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Abstract: Coxsackieviruses, a genus of enteroviruses in the small RNA virus family, cause fatal
infectious diseases in humans. Thus far, there are no approved drugs to prevent these diseases.
Human milk contains various biologically active components against pathogens. Currently, the
potential activity of breast milk components against the coxsackievirus remains unclear. In our
study, the inhibitory effect of 16 major human milk components was tested on coxsackievirus class
A type 9 isolate (CV-A9), BUCT01; 2’-Fucosyllactose (2’-FL) was identified to be effective. Time-
of-addition, attachment internalisation assays, and the addition of 2’-FL at different time points
were applied to investigate its specific role in the viral life cycle. Molecular docking was used to
predict 2’-FL’s specific cellular targets. The initial screening revealed a significant inhibitory effect
(99.97%) against CV-A9 with 10 mg/mL 2’-FL, with no cytotoxicity observed. Compared with the
control group, 2’-FL blocked virus entry (85%) as well as inhibited viral attachment (48.4%) and
internalisation (51.3%), minimising its infection in rhabdomyosarcoma (RD) cells. The cell pre-
incubation with 2’-FL exhibited significant inhibition (73.2–99.9%). Extended incubation between
cells with 2’-FL reduced CV-A9 infection (93.9%), suggesting that 2’-FL predominantly targets cells
to block infection. Molecular docking results revealed that 2’-FL interacted with the attachment
receptor αvβ6 and the internalisation receptor FCGRT and β2M with an affinity of −2.14, −1.87,
and −5.43 kcal/mol, respectively. This study lays the foundation for using 2’-FL as a food additive
against CV-A9 infections.

Keywords: 2’-fucosyllactose; CV-A9; milk; enterovirus

1. Introduction

The gastrointestinal immune system of newborns is weak, increasing their susceptibil-
ity to pathogen attacks. Breast milk contains rich active ingredients that offer energy and
nutrition, regulating immune-related homeostasis and providing a protective mechanism
for inducing tolerance to antigens in early human development [1]. Additionally, the
antiviral properties of breast milk have been confirmed. After incubating with breast milk
for 30 min at room temperature, the virus titre of the five severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) strains decreased by 40.9–92.8% [2]. A 100–1000-fold
reduction in live virus titre was detected after pre-incubating hepatitis C virus (HCV) with
breast milk for 1 h [3]. This was facilitated by the presence of various antiviral substances,
including lactoferrin (LF) [4], linoleic acid [5], IgA [6], whey protein [7], and human milk
oligosaccharides (HMOs) [8].

LF has been proven to protect against numerous pathogens, including papillomavirus [9],
human immunodeficiency virus [10], rotavirus [11], zika virus [12], and enterovirus [13].
Linoleic acid and whey protein can inhibit viral infection dose-dependently by interfering
with the interaction between SARS-CoV-2 and angiotensin converting enzyme 2 (ACE2) [7,14].
HMOs, a class of free oligosaccharides unique to human milk, can act as receptor decoys or
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compete with viruses for cellular receptors. Their ability to inhibit rotavirus [8], norovirus [15],
influenza virus [16], and human immunodeficiency virus [17] has been reported.

Human enterovirus B (HEV-B) is the most abundant enterovirus group, including
enteric cytopathic human orphan virus (Echo), coxsackievirus group B (CV-B), and cox-
sackievirus class A type 9 isolate (CV-A9), and is one of the major viruses ravaging the
paediatric population [18]. HEV-B infection is associated with viral encephalitis, aseptic
meningitis, blistering viral stomatitis, and hand, foot, and mouth disease in children, par-
ticularly neonates, leading to heart failure, liver damage, and even death [19]. Although
the genus enterovirus includes many important human pathogens, no approved drugs are
currently available to prevent their infections. In addition, vaccines for enteroviruses are
not widely available. The vast variety of enterovirus species with multiple variants makes
vaccine designs challenging. The only vaccines available for clinical use are poliovirus
(PV) and enterovirus group A type 71 (EV-A71). Considering the mutation-prone nature
of small RNA viruses, it is not easy to design vaccines for all enteroviruses, highlighting
the importance of drug research. Considering that breast milk contains several antiviral
components, in the present study we tested the effects of various bioactive factors from
breast milk on the infectivity of CV-A9 strain BUCT01.

2. Results
2.1. Five Components with Significant Anti-CV-A9 Effect Were Screened from Breast Milk

Four proteins (whey protein concentrate (WPC), milk fat globular membrane (MFGM),
LF, and OPN), eight oligosaccharides (2’-FL, 3’-Fucosyllactose (3’-FL), 3’-Sialyllactose
(3’-SL), 6-sialyllactose (6’-SL), lacto-N-tetraose (LNT), lacto-N-neotetraose (LNNT), fruc-
tooligosaccharide (FOS), and galactose oligosaccharides (GOS)), and four vitamins (vitamin
B1, B2, D2, and D3) in breast milk were tested for their inhibitory effects on CV-A9 (all com-
ponents were dissolved in DMEM) (Figure 1). The final concentrations of all components
used for primary screening are indicated in the methods section. No components showed
significant cytotoxicity at the primary screening concentrations (Supplementary Figure S1).

Figure 1. Hits of anti-CV-A9 drug screening from 16 breast milk ingredients. A total of 5 hits (MFGM,
WPC, 2’-FL, LF, and OPN) were found with significant inhibition against CV-A9 indicated by the
blue bars; OPN and WPC with an inhibition rate of <90% were indicated in light blue. Ineffective
drugs are represented by red bars and control by purple. The Y-axis represent the relative viral
load. The relative viral mRNA expression and inhibition rate were calculated based on the Ct
value, denoted by B and I, respectively. The formula is as follows: A = expression level of CV-
A9 mRNA/GAPDH mRNA = 2(CtGAPDH − CtCV-A9); Bingredient (%) = (Aingredient/Acontrol) × 100%;
Iingredient (%) = 1 − (Bingredient − Bcontrol) × 100%. Data represent the mean of the three replicate
results. Error bars represent ±1 SD, and the experiments were repeated at least twice.

The top five most effective agents (LF, 2’-FL, MFGM, WPC, and OPN) are indicated by
blue bars in Figure 1. LF inhibits infection by directly attaching viral particles or binding to
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cellular receptors. It may also restrain viral replication in host cells by activating immune
cells or cytokines [4,20–22]. Cellular assays in our study revealed a significant anti-CV-A9
effect of LF (EC50 = 0.01092 mg/mL, CC50 > 5 mg/mL) (Supplementary Figure S2A). The
time-of-addition assay showed that 0.04 mg/mL LF can effectively inhibited viral entry and
replication, and can be used as a positive control in subsequent experiments to characterise
other compounds’ antiviral properties (Supplementary Figure S2B).

Another component, 2’-FL, with a significant anti-CV-A9 effect screened in our study,
showed almost complete viral RNA inhibition in RD cells at final concentrations of
10 mg/mL (99.97%) and 5 mg/mL (99.91%) (Figure 2A). In addition, we tested the sensitiv-
ity of the virus to 2’-FL in two cell lines, RD (EC50 = 0.8956 mg/mL, CC50 > 20 mg/mL)
and Huh7 (EC50 = 6.955 mg/mL, CC50 > 20 mg/mL), 2’-FL’s anti-CV-A9 property was
non-cell-dependent (Figure 2A,B).

Figure 2. The anti-CV-A9 activity of 2’-Fucosyllactose (2’-FL). (A) 2’-FL’s inhibition rate against
CV-A9 on RD and Huh7. Cells were infected with CV-A9 at MOI = 0.001 and treated with 2’-FL at
a final concentration of 20, 10, and 5 mg/mL for 48 h. The intracellular viral load was quantified
using qRT-PCR and normalised by GAPDH level. (B) The anti-CV-A9 EC50 and CC50 of 2’-FL on
RD and Huh7. Cells were infected with CV-A9 at MOI = 0.001 and treated with 2’-FL at various
concentrations (from 40 mg/mL to 0.078 mg/mL) to determine viral inhibition and cell viability.
Concentration ≥5 mg/mL inhibited CV-A9 infection. The left and right Y-axis represent the mean
percentage of virus yield and cytotoxicity inhibition, respectively. (C) 2’-FL blocks the infection
without destroying the virus structure. CV-A9 was pre-incubated with DMEM or 2’-FL (10 mg/mL)
for 2 h before plaque assay. Both treatment groups exhibited the same viral titres. MOI: multiplicity
of infection; qRT-PCR: quantitative real-time polymerase chain reaction; EC50: concentration for 50%
of maximal effect; CC50: cytotoxicity concentration 50%; mRNA: messenger RNA. The experiments
were repeated at least twice. Data represent the mean of the three replicate results, and error bars
represent ±1 SD; ns: no significant difference; Student’s t-test compared with DMEM.

Since MFGM and WPC are mixtures, and WPC’s and OPN’s inhibition efficiency on
CV-A9 infection is <90%, further analysis was not performed in this study. In summary, we
analysed the specific antiviral mechanisms of 2’-FL on CV-A9 infection.
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2.2. Oligosaccharide 2’-FL Targets the Host Cell Instead of the Virus Particle to Block
CV-A9 Infection

The reduced CV-A9 infectivity can be mediated by targeting cells or viruses. To
determine whether 2’-FL exerts a direct effect on the CV-A9 virus, the virus was pre-
incubated with 2’-FL at a final concentration of 10 mg/mL at 4 ◦C for 2 h. In the control
group, the virus was treated with DMEM only; followed by a gradient dilution of the
treated virus solution to determine the virus titre using plaque assay. The results showed
that the virus titre was not reduced by 2’-FL treatment, suggesting 2’-FL does not exert its
antiviral effect by directly disrupting the virus’ physical structure (Figure 2C).

Subsequently, we pre-incubated cells with 2’-FL at two final concentrations (20 mg/mL
and 10 mg/mL) for 4 h, followed by CV-A9 (MOI = 0.001) infection in the presence of
2′-FL for 48 h. Compared with the control group, a significant reduction in virus load
(73.2–99.99%) was observed in both 2’-FL treatment groups (Figure 3A). However, after
pre-treating the virus with the same 2’-FL concentration at 4 ◦C for 4h, the intracellu-
lar CV-A9 load did not reduce (Figure 3B). Furthermore, similar results were observed
in Huh7 cells, with considerable viral load reduction after pre-treating cells with 2’-FL
(68.3–94.2%) (Figure 3A). In the virus pre-treatment group, intracellular viral load was
similar to the control group (Figure 3B). In addition, extended Caco-2 cell incubation with
HMOs alters glycan chain expression on the cell surface, affecting enteropathogenic E. coli
attachment [23]. RD cells were treated with 2’-FL (20 mg/mL) for 24 h. Then, the su-
pernatant was removed and replaced with CV-A9 solution (MOI = 0.001) for 24 h in the
absence of 2’-FL to exclude its antiviral effect during reinfection. The results suggested that
extended treatment reduced the intracellular viral load (93.9%) (Figure 3C). In conclusion,
2’-FL worked on the host cells but not the virus to block CV-A9 infection.

Figure 3. 2’-FL acts on cells to block infection. (A) Cells were incubated with 2′-FL at a final
concentration of 20 mg/ml and 10 mg/ml for 4 h at 37 °C, followed by CV-A9 infection (MOI = 0.001)
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in the presence of 2’-FL at the same concentration. At 48 h.p.i., the intracellular viral load was
quantified using qRT-PCR and normalised by GAPDH level. (B) CV-A9 were incubated with 2’-FL
at a final concentration of 20 mg/ml and 10 mg/ml for 4 h at 4 °C and added into RD cells at
MOI = 0.001. At 48 h.p.i., the intracellular viral load was quantified using qRT-PCR and normalised
by GAPDH level. (C) 2’-FL (20 mg/ml) was used to pre-treat RD cells for 24 h. Then the supernatant
was removed and replaced with CV-A9 virus solution (MOI = 0.001) for 24 h. Cells without drug
treatment but only with virus treatment were the control group. The intracellular viral load was
quantified using qRT-PCR and normalised by GAPDH level. **** p < 0.0001; *** p < 0.001; ns: no
significant difference; Student’s t-test compared with control. Data represent the mean of the three
replicate results. Error bars represent ±1 SD, and the experiments were repeated at least twice.

2.3. The Effect of 2’-FL on CV-A9 Life Cycle

A time-of-addition assay was performed to clarify the specific stages of the CV-A9
life cycle in which 2’-FL plays a role. Cells were treated with 2’-FL (10 mg/ml) at Full-
Time, Entry, and Post-Entry during virus infection. We noticed that in the Entry-treated
group, the intracellular viral mRNA load was 85% lower than that in the control, and
there was a 10-fold live viral titre suppression in the supernatant. At the Post-Entry stage,
2’-FL presented a weak inhibitory effect with a 2-fold lower intracellular virus load and
similar viral titres in the supernatant compared with the control group (Figure 5A). The
time course and single-step growth curve revealed a negligible effect of 2’-FL on viral
genome replication compared with LF (Figure 5B,C; Supplementary Figure S3). These
results suggest that 2’-FL mainly functioned in the virus entry stage.

We then determined the specific role of 2’-FL in virus entry by adding 2’-FL (10 mg/mL)
at different infection stage (CV-A9 MOI = 5) (Figure 5D). Infections in the absence of 2’-FL
served as controls, and cells were collected at 12 h.p.i. for qRT-PCR analysis. CV-A9′s
internalisation occurred at 2 h.p.i.; at 3 h.p.i., the viral genome began replicating, and
intracellular double-stranded RNA levels increased [24]. Therefore, our drug-delivery
procedure was divided into four timepoints: pre-infection, simultaneous virus addition
(binding), virus uncoating (1 h), and post-internalisation (2 h). At the pre-infection and
binding stages, the virus was significantly suppressed with 73.4% and 73.6% inhibition,
respectively, whereas no inhibition was observed in the other stages (Figure 5D). Subse-
quently, to eliminate the effect of drug duration in cells, we standardised the duration
to 1 h. These results are consistent with those of previous studies, suggesting that 2’-FL
specifically affects viral binding (Figure 5E).

Figure 4. Cont.
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Figure 5. Cont.
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Figure 5. 2’-FL inhibits CV-A9 infection by blocking viral cell entry. (A) Time-of-addition experiment
of 2’-FL (10 mg/mL). The detailed steps for the time-of-addition experiment were described in
the method section, the viral and GAPDH mRNA levels in the infected cell were quantified using
qRT-PCR at 24 h.p.i. The viral load in the supernatant was measured by plaque assay. Time course
curve (B) and single-step growth curve (C) of CV-A9 production (top) in RD cells with or without
a single dose of 2’-FL (10 mg/mL) or LF (0.156 mg/mL) treatment after 2 h.p.i. Supernatant and
cells were harvested at 4, 6, 10, 12, 24, 36, and 48 h.p.i. for qRT-PCR. Plaque assay corresponding
to the CV-A9 single-step growth curve (bottom). (D,E) Illustrates the time periods when 2’-FL was
present in the cell culture. The arrows indicate the time period 2’-FL (10 mg/mL) exists in the cell
culture (left). RD cells were infected with CV-A9 at MOI = 5, with cells following the corresponding
drug treatment. At 12 h.p.i., the viral yield in cells was quantified using qRT-PCR and normalised by
GAPDH level (right). Determining the effectiveness of 2’-FL on (F) viral attachment and (G) viral
internalisation. Virus infection and drug treatment were performed as mentioned above. Briefly, RD
was infected with CV-A9 at 4 °C for 2 h and then at 37 °C for 1 h, allowing temperature-sensitive entry
steps to proceed. p.i.: post-infection. The shown results are representative of one experiment out of at
least two experiments. Data represent the mean of the three replicate results, error bars represent
±1 SD; ns: no significant difference; **** p < 0.0001 by Student’s t-test compared with control.

2.4. Oligosaccharide 2’-FL Inhibits CV-A9 Binding and Internalisation

Previous studies have shown that CV-A9 entry into cells involves viral binding, fol-
lowed by uncoating and genomic injection [24]. RDs were first put on ice for 2 h and
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then at 37 ◦C for 1h, which allows for entry steps to proceed. Virus infection and drug
treatment were performed as mentioned in methods. The results showed a significant
reduction in both cell-bound (48.4%) and internalized (51.3%) viral load compared with
that in the control (Figure 5F,G). These results showed that 2’-FL’s inhibitory effect on
CV-A9 attachment and internalisation might be crucial for its resistance to viral infection.

αvβ6 is an attachment receptor for CV-A9 without the ability to induce conformational
changes required for virus uncoating [25]. A genome-wide knockout using the CRISPR
Cas9 library identified FCGRT and β2M as uncoating receptors for many enterovirus B
families, including CV-A9 [20]. In our study, 2’-FL’s molecular docking with the attachment
receptor αvβ6 (ITGB6) and the uncoated receptors FCGRT and β2M was applied to predict
its potential interaction with these three proteins. The docking results are shown in Table 1;
2’-FL possesses a potential binding capacity to all three proteins, consistent with the
results of attachment and internalisation analysis. The potential hydrogen bonds across
the interface were predicted: W51 of FCGRT, I216 of ITGB6, and Q155, D4, and R62 of
β2M (Figure 6A–C).

Table 1. Molecular docking analysis of several compounds against 2’-FL.

Ligand Protein Binding Energy (∆G) kcal/mol Ligand
Efficiency

2’-FL (C18H32O15)
FCGRT −2.34 −0.07
β2M −3.19 −0.1

ITGB6 (αvβ6) −2.14 −0.06

Figure 6. Cont.
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Figure 6. Docking analysis visualisation of 2’-FL binding with (A) ITGB6 (PDB: 4UM8), (B) FCGRT
(PDB: 1EXU), and (C) β2M (PDB: 1A1M). The yellow dots show H-bonds. The ITGB6-2’-FL complex
structure highlighting the ITGB6 (blue), 2’-FL (magenta) and residue I216 (green); the FCGRT-2’-FL
complex structure highlighting the FCGRT (blue), 2’-FL (magenta) and residue W51 (green); The
β2M-2’-FL complex structure highlighting the β2M (blue), 2’-FL (magenta) and residue Q155, D4 and
R62 (green).

3. Discussion

Several ingredients derived from breast milk possess antiviral activities. LF in-
hibits various viruses, including enveloped viruses such as SARS-CoV-2 [26,27], human
hepatitis C virus [28], human hepatitis B virus [29], HIV [30], herpes viruses [31], han-
taviruses [32], and non-enveloped viruses such as human papillomavirus (HPV) [9], en-
terovirus 71 (EV71) [13], echovirus 6 [33], adenovirus [34], and feline virus [35]. Whey
protein is a mixture of α-whey protein, immunoglobulins, serum albumin, LF, and lysozyme.
Numerous antiviral effects have been reported, including resistance to influenza virus [36],
human rotavirus [37], and enterovirus [38]. HMOs, the third-most abundant solid compo-
nent in human milk after lactose and lipids, improve the intestinal microbiota’s composition
and possess antibacterial and antiviral properties. HMOs exhibit anti-streptococcal, Staphy-
lococcus aureus, and Acinetobacter baumannii properties enhancing the antibacterial effects
of aminoglycosides, anti-folate, macrolides, lincosamides, and tetracyclines [39,40]. In the
antiviral field, HMOs rely on two main mechanisms to exert their effects: first, due to
their similar structure to cell surface glycans, HMOs can act as soluble decoy receptors to
prevent early viral infections, including norovirus and rotavirus; second, HMOs bind with
cell surface receptors to block viral attachment (Figure 7). Pre-incubating 2’-FL, 3’-SL, 6’-SL,
and galactooligosaccharides with viruses significantly reduced two human rotaviruses’
infectivity (G1P and G2P) on MA104 cells, whereas pre-incubating with cells produced
no significant suppression [8]. In a piglet model, HMOs shortened the rotavirus-induced
diarrhoea duration [41]. In addition, by interacting with the Histo-Blood Group Antigen
(HBGA) binding pocket on the norovirus capsid, 2’-FL almost eliminated GI.1 and GII.17
norovirus binding to HBGAs, exerting an antiviral effect. Given the conservation of the
interaction between noroviruses and HBGAs, 2’-FL may be a broad-spectrum agent against
multiple noroviruses [42]. Respiratory syncytial virus (RSV), which causes respiratory
and pulmonary infections in children, contains fusion proteins and attachment glycopro-
teins essential for early viral attachment; 2’-FL and 3’-FL bind attachment glycoproteins
to reduce RSV viral load in respiratory epithelial cells [43]. Lewis blood group antigens
in HMOs inhibit HIV’s binding to dendritic cell-specific ICAM3-grabbing non-integrin
(DC-SIGN), exhibiting increased interaction with 2’-FL and 3’-FL [44,45]. HMOs protect
against various pathogens; however, related research on anti-coxsackievirus has not been
reported. In this study, we found that 2’-FL in HMOs can effectively inhibit CV-A9 for the
first time and confirmed that 2’-FL exerts an anti-CV-A9 effect in vitro by targeting host
cells. Unlike previous inhibition mechanisms for norovirus or rotavirus, pre-incubation
with CV-A9 did not result in reduced infectivity in RD and Huh7 cells, suggesting that
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2’-FL cannot act as a decoy receptor for CV-A9. We hypothesized that there is a weak
interaction between 2’-FL and virus, which is not targeting the viral active site and there-
fore cannot block viral binding to cell receptors. However, this weak interaction between
virus and 2’-FL promotes viral arrival at the cell surface, thus increasing viral binding to
the cell. A similar phenomenon was also reported for G10P rotavirus, where treatment
with the same dose of mixed HMOs reduced G3P rotavirus infection but enhanced G10P
rotavirus [46]. Further mechanistic studies would be needed in the future to analyse the
interaction between 2’-FL and virus; 2’-FL had a negligible effect on viral replication in
our experiments, acting in early viral attachment and genomic injection. The different
drug treatment phases suggested that 2’-FL blocked virus binding but had no role in the
internalisation phase (Figure 5D,E). However, since multiple round viral replication may
occur within 12 h, weakening 2’-FL’s role in the attachment and internalisation phases,
early attachment and internalisation analysis for viruses within only 2 h were applied to
confirm its positive inhibitory role (Figure 5F,G).

Figure 7. Schematic overview on the antiviral role of 2’-FL. Similar to cell surface glycan (such as
HBGA), 2’-FL can act as a soluble decoy receptor to bind to the virus to block infection; 2’-FL can also
block viral attachment by binding to cell surface receptors.

The attachment receptor for CV-A9 is believed to be αvβ6 [47]. FCGRT and β2M are
universal uncoating receptors essential for CV-A9 infection [48]. The molecular docking
results suggested that 2’-FL possessed a potential binding capacity to all three proteins,
among which β2M had the best binding effect with a binding energy of −3.19. These
results were consistent with our experimental results, as the inhibitory effect of 2’-FL in
the internalisation phase was better than that of attachment (Figure 5F,G). The significant
difference in 2’-FL’s anti-CV-A9 effects between the RD (EC50 = 0.8956 mg/mL) and Huh7
(EC50 = 6.955 mg/mL) cells may result from the fact that Huh7 is an αvβ6-deficient cell,
whereas RD has the opposite effect (Figure 2B). CV-A9 can attach to Huh7 cells in an
αvβ6-independent manner, whereas FCGRT and β2M remained necessary for infection.
Therefore, 2’-FL would be less effective on Huh7 cells than RD; however, it inhibits CV-A9
infection by interacting with FCGRT and β2M to block viral internalisation.

In summary, we first identified that 2’-FL, with no cytotoxicity, is highly effective in
inhibiting clinical coxsackievirus isolates, providing conclusive evidence for its use as a
food additive against coxsackievirus infection and highlighting the potential importance of
HMO addition to infant formula.

4. Materials and Methods
4.1. Cell Culture and Virus Infection

Human rhabdomyosarcoma (RD) cells obtained from the American Type Culture
Collection (ATCC, Manassas, VA, USA) were maintained in Dulbecco’s modified Eagle’s
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medium (DMEM; Gibco, Carlsbad, CA, USA) containing 10% foetal bovine serum (FBS; PAN,
Aidenbach, Germany) and 1% antibiotic-antimycotic solution (Gibco, Carlsbad, CA, USA)
at 37 °C with 5% CO2.

The CV-A9 strain BUCT01 (GenBank accession No. MW192795) was isolated from
the faeces of a patient with hand-foot-and-mouth disease (HFMD) in China and identified
using high-throughput sequencing as a coxsackievirus A9 strain.

RD cells were infected with CV-A9 at a 0.001 multiplicity of infection (MOI). At 48 h
post-infection (h.p.i.), the culture supernatant was collected after centrifuging at 1000× g
for 3 min. The viral CV-A9 titres were determined using a plaque assay.

4.2. Preliminary Drug Screening In Vitro

RD cells were seeded in 96-well plates. At 80–90% cell density, CV-A9 (MOI = 0.001)
and various drugs (2’-FL [10 mg/mL], 3’-Fucosyllactose [10 mg/mL], lacto-N-Tetraose
[10 mg/mL], lacto-N-Neotetraose [10 mg/mL], 3’-Sialyllactose [10 mg/mL], 6’-Sialyllactose
[10 mg/mL], whey protein concentrate [5 mg/mL], milk fat globule membrane [5 mg/mL],
LF [5 mg/mL], OPN [5 mg/mL], Vitamin B2 [100 ug/mL], Vitamin B1 [1 mg/mL], Vitamin
D2 [1 mg/mL], and Vitamin D3 [1 mg/mL]) were added. At 2 h.p.i., the virus–drug mixture
was removed, and fresh culture medium containing the same drug dosages as before was
added. At 48 h.p.i., the cells were collected for viral yield quantification using quantitative
real-time PCR (qRT-PCR).

The relative viral mRNA expression and inhibition rate were calculated based on the
Ct value, denoted by B and I, respectively. The formula is as follows:

A = expression level of CV-A9 mRNA/GAPDH mRNA = 2(CtGAPDH − CtCV-A9);

Bingredient (%) = (Aingredient/Acontrol) × 100%;
Iingredient (%) = 1 − (Bingredient − B control) × 100%;
Active ingredients with inhibition rates >90% are potential antiviral ingredients. Fur-

ther verification of antiviral activity and preliminary mechanistic studies of these potential
antiviral ingredients is conducted in the present study.

4.3. Antiviral and Cytotoxicity Assays

Cells were co-incubated with CV-A9 (MOI = 0.001) and different 2’-FL doses at final
concentrations of 40, 20, 10, 5, 2.5, 1.25, 0.625, 0.3125, 0.156, and 0.078 mg/mL. At 2 h.p.i.,
the virus–drugs mixture was removed, and a fresh culture medium containing the same
drug dosages as before was added to each well. At 48 h.p.i., all cells were harvested for
RNA extraction and 50% effective concentration (EC50) assay.

Cells were incubated with different 2’-FL doses at final concentrations of 40, 20, 10, 5,
2.5, 1.25, 0.625, 0.3125, 0.156, and 0.078 mg/mL for 48 h. The 50% cytotoxic concentration
(CC50) of compounds to cells and cell viability % was measured using Cell-Titer-Blue
(Promega, Cat No. G8088, Madison, WI, USA) with a Synergy H1 microplate reader
(BioTek, Winoosk, VT, USA).

Cells were co-incubated with 2’-FL for 4h at final concentrations of 20 mg/mL,
10 mg/mL respectively at 37 ◦C, followed by infection with CV-A9 (MOI = 0.001) in
the presence of the same dosages of 2’-FL as before. At 2 h.p.i., the virus–drugs mixture
was removed, and a fresh culture medium containing the same drug dosages as before was
added to each well. At 48 h.p.i., all cells were harvested for RNA extraction.

After pre-diluting the virus solution to MOI = 0.002, the virus solution was incubated
with 2’-FL (volume ratio 1:1) for 4 h at 4 ◦C to ensure the final drug concentration of
20 mg/mL and 10 mg/mL, and the final viral MOI = 0.001. The virus–drugs mixture was
then added to the cells. At 2 h.p.i., the virus–drugs mixture was removed, and a fresh
culture medium containing the same drug dosages as before was added to each well. At
48 h.p.i., all cells were harvested for RNA extraction. Cells without drug treatment and
only with virus treatment were the control group.
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4.4. Time-of-Addition Assay

RD cells were treated with 2’-FL (10 mg/mL) at different CV-A9 infection stages. The
Full time, Entry, and Post-Entry treatment experiments were performed as previously
reported [49]. For Full time and Entry treatments, 2’-FL was added to the cell culture
medium for a 1 h pre-treatment before virus attachment. After 24 h.p.i. viral RNA was
collected from the cells for qRT-PCR analysis, and the viral load in the supernatant was
measured by plaque assay.

4.5. Viral RNA Extraction and qRT-PCR

RD cells were harvested for RNA extraction using the AxyPrepTM Body Fluid Viral
DNA/RNA Miniprep Kit (Cat No. AP-MN-BF-VNA-250, Hangzhou, Zhejiang, China) and
the AxyPrepTM Multisource Total RNA Miniprep Kit (Axygene, Cat No. AP-MN-MS-RNA-
250G) according to the manufacturer’s instructions. Reverse transcription was performed
using a Hifair II 1st Strand cDNA Synthesis Kit with a gDNA digester (Yeasen Biotech, Cat
No.11121ES60, Shanghai, China). A qRT-PCR was performed using the QuantStudio 1 Real-
Time PCR detection system (Applied Biosystems, Foster City, CA, USA) with Hieff qPCR
SYBR Green Master Mix (Yeasen Biotech, Cat:11202ES08, Shanghai, China). The primer
sequences used for qRT-PCR are listed in Table 2.

Table 2. Oligonucleotides used in the study.

Oligonucleotide Name Sequence

CV-A9 -F TCATGACACCAGCTGATAAG

CV-A9-R TGCTCATCTGCTCTGAAGTATC

GAPDH-F AGCCTCAAGATCATCAGCAATG

GAPDH-R ATGGACTGTGGTCATGAGTCCTT

4.6. Virus Attachment and Internalisation Assay

RD cells were seeded in 24-well plates and treated with CV-A9 or 2’-FL at 90–100%
confluency. To determine the effect of 2’-FL on viral attachment, cells were co-incubated
with CV-A9 (MOI = 5) and 2’-FL (10 mg/mL) at 4 ◦C for 2 h. The cells were then washed
twice with phosphate-buffered saline (PBS) to remove unbound viruses. To determine
CV-A9 internalisation, the cells were co-incubated with CV-A9 (MOI = 5) first on ice then
washed with PBS and replaced with 2’-FL (10 mg/mL) and cultured at 37 ◦C for 1 h. The
surface-bounded virus was removed by proteinase K digestion for 15 min at 4 ◦C. Then all
cells were harvested for RNA extraction, the viral load was quantified using qRT-PCR and
normalised to GAPDH levels.

4.7. Plaque Assay

Cells were seeded in 6-well plates. At 80–90% confluency, cells were infected with
serially 10-fold diluted CV-A9, ranging from 10−1 to 10−6. At 2 h.p.i., the supernatant
was discarded, and the unbound virus was washed off with PBS. Furthermore, a 1%
agarose (2 mL per well) overlay was applied to each well to prevent cross-contamination;
the wells were then incubated at 37 ◦C for 72 h or 96 h. The cells were fixed with 4%
paraformaldehyde for 1 h at 25 ± 2 ◦C. The top semi-solid agarose medium was removed,
and the cells were stained with crystal violet for 10 min and gently rinsed with water. The
number of plaques was counted, and the virus titre was calculated.

4.8. Time Course and Single-Step Growth Curve Experiment

Cells were co-incubated with CV-A9 (MOI = 0.001). At 2 h.p.i., the supernatant was
removed, and cells were washed twice with PBS to remove unbound viruses. Then a fresh
culture medium containing 2’-FL (10 mg/mL) or LF (0.156 mg/mL) was added to each
well. Cells were harvested at 4, 6, 10, 12, 24, 36, and 48 h.p.i. for qRT-PCR and time course
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curves assay. The supernatant harvested at 4, 6, 10, 12, 24, 36, and 48 h.p.i. contains live
progeny virus, enabling analysis of single-step growth curves by plaque assay.

4.9. Molecular Docking Analysis

Along with several proteins (FCGRT, β2M, and ITGB6) 2’-FL was docked; docking
was analysed using AutoDock 4.2.6 and Pymol. The FCGRT (PDB ID:1EXU), β2M (PDB
ID:1A1M), and ITGB6 (PDB ID:4UM8) structures were obtained from PDB (https://www.
rcsb.org/), in pdb format. The 2-dimensional (2D) 2’-FL structure (CID_16219342) was
obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov/) in sdf format.

4.10. Statistical Analysis

Data were analysed using GraphPad Prism 8 software (GraphPad Software Inc, San
Diego, CA, USA). Comparisons between the two groups were performed using Student’s
t-tests. A p-value of <0.05 was considered statistically significant. The symbols are de-
fined as follows: ns: no significant difference; * p < 0.05; ** p < 0.01; *** p < 0.001; and
**** p < 0.0001.
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