to modulate neuronal excitability by acting through
various ligand-gated ion channels and GPCRs [38,54], both, positively and/or negatively.
The best-known function of NSs in CNS is the modulation of γ-aminobutyric acid (GABAA)
receptors responsible for inhibitory neurotransmission in the brain [60]. Further, some NSs
modulate the N-methyl-D-aspartate (NMDA) glutamate receptors, α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionate (AMPA)/kainate receptors, glycine or nicotinic acetylcholine
receptors (nAChRs) [33]. Consequently, NSs are involved in the regulation of various CNS
functions such as cognition and memory processes [61]. Moreover, NSs also modulate
pain pathways [62–65], and exert neuroprotective effects [66–68], among a myriad of other
actions. For review, see [69].

In contrast, SHs, by definition, should exert multiple functions via the activation of
nuclear receptors (NRs) specific for steroid hormones [70]. Typically, activation of NRs
induces gene transcription and protein synthesis, therefore their action is relatively slow
(hours to days) [36]. Nevertheless, there is a piece of strong evidence that, in addition to
the classical genomic mechanism of action, SHs can exert rapid, non-genomic signaling via
interaction with membrane receptors [36,71,72]. Consequently, the literature describes the
crucial role of SHs in the development and functioning of the CNS [72–75]. For example,
synthesized locally within CNS, progesterone [76] and estradiol [77] influence neuronal
functions and produce a variety of effects that are unrelated to reproduction [78–81].
Acting as NSs, estradiol, progesterone as well as corticosterone, regulate cognition [82–84],
memory [85,86], brain development [87] and behaviour [88].

On the other hand, some steroids share both hormonal and neurosteroid activity.
For example, allopregnanolone—a well-known example of a potent allosteric modulator
of GABAA receptors—was demonstrated to also exert genomic effects via activation of
mPRs [89,90]. Similarly, dehydroepiandrosterone (DHEA), a metabolic intermediate in the
biosynthesis of many SHs and the most abundant hormone in mammals, is secreted by
the adrenal gland and ovary. Its hormonal effects are mediated through androgen and
estrogen receptors, peroxisome proliferator-activated receptor (PPAR), pregnane X receptor
(PXR), and the constitutive androstane receptor (CAR) [91]. Regarding neurosteroid activity
of DHEA, it has been described as a ligand of GABAA, NMDA, sigma-1 receptors and
L-type calcium channels. This explains the effects of DHEA on physiological functions and
pathological abnormalities in the brain [92,93].

Taken together, the current literature shows that the effects of steroids are complex
and cannot be assigned to a single mode of action. Such a multi-target mode of action may
explain their unique drug-likeness in a variety of neurological and psychiatric conditions.
When interacting with membrane receptors, the effects of NSs are exerted in a manner of
non-genomic signaling. However, chronic exposure to NSs may indirectly (non-genomic
pathways) induce genomic action (e.g., changes in receptor expression) [33,94]. Therefore,
the crosstalk between genomic and non-genomic steroid effects needs to be taken into
consideration. The interplay of genomic and non-genomic actions of NASs is summarised
in Figure 4.



Int. J. Mol. Sci. 2022, 23, 13075 6 of 18Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 6 of 18 
 

 

 

Figure 4. The interplay between genomic and non-genomic effects of steroids. Top, non-genomic, 

rapid (seconds to minutes) signaling: the activation of membrane-localized receptors for estrogen 

(mERα; mERβ; GPER1/GPR30), progesterone (mPR), glucocorticoids (mGR) and androgens (mAR) 

by a specific hormone modulates numerous signaling cascades and produces different cellular ef-

fects [95,96]. NSs exert their rapid, non-genomic effects via modulation of membrane ionotropic 

receptors and channels, e.g., γ-aminobutyric acid receptors, GABAA or NMDA receptors, resulting 

in excitability changes within neurons. Activation of Gs protein results in stimulation of adenylyl 

cyclase (AC) and cAMP synthesis; activation of Gq/11 protein results in the activation of phospho-

lipase C (PLC) and production of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG); acti-

vation of Gi/o proteins inhibits AC and cAMP synthesis. Middle, metabolites of neurosteroid (NSs) 

produced by intracellular oxidation bind to steroid receptors [33,35]. Bottom, slow genomic effects 

(minutes to hours): steroid hormones (SHs) bind to their specific intracellular class I nuclear recep-

tors (progesterone receptor (PR), oestrogen receptors (ERα and β), glucocorticoid receptors (GR) or 

androgen receptors (AR)) which, in the absence of the ligand, reside in the cytosol. The binding of 

the ligand to these receptors results in the translocation of the receptor–ligand complex to the nu-

cleus where it binds to specific hormone response elements (HREs) and regulates gene transcription. 

The figure was prepared according to [33,36,94]. 

3. Muscarinic Receptors 
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Figure 4. The interplay between genomic and non-genomic effects of steroids. Top, non-genomic,
rapid (seconds to minutes) signaling: the activation of membrane-localized receptors for estrogen
(mERα; mERβ; GPER1/GPR30), progesterone (mPR), glucocorticoids (mGR) and androgens (mAR)
by a specific hormone modulates numerous signaling cascades and produces different cellular ef-
fects [95,96]. NSs exert their rapid, non-genomic effects via modulation of membrane ionotropic
receptors and channels, e.g., γ-aminobutyric acid receptors, GABAA or NMDA receptors, resulting in
excitability changes within neurons. Activation of Gs protein results in stimulation of adenylyl cyclase
(AC) and cAMP synthesis; activation of Gq/11 protein results in the activation of phospholipase C
(PLC) and production of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG); activation of
Gi/o proteins inhibits AC and cAMP synthesis. Middle, metabolites of neurosteroid (NSs) produced
by intracellular oxidation bind to steroid receptors [33,35]. Bottom, slow genomic effects (minutes to
hours): steroid hormones (SHs) bind to their specific intracellular class I nuclear receptors (proges-
terone receptor (PR), oestrogen receptors (ERα and β), glucocorticoid receptors (GR) or androgen
receptors (AR)) which, in the absence of the ligand, reside in the cytosol. The binding of the ligand to
these receptors results in the translocation of the receptor–ligand complex to the nucleus where it
binds to specific hormone response elements (HREs) and regulates gene transcription. The figure
was prepared according to [33,36,94].
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3. Muscarinic Receptors

Muscarinic acetylcholine receptors (mAChR) are members of class A, Rhodopsine-like
GPCRs, and are represented by five distinct receptor subtypes, M1–M5 [1]. Like all GPCRs,
mAChRs are integral membrane proteins consisting of seven transmembrane α-helices
(TM1 to TM7) connected via three intracellular (ICL1 to ICL3) and three extracellular (ECL1
to ECL3) loops (Figure 1). Individual TM helixes form a hydrophilic pocket (orthosteric
binding site) accessible from the extracellular side for endogenous signaling molecules.
mAChRs activation by their endogenous agonist ACh results in subsequent G-protein acti-
vation, and depending on the G-protein class, mediates various cellular responses [97,98].

Activated mAChRs trigger distinct second messenger cascades coupled to designated
G-protein classes and thus mediate a wide range of physiological functions throughout
the body. M1, M3, and M5 mAChR subtypes preferentially activate Gq/11 G-proteins to
stimulate phospholipase C (PLC) and induce the mobilisation of intracellular calcium. M2
and M4 receptors activate Gi/o G-proteins, the α-subunit of which inhibits adenylyl cyclase
(AC), decreasing the production of cAMP, while the βγ-dimer of G-proteins modulates
conductance of K+ and Ca2+ channels [3,99]. Besides these preferential signaling path-
ways, muscarinic agonists may activate also other ones, termed non-preferential signaling
pathways [100,101].

Specific targeting of mAChRs subtypes, and thus selective regulation of their signaling
pathways, might be of great value in seeking the treatment for the CNS [4] and diseases
affecting internal organs [5–7].

4. Direct Effects of Steroids on mAChRs
4.1. Direct Effects of Cholesterol

Molecules of CHOL can directly influence GPCRs by altering the binding of a specific
ligand, activation of a receptor as well as preferences of receptor-to-G-protein coupling. In
contrast, CHOL can affect GPCRs indirectly through changes in the membrane organization,
such as alterations in the fluidity of the membranes surrounding GPCRs and thus signal
trafficking [58,59].

The membrane CHOL modulates GPCRs by acting on their allosteric binding sites.
CHOL-binding motifs were predicted based on analyses of X-ray and cryo-EM structures of
various GPCRs. Three CHOL-binding motifs were described so far. The motif common to
all membrane proteins is the Cholesterol Recognition Amino acid Consensus (CRAC) [102]
and its inverse variant (CARC) [103]. The so-called Cholesterol Consensus Motif (CCM),
the groove formed by the transmembrane domains TM2, TM3 and TM4, was identified
in the structure of the β2-adrenergic receptor [56]. As CHOL-binding sites on GPCRs are
distinct from the binding sites of endogenous transmitters, CHOL can be considered an
allosteric modulator [56]. Allosteric binding sites on mAChRs represent far less conserved
structures compared to their orthosteric binding site, and offer a possibility to target specific
receptor subtypes [11].

Initially, it was demonstrated that CHOL directly affects the affinity of muscarinic
ligands. An increase in the content of CHOL within the membrane resulted in a reduced
affinity for the muscarinic agonist carbachol at M2, but increased its affinity at M1 and M3
receptors. On the other hand, CHOL depletion increased the affinity of carbachol to M1,
M2, and M3 subtypes. In contrast, CHOL depletion was shown to diminish the affinity of
the muscarinic antagonist N-methylscopolamine (NMS) at these receptors. Enrichment
of membranes with CHOL caused a decrease in affinity for NMS at M1 and M3, and an
increase in affinity at the M2 receptor [29,30].

Changes in the content of the membrane CHOL also affect preferential and non-
preferential signaling through the M2 as well as M1, and M3 expressed in CHO cells [29,30].
CHOL-dependent changes in preferential mAChRs signaling are presented in Figure 5. Re-
garding M2, CHOL depletion significantly strengthens the preferential signaling pathway
Gi/o and reinforces the maximal effect of inhibition of cAMP synthesis. It also stimu-
lated non-preferential Gs and Gq/11 signaling pathways, as shown in Figure 5B. Addi-



Int. J. Mol. Sci. 2022, 23, 13075 8 of 18

tionally, in the case of M1 and M3 receptors, both gradually increase and decrease in
membrane CHOL concentration, resulting in a concentration-dependent inhibition of the
preferential signaling pathway via Gq/11 and a decrease in accumulation of inositol trispho-
sphate(Figure 5B,C). As for the non-preferential Gs-mediated signaling, an increase in
membrane CHOL concentration inhibited the cAMP accumulation, while a decrease in
membrane CHOL concentration stimulated cAMP synthesis.
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Figure 5. Influence of membrane CHOL content on preferential and non-preferential signaling of
mAChRs. (A) standard mAChRs signaling in the cell membrane with a natural level of CHOL
(light blue steroid molecule). Preferential coupling of M1, M3, M5 receptors to Gq/11 protein (green
box) and M2, M4 receptors coupling to Gi/o protein (purple box). (B) depletion of membrane
CHOL diminishes preferential Gq/11 signaling and enhances preferential Gi/o and non-preferential
Gs (red box) and Gq/11 signaling. (C) increase in membrane CHOL level attenuates signaling via
preferential G-proteins.

Based on molecular modeling, the CHOL allosteric binding site was found in the
intracellular leaflet of the membrane between TM6 and TM7 of mAChRs [31]. This binding
site presumably also represents a site of binding for various steroidal compounds. In
addition, subtype specificity of some ligands was shown to be affected by the content of
membrane CHOL. Specifically, binding of CHOL at the TM6 and TM7 interface attenuates
activation of M1, M4 and M5 receptors [31].

Xanomeline (3-(hexyloxy)-4-(1-methyl-1,2,5,6-tetrahydropyridin-3-yl)-1,2,5-thiadiazole)
is a muscarinic agonist considered functionally selective for M1 and M4 receptors, developed
for treatment of Alzheimer’s disease [104,105]. Xanomeline binding to mAChRs is partially
resistant to washing [106]. Wash-resistant xanomeline steadily activates mAChRs with
an exception of the M5 subtype [107]. Mutation of leucine 6.46 to isoleucine at the CHOL
binding site in M1 and M4 receptors resulted in receptors insensitive to activation by wash-
resistant xanomeline. On the other hand, the mutation of isoleucine 6.46 to leucine in
the M5 receptor made it sensitive to activation by wash-resistant xanomeline. Decreasing
membrane CHOL content reversed the effects of mutations, indicating that xanomeline
functional selectivity is rather the result of specific receptor–membrane interactions than
agonist–receptor interactions [31]. Thus, changing membrane CHOL level or interaction of a
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receptor with the membrane might represent a novel possibility to achieve pharmacological
selectivity for mAChRs.

4.2. Non-Genomic Effects of NSs and NASs on mAChRs

Historically, multiple reports showed that the interaction of SHs with mAChRs alters
the binding dynamics of various ligands [42–44,108–111]. Early research conducted on
the direct effects of SHs on mAChRs was focused on changes in the binding of radiola-
belled muscarinic antagonists like [3H]-quinuclidinyl benzilate ([3H](-)QNB), N-methyl-
[3H]-4-piperidyl benzilate ([3H]4NMPB) or N-methyl-[3H]-scopolamine ([3H]NMS) in the
cell membranes prepared from rat brain tissues. In competitive binding studies with
[3H]4NMPB, the steroids progesterone and estradiol affected the binding properties of the
mAChR agonist, oxotremorine. Both steroids decreased the affinity and proportion of the
high-affinity binding sites [112]. Later in experiments with [3H]NMS, other researchers
confirmed that progesterone and estradiol (but not testosterone) bind to mAChRs in the
membranes prepared from the rat hypothalamus and amygdala tissues [113].

In the study by Klangkagaya and Chan [44], the effects of 50 steroid compounds on
[3H](-)QNB binding to mAChRs in hypothalamic and pituitary membranes was reported.
The structures of active pregnane and androstane compounds, including their IC50 values
in inhibiting the [3H](-)QNB binding, are summarized in Figures 6 and 7, respectively.
The results of this study demonstrated that the pregnane skeleton is considerably more
relevant for further development than the androstane skeleton. Further, it was determined
that incomplete inhibition of [3H](-)QNB binding by tested steroidal compounds indicates
allosteric modulation of [3H](-)QNB binding [44].

Regarding the structure–activity relationship, modifications of the progesterone skele-
ton afforded structures with IC50 values in the tens of µM. In contrast, except for testos-
terone acetate with an IC50 value of 18 µM, the IC50 values of androstane analogues varied
from 100 to 200 µM. Interestingly, the 17α-hydroxy-substituted pregnane skeletons were
active, except for hydrocortisone and 17α-hydroxy-5α-pregnan-3,20-dione (IC50 > 200 µM).
Similarly, the hydroxylation of the skeleton in position C-21 was tolerated well. In contrast,
hydroxylation at position C-11 strongly diminished the affinity for mAChRs (corticosterone
and hydrocortisone, IC50 > 200 µM), while the presence of the 11-oxo group decreased
the affinity only slightly. Reduction of the ∆3,4-enone to 5β-steroids afforded compounds
with higher affinity than the corresponding 5α-analogues. Accordingly, the orientation
of the hydrogen atom at the C-5 position was identified as crucial for the inhibition of
[3H](-)QNB binding.

As mentioned previously, modification of the testosterone skeleton did not afford
active compounds with low micromolar affinities (Figure 7). Out of 50 tested compounds, 16
of them were androstanes, and 7 of them showed the ability to inhibit [3H](-)QNB binding
to mAChRs. It should be mentioned that estradiol was also inactive (IC50 > 200 µM) [44].

Further, the allosteric mode of mAChRs modulation by NSs and NASs was described
in the study of Shiraishi et al. [111]. The synthetic analgesic neurosteroid alfaxalone (3α-
hydroxy-5β-pregnane-11,20-dione) decreased [3H](-)QNB binding to M1 and M3 receptors
(IC50 2.6 µM and 4.5 µM, respectively) and inhibited acetylcholine-induced Ca2+-activated
Cl− currents in oocytes, expressing M1 and M3 receptors (IC50 values of 1.8 µM and 5.3 µM,
respectively). A selective protein kinase C inhibitor GF109203X had a negligible effect on
the inhibition of ACh-induced currents by alfaxalone, confirming allosteric modulation of
these mAChRs [111].

Similarly, Horishita et al. [42] described voltage clamp experiments showing that
pregnenolone and progesterone altered acetylcholine-induced Ca2+-activated Cl− currents,
while DHEA did not affect the function of M1 and M3 receptors expressed in Xenopus
oocytes. The IC50 values at M1 and M3 for progesterone were 2.5 and 3 µM, while for
pregnenolone they were 11.4 and 6 µM, respectively. Further, both steroids were shown to
diminish [3H](-)QNB binding to M1 and M3 receptors. Both steroids also affected affinity



Int. J. Mol. Sci. 2022, 23, 13075 10 of 18

and binding capacity, indicating non-competitive inhibition, showing that tested steroids
bind to M1 and M3 receptors at an allosteric binding site [42].
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The literature summarized above describes the effects of steroids on specific lig-
and binding to muscarinic mAChRs. In general, these binding studies suggested that
compounds sharing a steroid scaffold with CHOL bind to mAChRs at the site distinct
from their natural agonist ACh or radiolabelled orthosteric ligands used in these experi-
ments. Yet, except for the studies on the alteration of ACh-mediated responses in Xenopus
oocytes [42,111], evidence gained from these reports accounted mainly for the manner
of ligand–receptor interaction. Moreover, these reports describe the effects of steroids
on mAChRs at micromolar or higher concentrations, which exclude their physiological
relevance but pointed to their pharmacological potential.

The authors of the recent study examined the allosteric modulation of mAChRs by
20 steroidal compounds (Figure 8) [46]. This study revealed that all tested compounds
changed [3H]NMS equilibrium binding at a 10 µM concentration. Moreover, some com-
pounds exerted high-affinity binding with sub-micromolar affinity. Importantly, corticos-
terone and progesterone were found to bind to the mAChRs with about 100 nM affinity,
which is within the physiological range [114,115]. In particular, the structure–activity
relationship evaluation of the results [46] has shown that some of the compounds with
the highest affinities to mAChRs have an enone group (3-oxo-4-ene structure) in the A-
ring. Further, the 5β-steroids generally have higher affinities to all receptor subtypes than
their 5α-analogues. The presence of the C-17 acetyl group was shown to represent a key
structural element for affinity improvement. Corticosterone with hydroxyl groups at C-11
and C-21 had a higher binding affinity, while the presence and orientation of hydroxyl
moiety at C-3 had no significant effect. The aromatization of A-ring, such as the formation
of estradiol from testosterone, ended the ability of a compound to affect [3H]NMS binding
to mAChR. These findings are in agreement with the structural features of steroids that
diminish [3H](-)QNB binding to hypothalamic mAChR [44].
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Figure 8. Overview of binding affinities to individual muscarinic receptor subtypes from [46].

Four compounds, in particular corticosterone, progesterone, estradiol and testosterone,
affected the functional response of mAChRs at physiologically relevant concentrations. The
influence of steroids on mAChRs functional response to ACh was quantified by changes in
specific [35S] GTPγS binding to membranes expressing M2 or M4, or inositol phosphates
accumulation in CHO cells expressing M1, M3 or M5 receptors. Corticosterone induced a
3-fold increase in ACh potency at M2, but decreased it 3-fold at the M4 receptor. Proges-
terone increased the efficacy of ACh receptors by 30% at M1 and by 20% at M3 receptors
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and decreased it by 30% at M2 receptors. Estradiol increased the efficacy of ACh by 24% at
the M1 receptor.

The follow-up study [47] describes the binding site on muscarinic acetylcholine re-
ceptors for NASs (Figure 9). It was found that NASs can bind to the two distinct al-
losteric binding sites on mAChRs, with approximately 100 nM and 10 µM affinities. The
high-affinity binding site was investigated in [3H]NMS binding experiments using se-
lected NAS in combination with well-known classic muscarinic allosteric modulators
gallamine and alcuronium, and steroid allosteric modulators pancuronium, rapacuronium
and WIN-compounds [47]. This high-affinity binding site was shown to be different from
the common, extracellularly located allosteric binding site for alcuronium or gallamine,
or the aminosteroid-based muscle relaxants pancuronium and rapacuronium. Interest-
ingly, selected NAS bound to the same high-affinity binding site as steroid-based WIN-
compounds that do not bind to the classical allosteric binding site located between the
ECL2 and ECL3 [116–120]. Compounds 5α-androst-1-en-17β-yl 17-hemisuccinate (MS-96)
and 17-methylene-5β-androstan-3α-yl 3-hemiglutarate (MS-112) were able to bind to this
site with an affinity of about 50 nM and 16 nM, respectively. The authors have also shown
that the membrane CHOL competes with NASs and WIN-compounds for binding to
both high- and low-affinity binding sites. It suggests that the high-affinity binding site is
rather oriented towards the inner side of the membrane, and that this site may represent a
novel target for the allosteric modulation of muscarinic receptors. However, identification
of the exact number and location of the CHOL binding sites at mAChRs remains to be
determined [47,121].
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5. Conclusions

Steroidal compounds such as cholesterol, neurosteroids, neuroactive steroids and
steroid hormones bind to several sites on muscarinic acetylcholine receptors. From these
sites, they allosterically modulate the binding of muscarinic ligands and the functional
response of muscarinic receptors. They share a common high-affinity binding site that is
oriented towards the membrane. Neurosteroids and steroid hormones allosterically mod-
ulate muscarinic receptors at physiologically relevant concentrations. The physiological
non-genomic effects of neurosteroids and steroid hormones have not been studied in detail
so far.

6. Perspectives

Allosteric modulation of muscarinic receptors by steroids proposes two new avenues
for future research. One is an exploration of the physiology of the non-genomic effects of
neurosteroids and steroid hormones at muscarinic receptors. Besides novel knowledge, an
understanding of the non-genomic effects of neurosteroids and steroid hormones may bring
new ways for the treatment of diseases resulting from a malfunction of muscarinic signaling
by manipulation with levels of neurosteroids or steroid hormones. The other is exploiting
differences in receptor–membrane interactions for the development of selective modulators.
These differences can be approached in two ways. First, differences in receptor–membrane
interactions among receptor subtypes allow the development of subtype-selective com-
pounds. Second, differences in receptor–membrane interactions among various tissues give
the opportunity for tissue-specific modulation. For example, drugs targeting cholesterol
binding sites will be more efficient at cholesterol-lean membranes than at cholesterol-rich
ones due to competition with membrane cholesterol.
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