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Abstract: Metabolic stress impairs pancreatic β-cell survival and function in diabetes. Although
the pathophysiology of metabolic stress is complex, aberrant tissue damage and β-cell death are
brought on by an imbalance in redox equilibrium due to insufficient levels of endogenous antioxidant
expression in β-cells. The vulnerability of β-cells to oxidative damage caused by iron accumulation
has been linked to contributory β-cell ferroptotic-like malfunction under diabetogenic settings. Here,
we take into account recent findings on how iron metabolism contributes to the deregulation of the
redox response in diabetic conditions as well as the ferroptotic-like malfunction in the pancreatic
β-cells, which may offer insights for deciphering the pathomechanisms and formulating plans for the
treatment or prevention of metabolic stress brought on by β-cell failure.
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1. Introduction

Despite considerable advances in treatment, the prevalence of diabetes mellitus (DM)
is increasing worldwide, endangering human health and placing an economic burden
on society. Diabetes mellitus is a diverse condition caused by progressively impaired
insulin production from β-cells and insulin resistance in target tissues. There are several
types of diabetes, of which type I and type II are the most common. The dysfunction and
destruction of pancreatic β-cells in type 1 diabetes (T1D) are caused by cytotoxic T cells
and pro-inflammatory cytokines. Obesity, hyperglycemia, peripheral insulin resistance,
and cytokine levels are the main features of type 2 diabetes (T2D), a complicated metabolic
condition that results in a relative lack of insulin and β-cell failure. Apoptosis is the
endpoint of β-cell death in both forms of disease [1–4]. Knowledge of the pathophysiology
of this disease has now entered a new era based on an understanding of the biology and
critical reappraisal of the pathobiology of β-cell failure. Increasing evidence suggests that
iron accumulation is linked to an elevated risk of both type 1 and type 2 diabetes and
is proposed to be involved in the pathophysiological mechanisms of β-cell failure [5–8].
This suggests that ferroptosis, an iron-dependent and non-apoptotic cell death, is one of
the triggering events in β-cell pathophysiology and is characterized by the accumulation
of toxic lipid reactive oxygen species (ROS). The key initiating step of ferroptosis is the
inhibition of cystine uptake into cells, which can be prevented by iron chelation [9]. Many
physiological and pathological factors perturb iron function and induce metabolic diseases,
depending on the duration and degree of metabolic stress. In this review, we describe
the critical events involved in ferroptosis with respect to their relevance to β-cell failure
in diabetes.

2. Involvement of Iron and β-Cell Function: An Overview

The second-most prevalent metal in the Earth’s crust is iron, which is also a vital
micronutrient for life. Its biological significance is demonstrated by the high prevalence
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of human diseases caused by disturbances in iron homeostasis. Iron is a transition metal
that can adopt various oxidation states. The ferrous (Fe2+) and ferric (Fe3+) forms are the
most prevalent, and this transition is largely responsible for the biological significance of
iron. Iron is a crucial cofactor for electron transfer because of its propensity to receive and
provide electrons, and its adaptable coordination chemistry is crucial for its versatility in
binding to biological ligands [10]. Because of its chemical makeup and potential for harm,
cells have created a sophisticated system for handling iron to maintain it at adequate and
safe levels. Carriers and receptors bind and transport ions across membranes, and enzymes
and buffering proteins regulate their redox state and free level. Buffering proteins also
act as protective buffers. Iron-binding protein expression is regulated by iron regulatory
proteins, according to ion density. Several of these proteins are present in pancreatic β-cells,
such as the transferrin receptor (TrfR), the mitochondrial iron-storage protein frataxin, the
cytosolic iron-storage proteins ferritin H and L chains, the iron-export regulatory hormone
hepcidin (which is found in the insulin granules), the iron chaperone lipocalin 2, and the
v-ATPase, supporting the hypothesis that β-cells have a classical iron metabolism [11–16].
After binding to TrfR, transferrin-bound iron is taken up in the blood. After that, the
metalloreductase six transmembrane epithelial antigen of prostate family member 3 and
DMT1 endocytose the transferrin-TrfR complex (STEAP 3). Iron is liberated from transferrin
inside the endosome and reduced via a drop in pH by metalloreductase STEAP 3 and
proton pump v-ATPase. Subsequently, the iron is delivered to the cytoplasmic labile iron
pool (LIP) via DMT1 over a v-ATPase-provided proton gradient. Cytosolic LIP receives
iron in the form of ferrous iron, which is then transported to ferritin for storage or to the
nucleus, ER, mitochondria, and Fe-S proteins for functional use by iron chaperones such as
lipocalin 2 and poly (rC) binding protein (PCBP) 1 and 2 [17]. Ferritin-bound iron is stored
in insulin granules or adjacent to the plasma membrane in β-cells, and iron is exported from
β-cells through ferroportin, the activity of which is suppressed by paracrine or autocrine
effects of the small peptide hormone hepcidin [11,14,18]. Hepcidin binding to FPN induces
its internalization and lysosomal degradation, thus directly inhibiting iron release into
circulation from the sites of iron absorption, recycling, and storage. Furthermore, β-cells
release hepcidin in response to glucose stimulation, indicating that ferroportin binding
inhibits iron export as a positive feedback mechanism in iron management during glucose-
stimulated insulin production [14]. Hence, due to its dual nature, iron levels must be
maintained within a tight physiological range to avoid the detrimental consequences of
both iron deficiency and excess iron.

Although iron has been detected in almost all intracellular organelles, given the
significance of the mitochondria and ER in β-cell function and dysfunction as well as
the therapeutic implications that follow, understanding the metabolism of iron in β-cell
mitochondria and ER is of special interest. Most of the labile iron pool, in contrast, is
transported to the mitochondria, where it combines with heme and Fe-S clusters. Iron
is exported from endosomes by DMT1; however, it is unclear how iron travels from the
cytosol to the inner mitochondrial membrane. A wide body of evidence suggests a possible
role of frataxin, an iron chaperone located in the mitochondrial matrix that was observed
to interact with the Fe-S-cluster assembly and presumably appears to be a key activator
of mitochondrial energy flux by oxidative phosphorylation [19–21]. In this way, frataxin
acts as a coordinator of the electron transport chain, leading to increased mitochondrial
membrane potential ∆ψm and elevated cellular ATP content. However, disruption of the
frataxin gene, specifically in pancreatic β-cells, leads to a reduction in insulin-secretory
capacity and impaired glucose tolerance, resulting in overt DM due to a loss of β-cell mass.
Furthermore, disruption of frataxin leads to increased levels of ROS within pancreatic islets,
which in turn are associated with increased apoptosis and decreased proliferation [22].
This finding can be interpreted in two ways: first, it is necessary for complex II to properly
utilize electrons. Ubiquinone (Q) is not entirely reduced to ubiquinol (QH2), and an
excess of the intermediate semiquinone form results from improper electron incorporation
into the respiratory chain. By interacting with molecular oxygen to produce superoxide
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radicals and induce oxidative stress in the mitochondria, the formation of this radical
semiquinone has been linked to a pro-oxidizer impact. Second, frataxin disruption may
decrease mitochondrial ATP production, which leads to reduced insulin exocytosis and
secretion. In addition, frataxin deficiency can exacerbate ER stress in β-cells [23]. Therefore,
it is of great interest to understand how the disruption of frataxin contributes to β-cell
death and warrants further study (Figure 1).
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3. Role of Iron Accumulation and β-Cell Dysfunction

Hereditary hemochromatosis is a common genetic disorder of iron metabolism where
iron accumulates specifically in the endocrine pancreas resulting in decreased insulin
secretion and increased protein oxidation and beta cell apoptosis [6,24]. Furthermore,
experimental studies have indicated that patients with transfusional iron overload have
increased iron deposition in β-cells, which may result in hyperglycemia and DM [25,26].
Paradoxically, iron is also deposited in the muscles and livers of patients with hemochro-
matosis, causing decreased glucose uptake and insulin resistance. In addition, the exact
mechanisms by which iron deposition occurs are not known.

Consistent with the ability of iron to readily accept and donate electrons, iron is an
essential cofactor for electron transfer, and its flexible coordination chemistry is key to its
versatility in binding to biological ligands. Paradoxically, the same chemical properties that
render iron biologically essential also underlie the toxicity of excess iron. In eukaryotic
cells, small concentrations of labile Fe2+ are found in the cytosol and mitochondrial matrix;
the lysosome also has redox-active iron derived from extracellular sources, and these cells
also have the ability to break down ferritin and iron-rich intracellular organelles, such as
mitochondria [27,28]. These redox-active iron pools can directly catalyze the creation of
harmful free radicals using Fenton chemistry [29]. Both iron-dependent ROS-producing
enzymes and labile iron are thought to contribute to ROS-dependent cell damage and
cell death. Because of the difficulties in defining the targets and effects of ROS that are
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significant to mortality as well as the consequences of iron accumulation on cell function,
this phenomenon is currently the subject of active research.

4. Is Ferroptosis the Result of Iron Accumulation and β-Cell Dysfunction?

Pancreatic β-cells are characterized by a relatively high iron content and a dependence
on mitochondrial respiration for insulin secretion, which has long been considered an
argument that oxidative stress is highly relevant in pancreatic β-cell dysfunction. Moreover,
iron has long been recognized as a signaling molecule in the inflammatory response to
the induction of insulin resistance, both in vitro and in vivo [30,31]. Signaling pathways
that affect iron metabolism have also been shown to modulate ferroptosis. Thus, iron-
dependent cell death may be especially important in DM. Metabolic dysfunction has been
explained by several theories, including mitochondrial dysfunction, oxidative stress, ER
stress, hyperglycemia (glucotoxicity), dyslipidemia, and the concomitant presence of both
hyperglycemia and dyslipidemia (glucolipotoxicity) [32]. Another mechanism by which
this environment is conducive to the development and/or progression of diabetes is the
activation of chronic inflammation.

4.1. The Role of DMT1 in Ferroptotic Signaling

Indeed, experimental evidence has shown that the pro-inflammatory cytokine IL-1β
induces divalent metal transporter 1 (DMT1) expression, which correlates with increased
β-cell iron content and ROS production via an increased intracellular LIP. This was asso-
ciated with elevated levels of the iron import mediators lipocalin-2 (Lcn2) and TrfR and
decreased levels of ferroportin, an iron exporter. Iron chelation or genetic knockdown of
DMT1 reduced cytokine-induced ROS formation and cell death. Interestingly, glucose-
stimulated insulin secretion in the absence of cytokines in DMT1 knockout islets was
defective, highlighting the physiological role of iron and ROS in the regulation of insulin
secretion [33]. Furthermore, there is considerable evidence suggesting that the expression
of DMT1 and LCN2 is induced by pro-inflammatory cytokines in pancreatic β-cells [34,35].
Whether this increase in LCN2 levels is a cause or result of metabolic dysregulation and
whether it has an impact on disease progression have not been examined. Moreover, LCN2
is a neutrophil gelatinase-associated protein that influences iron homeostasis by forming a
ternary complex with a siderophore as its cofactor, and it serves as a defense mechanism
of the innate immune response system [36,37]. In addition to restricting iron availability,
LCN2 also exerts a cytoprotective effect against STZ in a short-term HFD mouse model of
diabetes by improving β-cell mass and promoting β-cell proliferation [38]. However, this
also suggests that future studies are needed to understand the possible interference of LCN2
in the pathophysiology of pancreatic β-cell iron dysregulation. It has also been shown that
by increasing NF-kB transcriptional activity, abnormal cytokine-dependent increases in
cellular iron import via DMT1 primes β-cells for ROS-mediated inflammatory damage [33].
There is evidence that NF-kB controls the promoter activity of a number of genes whose
expression has changed as a result of cytokine exposure, which is implicated in the deleteri-
ous effects of β-cells [39–42]. Indeed, it has been observed that pro-inflammatory cytokines
upregulate the activation of inducible nitric oxide synthase (iNOS) gene expression and the
subsequent formation of NO, which, in part, leads to the loss of function and activation
of oxidative stress linked to β-cell failure [43–45]. Importantly, peroxynitrite, a novel and
reactive peroxide resulting from the rapid interaction of superoxide radicals with NO,
mediates cytokine-induced damage [46,47]. Furthermore, evidence supports a key role
of peroxynitrite in the Fe-S cluster of IRP1 destabilization, resulting in the inactivation of
aconitase activity and inhibition of the Fe-S cluster assembly [48–50]. These data suggest
that the dysregulation of iron may cause ferroptotic cell death, which warrants further
study. Notably, the inhibition of peroxynitrite formation by iNOS inhibitors or superoxide
scavengers prevents β-cell destruction and diabetes development in non-obese diabetic
NOD mice [51,52].
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4.2. The Role of NADPH Oxidase in Ferroptotic Signaling

To learn more about the characteristics of the effector that mediates iron-induced cell
damage, the effects of the NADPH oxidase enzyme system are emphasized below. Emerg-
ing evidence suggests that NADPH oxidase (NOX) is a major source of extra-mitochondrial
superoxide radicals in β-cells [53–57]. The enzyme NADPH oxidase is a multi-subunit en-
zyme, and the assembly of the active enzyme complex is described in Ref. [57]. Broniowska
et al. demonstrated that peroxynitrite formation by cytokines was reduced in the absence
of superoxide, which suggests that NOX is involved in iron-mediated pancreatic β-cell
damage [58]. Moreover, it should be noted that the activation of mitochondrial H202 and hy-
droxyl radical formation contribute to cytokine-induced pancreatic β-cell cytotoxicity [59].
However, evidence suggests that iron-induced NF-kB mediated NOX expression exerts
inflammatory effects in atherosclerosis [60]. The precise connection between NOX and
iron-induced β-cell inflammation is yet to be fully understood. In addition, activation of
JNK signaling occurs downstream of iron- and NOX-induced β-cell apoptosis [33,61]. Even
though JNK has many downstream targets, p66Shc, a 66 kDa Src collagen homolog (Shc)
adaptor protein, was found to link mitochondrial ROS production in pancreatic β-cells in
response to JNK activation under lipotoxic conditions [62–65]. Phosphorylation of p66Shc
at Ser36 triggers its mitochondrial localization, where it generates H2O2 via its oxidore-
ductase activity [66–68]. Additionally, under glucolipotoxic conditions, elevated levels of
LIPs by DMT1 mediate mitochondrial dysfunction and β-cell destruction [69], suggesting
the possibility of p66Shc activation. However, further studies are required. In contrast,
angiotensin II- (ANG-II)-induced NOX activation increased the LIP and iron-dependent
oxidative stress by JNK-p66Shc mediated ferritin degradation in human umbilical vein
endothelial cells and HT22 neuronal cells [70]. Interestingly, chronic hyperglycemia and
ANG-II type 1 receptor-induced pro-inflammatory cytokine secretion in human islets cause
superoxide production and p47phox and p22phox expression, which impairs insulin secretion
and inflammation. However, inhibition of the ANG-II II type 1 receptor downregulates
NADPH oxidase, which in turn suppresses oxidative stress, thus improving β-cell insulin
secretion and decreasing β-cell inflammation [71–73]. These findings also provide a po-
tential mechanism for how NOX-dependent H2O2 production is a likely cause of glucose
and ANG-II working together to induce LIP and impairment in insulin secretion and the
induction of β-cell dysfunction. Therefore, further research into this connection should
provide insightful information regarding β-cell dysfunction during diabetes.

Indeed, Weaver et al. demonstrated that the pro-inflammatory cytokines induced
12-lipoxygenase expression and increased the flux of hydroxyeicosatetraenoic acid (12-
HETE) from arachidonic acid (AA), impairing β-cell function by NOX-1 induction [74,75].
The lipoxygenases (LOXs) are non-heme iron-containing dioxygenases that catalyze the
formation of a complex array of bioactive LOOHs that regulate cell signaling. Moreover,
children newly diagnosed with type 1 diabetes have very high LOX-induced HETE plasma
concentrations [76]. However, it is unknown how and to what extent HETE contributes to
the pathophysiology of pancreatic β-cells in diabetes. The ability of LOX-overexpressing
cells to undergo ferroptosis may be attributed to an initial increase in the concentration
of a particular LOOH, which can later break down to produce alkoxyl and/or hydroxyl
radicals via the Fenton reaction for nonenzymatic lipid peroxidation [77–79]. Moreover,
to specifically initiate the production of the ferroptotic hydroperoxy-phospholipid hy-
droperoxyeicosaetetranoic acid, LOX induces circumstances in which PEBP1, a Raf-1 kinase
inhibitory protein, eagerly binds LOX, altering its catalytic competence from free AA to AA-
PE [80,81]. Interestingly, PEBP1 expression is high in the pancreatic islets, and the deletion
of PEBP1 significantly suppressed streptozotocin-induced activation of β-cell destruction
and increased β-cell mass [82]. Hence, it is tempting to speculate that PEBP1 is involved in
ferroptosis signaling-induced β-cell dysfunction, which warrants further investigation.
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4.3. ACSL4 in β-Cell Ferroptosis

Moreover, lipid peroxidation in ferroptosis is supported by acyl-CoA synthetase long-
chain family member 4 (ACSL4), an acyl CoA synthetase enzyme that acylates PUFA and
generates fatty acyl-CoA esters, which are transesterified into phospholipids [83]. Notably,
ACSL4 is present in insulin-secretory granules and is involved in insulin secretion [84]. In
addition, ACSL4 is essential for the induction of lipid oxidation during ferroptosis [85].
However, the relevance of ACSL4 in β-cell ferroptosis remains unexplored and enigmatic.
Together, these findings suggest that the dysregulation of iron handling and lipid per-
oxidation disrupts the cellular redox balance in organelles that orchestrate ferroptotic
death signals.

4.4. Glutathione System in β-Cell Ferroptosis

To control the intracellular redox balance, cells have evolved a network of antioxidant
systems to scavenge ROS, among which the glutathione (GSH)-dependent system may
be particularly important. However, due to low levels of protective antioxidant enzymes
compared with that in other tissues, redox imbalance is apparently a significant hallmark
of pancreatic β-cell malfunction and death [86]. It is plausible that the ferroptotic effects of
the diabetic milieu (glucose, cytokines, and fatty acids) may be mediated, in part, through
the inhibition of the GSH system and subsequent activation of ROS production. However,
under conditions of oxidative stress, the redox status of cells results in the loss of GSH,
which lowers their reducing ability and can only be restored by producing fresh GSH [87].
Therefore, the GSH/GSSG ratio can be used as a sign of the redox environment inside the
cell. Glutathione peroxidase 4 (GPX4) is the only enzyme that lowers lipid hydroperoxides
to match alcohols or water by reducing free hydrogen peroxide [88]. Mechanistically, GSH
synthesis is required for GPX4 activity, which offers reducing equivalents to eliminate
oxidative species, supported by the fact that mice lacking the GSH-synthesizing enzyme
glutamylcysteine synthetase and GPX4 die at the same developmental stage [89,90]. More-
over, GSH synthesis is manipulated by the availability of cysteine, and its uptake relies on
the glutamate/cysteine antiporter (system xCT), which is composed of the transmembrane
protein transporter SLC7A11 and the transmembrane regulatory protein SLC3A2 [91–94].
However, new experimental evidence demonstrates that the pharmacological inhibition
of system xCT by erastin or GPX4 inactivation by RSL3 induces ferroptotic cell death in
human islets. In addition, ferrostatin-1 (a ferroptosis inhibitor) or desferrioxamine, an iron
chelator, prevents ferroptotic death and improves the function of human islets [95]. Further
studies have shown that GPX4 overexpression prevents the accumulation of phospholipid
hydroperoxides that make pancreatic β-cells susceptible to ferroptotic-like cell death by
free fatty acids [96]. Supporting this, Krümmel et al. found that the overexpression of GPX4
efficiently prevents tert-butyl hydroperoxide and pro-inflammatory cytokine-induced lipid
peroxidation and ferroptotic β-cell death [97]. Importantly, it has been shown that the
availability of reduced GSH is regulated by NADPH supply, which is utilized by GSH
reductase [98]. The major sources of NADPH are glucose-6-phosphate dehydrogenase and
6-phosphoglucanate dehydrogenase of the pentose phosphate pathway enzymes [99–101].
Importantly, glucose-6-phosphate dehydrogenase expression and activity are decreased by
hyperglycemia, with a reduction in GSH reductase activity, rendering pancreatic β-cells sus-
ceptible to oxidative damage via the GSH/GSSH ratio [102,103]. Additionally, glutamine
provides precursors for GSH production, resulting in a decrease in the steady-state level
of lipid oxidation products, a crucial component of cell viability [104,105]. In this context,
glutamine availability is sensed by Glutaminase 1 (GLS1), which converts glutamine into
glutamate for GSH synthesis and plays an important role in insulin secretion [106–109].
Notably, we discovered that endogenous GLS1 mRNA and protein expression were sup-
pressed upon exposure to diabetic milieu conditions (hyperglycemia, streptozotocin, and
H2O2), leading to a reduction in GSH synthesis. This correlates with a significant decline
in the GSH/GSSG ratio associated with the accelerated degradation of xCT and GPX4. In
particular, a drop in GPX4 levels may cause phospholipid hydroperoxides to accumulate,
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which makes pancreatic cells more prone to cell death that resembles ferroptosis [110,111].
These results contribute to the integration of intracellular processes with an increase in ROS
levels caused by diabetic milieu conditions (hyperglycemia, streptozotocin, and H2O2),
resulting in the onset of islet dysfunction and diabetes. Further investigation is required to
interpret these findings.

5. Therapeutic Agents Targeting Inhibition of Ferroptotic-Death

Notably, evidence indicates that iron accumulation and lipid peroxidation are associ-
ated with ferroptotic cell dysfunction. Therefore, medications that lower iron accumulation
or lipid peroxidation inhibitors are helpful in treating diabetes, obesity, and peripheral
insulin resistance. Iron-chelating substances are frequently used in the clinical context
because they can easily limit and redistribute systemic iron. A growing body of evidence
suggests that the chelators deferoxamine and deferiprone ameliorate experimental dia-
betes and preserve β-cell mass, protecting β-cells from apoptosis [33,112–117]. In contrast,
the metabolic response to iron overload is tightly regulated by DMT1, and inhibition of
DMT1 or iron restriction improved the glucose tolerance and circulating insulin levels
in high-fat diet-induced diabetes and multiple low-dose streptozotocin-induced islet in-
flammation [7,17,33,69,118]. However, a number of small-molecule DMT1-mediated iron
transport inhibitors have been studied. For example, ferristatin II (NSC306711) attenuates
DMT1-mediated iron uptake and induces transferrin receptor degradation, which inversely
correlates with the expression of lipid peroxidative genes and proteins to restrain ferrop-
tosis [119–122]. To date, the beneficial activities of ferristatin II have not been studied in
iron-related metabolic diseases and require further investigation. The antioxidant activity
of the selenium-containing drug ebselen potently suppresses DMT1-mediated iron absorp-
tion and reduces iron-induced ROS production in Alzheimer’s disease [123,124]. Further
studies suggest that ebselen ameliorates lipotoxic dysfunction by inhibiting oxidative stress
and preserving insulin secretion and β-cell mass in Zucker diabetic models, as well as in
other experimental diabetes models [125–127]. Additionally, pioglitazone, a member of the
thiazolidinedione class of anti-diabetic medications, binds to and stabilizes mitoNEET, an
inhibitor of the mitochondrial iron uptake protein, thereby inhibiting mitochondrial labile
iron accumulation and reducing iron-mediated ROS formation [128–132]. Additionally, we
showed that pioglitazone treatment reduces hyperglycemia-induced β-cell oxidative stress
by boosting GLS1 stability and activity. Further research demonstrated that pioglitazone
treatment restores both the GSH/GSSG ratio and GPX4 protein levels under hyperglycemic
conditions, demonstrating that the protective effect of pioglitazone on β-cell apoptosis is
dependent on antioxidants and inhibitors of ferroptosis [110]. Additionally, pioglitazone
inhibits the expression of COX-2, which is stimulated by traumatic brain injury, most likely
by interfering with the process of reducing ROS formation by blocking neuronal ferropto-
sis [133]. Additionally, pioglitazone has been shown to inhibit ACSL4, which is required
for the execution of ferroptosis, and hence decreases mouse embryonic fibroblast ferrop-
tosis [85]. The fundamental processes that initiate this paradoxical occurrence of ACSL4
inhibition and suppression of ferroptosis to enhance metabolic health are not entirely un-
derstood. Additionally, coenzyme Q, vitamin E, and di/tetrahydrobiopterin have shown
promise as new therapeutic approaches to disease in investigations of the function of these
endogenous antioxidants in ferroptosis inhibition [134–137]. Interestingly, c-Abl, which
is elevated by metabolic stress in β-cells, accelerates lipid peroxidation and ferroptosis
induced by GPX4 degradation by GLS1 inhibition. Additionally, the blockage of c-Abl by
GNF2 allows cells to use glutamine metabolism (glutaminolysis) to produce GSH for β-cell
survival and growth [111]. However, it is widely known that LOX inhibitors may inhibit
the majority of ferroptotic cell deaths by preventing mitochondrial malfunction [138–142].
Furthermore, GLP-1 receptor agonist (GLP-1-RA) therapy and/or iron chelation enhances
mitochondrial performance and restores β-cell function. In Wolfram syndrome and other
types of diabetes linked to iron dysregulation, treatment with GLP-1-RA, likely enhanced
by iron chelation, should be considered [143,144]. In general, it has become obvious that
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targeting iron metabolism and ferroptosis offers a compelling new therapeutic strategy for
many disorders because of the significant gains in our understanding of the role of iron
and ferroptotic damage in a variety of diseases (Figure 2).
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6. Conclusions

According to experimental data, iron metabolism plays a role in the malfunction of
pancreatic β-cells during the development of diabetes. The management of β-cell failure
and T2D may be greatly affected by an understanding of this complex scenario and the
role of iron-activated ferroptosis redox-regulated pathways. It is almost certain that these
efforts will be helpful in the search for novel and efficient treatments for diseases associated
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examine the illnesses linked to abnormal iron metabolism in pancreatic β-cells.
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DMT1 Divalent metal transporter 1
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