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Abstract: Glioblastoma (GBM) is the most malignant primary brain tumor. Despite increasing
research on GBM treatment, the overall survival rate has not significantly improved over the last two
decades. Although recent studies have focused on aberrant metabolism in GBM, there have been
few advances in clinical application. Thus, it is important to understand the systemic metabolism to
eradicate GBM. Together with the Warburg effect, lipid metabolism has emerged as necessary for
GBM progression. GBM cells utilize lipid metabolism to acquire energy, membrane components, and
signaling molecules for proliferation, survival, and response to the tumor microenvironment. In this
review, we discuss fundamental cholesterol, fatty acid, and sphingolipid metabolism in the brain
and the distinct metabolic alterations in GBM. In addition, we summarize various studies on the
regulation of factors involved in lipid metabolism in GBM therapy. Focusing on the rewiring of lipid
metabolism will be an alternative and effective therapeutic strategy for GBM treatment.
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1. Introduction

Glioblastoma (GBM) is one of the most virulent brain tumors and is derived from
glial cells [1]. The median survival of GBM patients is only 12–15 months with standard
therapy, which includes surgery, chemotherapy with temozolomide (TMZ), and radia-
tion [2,3]. In addition, patients with GBM have a 5-year survival rate of approximately
6.8% [4]. Regrettably, despite substantial studies and clinical applications, there has been
no significant advance in ameliorating GBM treatment over time. As GBM has severe
symptoms and surgical therapy is a delicate operation, many studies have focused on
alternative and effective therapeutic strategies for GBM. Despite many efforts in GBM
treatment, appropriate therapy for clinical situations is limited. Therefore, practical and
applicable therapeutic strategies for GBM includ materials and equipment.

Cancer has peculiar metabolic properties for survival, and cancer metabolism is essen-
tial for maintaining a cancerous lifespan and harmonizing the tumor microenvironment [5].
For instance, cancer cells have a higher glycolytic metabolism and less oxidative phos-
phorylation than normal cells to avoid reactive oxygen species (ROS) and acquire cellular
energy [6]. In addition, some cancers maintain decreased β-oxidation to survive in hypoxic
environments by hypoxia-inducible factors [7]. Metabolic changes in cancer are related to
chemo- or radio-immunoresistance [8]. Altered metabolism has been highlighted in GBM
research to overcome the surgical limits and therapy resistance without side effects [9,10].
Specifically, reversing the Warburg effect elicits unique metabolic vulnerabilities [11] and
increases oxidative stress [12].

Lipids, primary metabolites, are fundamental components of the cellular membrane
and anabolic pathways in cells. In addition, energy storage, metabolism, and signaling
pathways use lipids for cellular environmental responses. To maintain homeostasis, regula-
tion of lipid metabolism is essential [13]. Recent studies have steadily researched aberrant
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lipid metabolism in GBM [14,15]. For instance, lipids are the primary cellular mainte-
nance [16,17] and energy sources [18,19] in GBM. Blocking lipogenesis suppresses GBM
growth [20] and targeting lipid peroxidation attenuates GBM [21,22]. As lipids are the main
components of growth and alternative energy production pathways, lipid metabolism is an
essential pathway for the growth and treatment resistance of GBM.

This review summarizes the normal lipid metabolism in the brain and abnormal
metabolic signaling pathways in GBM. In addition, we have described recent studies
on lipid metabolism-targeting treatments. Although GBM treatment has a long way to
advance, the discussion and application of the distinct lipid metabolism of GBM will be a
more effective and applicable therapeutic approach.

2. Reprogramming of Lipid Metabolism in GBM
2.1. Cholesterol Metabolism
2.1.1. Cholesterol Metabolism in the Brain

Cholesterol in the brain is up to 25% of the total cholesterol level. In addition, choles-
terol metabolism in the brain is different from other tissues because peripheral choles-
terol cannot cross the blood–brain barrier (BBB) [23]. Cholesterol synthesis is complex.
First, β-hydroxy β-methylglutaryl-CoA (HMG-CoA) converts acetyl-CoA to 3-hydroxy-3-
methylglutaryl-CoA, which in turn converts 3-hydroxy-3-methylglutaryl-CoA to meval-
onate. In the cholesterol synthesis pathway, HMG-CoA is a rate-limiting enzyme. Follow-
ing mevalonate formation, mevalonate is converted into various intermediates to produce
cholesterol [24]. Most brain cholesterol accumulates in the early developmental period, in
which neurons are encircled by myelin. Moreover, the synthesis rate differed along with
brain regions [25]. Existing cholesterol in the adult brain is maintained between 6 months
and 5 years [26]. In contrast, plasma cholesterol is retained for a few days [27].

Cholesterol synthesis mainly occurs in the endoplasmic reticulum (ER), and de novo
cholesterol is rapidly translocated from the ER to the cellular membrane [28]. The redistri-
bution of cholesterol in different subcellular compartments is maintained by a combination
of vesicle-mediated interorganelle transport and protein-mediated monomeric transfer
through the aqueous cytoplasm. As cholesterol is insoluble in water, unintegrated choles-
terol is located in the cytosol. Most cholesterol exists as a binding with proteins such as
apolipoprotein E (Apo-E)-holding cholesterol particles. Although cholesterol transport is
associated with these proteins, whether they have extra activation concerned with choles-
terol than its transport activity remains unknown. The cholesterol synthesis and transport
process are essential in the maintainence and functioning of cholesterol in the brain. Thus,
abnormal synthesis and the transport of cholesterol cause aberrant cellular properties,
including membrane composition, survival, and signaling pathways utilizing cholesterol
and its intermediates.

2.1.2. Cholesterol Metabolism Dysregulation in GBM

As cholesterol synthesis processes in the brain, astrocytes mainly synthesize cholesterol.
Following cholesterol synthesis, it is transported by high-density lipoproteins containing
Apo-E [29]. However, the metabolic necessity of GBM cells is primarily filled by exoge-
nous cholesterol [23]. Thus, HMG-CoA reductase inhibitors, which inhibit cholesterol
synthesis, could not affect GBM cells [23]. Liver X receptors (LXRα and LXRβ), which
regulate cholesterol homeostasis, are essential to lipoprotein uptake in the brain [23]. The
heterodimerization of LXR and retinoid X receptors (RXR) follows the transcriptional acti-
vation of genes associated with lipid transport between neurons and glial cells. Oxysterols,
synthesized from cholesterol, act as endogenous LXR. The activation of LXR decreases
cellular cholesterol in neurons and healthy astrocytes via increasing ATP-binding cassette
subfamily a member 1 (ABCA1) sterol transporter and LDLR degradation. In GBM cells,
endogenous LXR, which promotes cholesterol uptake, is not sufficiently produced. The
LDL uptake and levels of LDL receptors were increased, and LXR ligands were decreased
in GBM cells compared to in normal astrocytes (Figure 1) [23].
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enous cholesterol in ApoE-lipoprotein from astrocytes. ApoE-lipoprotein interacts with LDL recep-
tors. Then, oxysterol and cholesterol derivatives, which are physiological agonists for LXR, are pro-
duced in neurons. The activation of LXR results in its dimerization with RXR (LXR:RXR). Following 
the formation of LXR:RXR heterodimerization, ABCA1, an exporter of cholesterol as ApoE-lipopro-
tein, is increased. LXR:RXR decreases LDL receptor. Both the regulation of ABCA1 and LDL recep-
tor can regulate the level of cellular cholesterol. In GBM cells, this cholesterol regulation is dis-
rupted. Oxysterol and cholesterol derivatives are unable to activate LXR. Thus, the accumulation of 
cellular cholesterol in GBM. ABCA1, ATP-binding cassette transporter A1; ApoE, apolipoprotein E; 
LDLR, low-density lipoprotein receptor; LXR, liver X receptors; RXR, retinoid X receptors. 

Cholesterol homeostasis is important for adaptation to changing environments be-
cause cholesterol maintains appropriate cellular membrane plasticity for the environment. 
A previous study reported that cholesterol uptake is associated with GBM growth and 
survival [23]. Therefore, abnormal synthesis and signaling of cholesterol cause cancer, 
thus suggesting a possible treatment target [30]. In addition, the higher levels of lipids in 
GBM cells are associated with epidermal growth factor receptor (EGFR)/PI3K/Akt. This 
pathway upregulates intracellular lipids and increases sterol regulatory element-binding 
protein-1 (SREBP-1), which increases lipid uptake in GBM [31]. These suggest that sup-
plementing exogenous LXR and cholesterol homeostasis may represent a potential new 
anticancer strategy for GBM. 
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Lipids participate in broad cellular signaling processes. Specifically, fatty acids (FAs) 
have been well-characterized as drivers of intracellular signaling processes, including in-
ositide phospholipid and cyclic AMP pathway [32]. FAs are classified as saturated fatty 
acids and unsaturated fatty acids according saturation state. There are one or more double 
carbon–carbon bonds in unsaturated fatty acids. Polyunsaturated fatty acids (PUFAs) 
have more than one carbon double-bond and well-defined roles. A previous study, re-
ported that PUFAs are associated with neuronal signaling processes, which regulate neu-
rotransmission, cellular survival, glucose homeostasis, mood, and cognitive function [33]. 

Figure 1. Neuron and GBM cells depend on astrocytes to synthesize cholesterol via de novo synthesis.
Neurons and GBM cells do not use de novo synthesis of cholesterol. Instead, they uptake exogenous
cholesterol in ApoE-lipoprotein from astrocytes. ApoE-lipoprotein interacts with LDL receptors.
Then, oxysterol and cholesterol derivatives, which are physiological agonists for LXR, are produced
in neurons. The activation of LXR results in its dimerization with RXR (LXR:RXR). Following the
formation of LXR:RXR heterodimerization, ABCA1, an exporter of cholesterol as ApoE-lipoprotein,
is increased. LXR:RXR decreases LDL receptor. Both the regulation of ABCA1 and LDL receptor
can regulate the level of cellular cholesterol. In GBM cells, this cholesterol regulation is disrupted.
Oxysterol and cholesterol derivatives are unable to activate LXR. Thus, the accumulation of cellular
cholesterol in GBM. ABCA1, ATP-binding cassette transporter A1; ApoE, apolipoprotein E; LDLR,
low-density lipoprotein receptor; LXR, liver X receptors; RXR, retinoid X receptors.

Cholesterol homeostasis is important for adaptation to changing environments be-
cause cholesterol maintains appropriate cellular membrane plasticity for the environment.
A previous study reported that cholesterol uptake is associated with GBM growth and
survival [23]. Therefore, abnormal synthesis and signaling of cholesterol cause cancer,
thus suggesting a possible treatment target [30]. In addition, the higher levels of lipids in
GBM cells are associated with epidermal growth factor receptor (EGFR)/PI3K/Akt. This
pathway upregulates intracellular lipids and increases sterol regulatory element-binding
protein-1 (SREBP-1), which increases lipid uptake in GBM [31]. These suggest that sup-
plementing exogenous LXR and cholesterol homeostasis may represent a potential new
anticancer strategy for GBM.

2.2. Fatty Acid Metabolism
2.2.1. Fatty Acid Metabolism in the Brain

Lipids participate in broad cellular signaling processes. Specifically, fatty acids (FAs)
have been well-characterized as drivers of intracellular signaling processes, including
inositide phospholipid and cyclic AMP pathway [32]. FAs are classified as saturated fatty
acids and unsaturated fatty acids according saturation state. There are one or more double
carbon–carbon bonds in unsaturated fatty acids. Polyunsaturated fatty acids (PUFAs) have
more than one carbon double-bond and well-defined roles. A previous study, reported that
PUFAs are associated with neuronal signaling processes, which regulate neurotransmission,
cellular survival, glucose homeostasis, mood, and cognitive function [33]. In addition,
FAs are utilized for energy production. Because the brain is a highly energy-consuming
organ, continuous supplementation of metabolites is critical for maintaining organ function.
Energy necessity is mainly relieved by glucose metabolism. However, in a previous study,
FA oxidation satisfied up to 20% of the energy requirements of astrocytes [34]. Utilizing FA
for energy production occurs through the β-oxidation in mitochondria. In beta-oxidation,
acyl-CoA synthase first converts FAs to fatty acyl-CoA (FA-CoA) [35]. Once this reaction
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occurs, carnitine palmitoyltransferase (CPT) transports substrates across mitochondrial
membranes to the mitochondrial matrix [36]. FA-CoA produced by acyl-CoA synthase is
converted into fatty acylcarnitine by CPT1. Next, CPT1 transported fatty acylcarnitine into
the mitochondrial intermembrane space. CPT1 is the rate-limiting step in FA oxidation
and is regulated by malonyl-CoA. As FA-CoAs can be directly utilized for oxidation or
formation of glycerophospholipids, an enzymatic function of CPT1 is essential. Then, fatty
acylcarnitine is transported into mitochondrial cytosol by acylcarnitine transferase through
exchanges with free carnitines. In turn, CPT2 transforms FA-CoA. Through these reactions,
FA-CoA can be utilized for the β-oxidation pathway [37]. After FA-CoA entereds the
β-oxidation pathway, acyl-CoA dehydrogenase, enoyl-CoA hydratase, hydroxyacyl-CoA
dehydrogenase, and ketoacyl-CoA thiolase act as a player of β-oxidation [35]. The total
amount of enzymatic reaction cycle is FADH2, NADH, acetyl CoA, and fatty acyl derivative.
FADH2 and NADH are directly utilized in the electron transport chain, and acetyl CoA
enters the tricarboxylic acid cycle for energy production. As mentioned above, FAs are
essential to the cellular signaling pathway and energy production in the brain. As FAs are
necessary for normal cellular function, the alterations inFAs metabolism may cause disease
and be a potential target.

2.2.2. Fatty Acid Metabolism Dysregulation in GBM

Previous studies reported a correlation between FAs and GBM. Monounsaturated FAs
(MUFAs) increase lipid droplet formation and FA oxidation in GBM. In addition, MUFAs
are also associated with increasing glycolysis and proliferation [38,39]. Astrocytes are
involved in the formation of lipid droplets that protect neurons in the face of high stress.
Studies have shown that stressed neurons induce the formation of lipid droplets by migrat-
ing oxidized FAs to adjacent astrocytes, and the ability of GBMs to synthesize lipid droplets
may suggest an astroglial property [40]. Metabolic profiling comparing low-grade astrocy-
toma and patient-derived GBM revealed that catabolism of FA is more than FA synthesis in
GBM, suggesting that β-oxidation is the critical point for malignant GBM [41]. However,
β-oxidation has both anabolic and catabolic roles, it may provide metabolic plasticity in
GBM for adaptation to the harsh microenvironment. FA-CoA can enter the triacylglyc-
erol (TAG) synthesis pathway through chain reactions catalyzed by glycerol-3-phosphate
acyltransferase (GPAT), acylglycerophosphate acyltransferase (AGPAT), phosphatidic acid
phosphohydrolase (lipin or PAP), and diacylglycerol acyltransferase (DGAT). Then, TAG
is stored in a lipid droplet and utilized as an energy source by specific lipases [42]. Adi-
pose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), and monoacylglycerol
lipase (MAGL) mediate the hydrolysis of TAG [43]. Increased de novo FA biosynthesis is a
hallmark of cancer [44], and is responsible for FA synthesis and upregulated in GBM. For
example, increased FASN expression leads to high de novo FA synthesis levels, which are
sufficient to promote movement and wound repair in glioma cells [45]. The treatment of
TMZ with metformin decreases the level of FASN in an orthotopic GBM mouse model [46].
In addition, the expression of ATP citrate lyase (ACLY) is significantly upregulated in GBM.
The inhibition of ACLY activity or expression results in a decreased growth in GBM [47].

The upregulation of FA synthesis is likely due to the increased expression of the
crucial transcriptional regulator SREBP in GBM cells. Oxygen and nutrient limitations
are standard features of the tumor microenvironment and are associated with cancer
progression and induction of metastasis [5]. The activation of SREBP is involved in FA
and cholesterol metabolism under hypoxia [48]. In addition, SREBP1 is a downstream
target of tumor-suppressor pathways, including the liver kinase b1, AMP-activated protein
kinase (LKB-AMPK), and AKT pathways. Specifically, the phosphorylation of SREBP1
is induced by AMPK, resulting in the inhibition of activity and tumor growth. On the
other hand, AMPK also phosphorylates acetyl-CoA carboxylase (ACC), inhibiting FA
synthesis [49]. In GBM cells, AMPK activation increases ACC activity and its level [50].
The phosphoinositide 3-kinase/AKT signaling pathway is also activated in cancers [51].
Activation of this signaling pathway increases the expression of SREBP1 and cholesterol
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and FA synthesis-associated genes [52]. In addition, PI3K hyperactivation and EGFR
mutations induce GBM growth and survival by activating SREBP-1 (Figure 2) [53]. These
data indicate that the inhibition of SREBP activity may be a promising therapeutic strategy.
Collectively, GBM utilizes FAs for energy production and signaling pathway response to
hypoxic conditions and the requirement of nutrients. Thus, GBM-specific FAs metabolism
may be a vulnerable target through inhibiting essential energy needs and signaling.
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Figure 2. Alteration of FA metabolism in GBM. Fatty acid enters the cytosol through fatty acid
transporter. Then, Acyl-CoA synthase converts FA to FA-CoA. FA-CoA is stored as lipid droplet
through DGAT. GBM accumulates lipid droplets not utilized for fatty acid oxidation compared with
normal cells. Together with this, SREBP is upregulated and activated in GBM by activating the
PI3K/Akt pathway. Activated SREBP enters the nucleus, increasing transcription of FA synthesis-
associated genes, including FASN, and ACLY. Thus, the level of FA is increased in GBM cells.

2.3. Sphingolipid Metabolism
2.3.1. Sphingolipid Metabolism in the Brain

Sphingolipids, integral structural components of cell membranes, act as various sig-
naling molecules to determine cell fate and function. Sphingolipids are composed of a
long chain of sphingoid bases linked to FAs [54]. Serine palmitoyltransferase synthesizes
the de novo synthesis of sphingolipids using serine and palmitoyl-CoA. Then, ceramide
synthases generate ceramide from sphingolipid [55,56]. Following ceramide generation,
ceramide is converted to various factors by specific enzymes. For instance, sphingomyelin,
an essential component of myelin in the central nervous system (CNS), is transformed from
ceramide by sphingomyelinases (SMases) [57]. Additionally, glycosphingolipids, which
are also in the CNS, are formed from ceramide by glucosylceramide synthase, or cerami-
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dases can process sphingosine. Sphingosine kinase 1 (SK1) or sphingosine kinase 2 (SK2)
phosphorylate sphingosine to form sphingosine 1-phosphate (S1P), and S1P phosphatase
(SPP) reverses this phosphorylation [56,58]. Glycosphingolipids are vastly enriched in the
brain and related to the composition of cellular membranes, myelin sheaths of nerve axons,
and cell signaling [59–61]. Glycosphingolipids are also associated with the differentiation
of embryonic stem cells and neural stem cells through metabolic processes, resulting in the
expression of sialic acid-containing glycosphingolipids, also known as gangliosides, in the
neuronal membranes [62–64]. Sphingolipid consists of the cellular membrane and myelin
sheath in the brain and stem cells. Thus, sphingolipid metabolism is necessary to intact
cellular function in the brain, and deregulated sphingolipid metabolism may be a potential
driver of disease, specifically cancer.

2.3.2. Sphingolipid Metabolism Dysregulation in GBM

To reinforce its malignancy and capacity to survive, GBM has broad, subtle strategies,
including aberrant sphingolipid metabolism. Specifically, ceramide is downregulated in
GBM. A previous study reported that the ceramide level is lower in GBM tissue than in
normal brain tissue. In addition, ceramide level in GBMs is directly related to histological
grade and survival [65]. Not only is histological grade related to total ceramide, but S1P
level is as well. S1P level is increased approximately nine-fold in GBM tissues compared
to normal gray matter [66]. In addition, ceramide has a heterogeneous structure, as FAs
with different acyl chain lengths, double bonds, and hydroxylations [67]. For this reason,
ceramide depends on different fatty acyl precursors and specific enzymes, which produce
different ceramide species [68]. As the result of liquid chromatography tandem mass
spectrometry, there are differences in the distribution of fatty acyl chains of ceramides
between different glioma cell lines [69], suggesting that different GBMs have broad species
of ceramide. Specifically, the reduction in C18 ceramide was shown in human gliomas,
which is related to malignancy grade. However, despite the heterogeneity of ceramide, C18
ceramide was decreased in different GBMs [66]. The level of C18 ceramide was reduced and
was inversely correlated with metastasis in head and neck squamous cell carcinoma [70],
suggesting that decreased C18 ceramide may contribute to GBM malignancy. In addition,
human GBM has a significantly low level of sphingomyelin than non-tumor cells [71].
Decreased sphingomyelin is related to GBM tumorigenic transformation [72].

Previous studies showed molecular explanations for the abnormal distribution of
ceramide and S1P in GBM. Acid ceramidase, which produces sphingosine from ceramide,
was significantly increased in GBM [66]. Moreover, B-cell lymphoma 2-like 13 (Bcl2L13),
an uncommon member of the Bcl-2 family, is overexpressed in GBM. Bcl2L13 acts as a
ceramide synthase (CerS) inhibitor [73]. Interestingly, as Bcl2L13 inhibits the activity of
CerS2 and CerS6, Bcl2L13 functions as an anti-apoptotic protein by protecting mitochondrial
membrane integrity. As sphingosine kinases K1 and K2 (SphK1 and SphK2) are upregulated,
S1P is increased in GBM [74–76]. In addition, with SphK upregulation, SPP2, which is
localized in ER and functions in S1P, is lower in GBM than normal gray matter [66,77].
Notably, SPP1 increases ceramide levels in the ER via recycling sphingosine [78], suggesting
that decreased SPP2 levels in GBM increase S1P and induce ceramide levels. Together with
this, it is notable that the S1P lyase-related gene is deleted in human GBMs [79]. Thus,
as GBM adapts to downregulate ceramide and upregulate S1P to induce reprogramming
in sphingolipid metabolism, GBM has more aggressiveness and defense against death.
Using a mathematical model to determine how sphingolipid metabolism is altered in
GBM cells, there is a significant difference in that sphingolipid is preferentially into S1P
synthesis in GBM cells. In contrast, sphingosine is mainly recycled into ceramide in
normal astrocytes [80]. S1P exerts multiple roles through its five specific receptors (S1P
1–5) [81], and S1P 1–3 and S1P 5 receptors were found in human GBM [82,83]. In a recent
study, the mRNAs of S1Ps were increased in human GBM compared to normal brains,
with increasing malignancy (Figure 3) [76]. Collectively, the aberration of sphingolipid
metabolism and alteration of sphingolipid are noticeable points in GBM treatment. For
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further GBM treatment, sphingolipid-related metabolic alterations and dysfunction are
needed for GBM research.
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Figure 3. Multiple dysregulations in sphingolipid metabolism occur in GBM and disrupt
S1P/ceramide balance in favor of S1P. In GBM cells, A-ceramidase, SphK1/2, and Bcl2L13 are
upregulated. A-ceramidase converts ceramide to sphingosine, and SphK1/2 converts sphingosine to
S1P. Bcl2L13 inhibits the function of CerS2/6. Together with is, SPP2 and S1P lyase are downregu-
lated in GBM cells. The degradation of S1P via S1P lyase and conversion of S1P to sphingosine are
decreased in GBM cells. Thus, S1P is accumulated in GBM. S1P, sphingosine 1-phosphate; SPP2, S1P
phosphatase; Sph, sphingosine; Cer, ceramide; CerS, ceramide synthase; SphK, sphingosine kinase;
Bcl2L13, B-cell lymphoma 2-like 13; A-ceramidase, acid-ceramidase.

3. GBM Therapy Targeting Lipid Metabolism

As in the previous section, lipid metabolism is dysregulated in GBM. GBM cells accu-
mulate cholesterol by activating cholesterol uptake and inhibiting cholesterol excretion. Cel-
lular cholesterol is utilized for GBM growth and survival. In addition, increased cholesterol
activates oncogenic signaling. GBM also increases FA synthesis and accumulation of lipid
droplets. As regulating FA synthesis and lipid droplets, GBM utilizes β-oxidation according
to the situation. In addition, increased oncogenic signaling induces SREBP activation, and
SREBP upregulates the expression of FA synthesis-related genes. The dysregulation of
FA allows for GBM to adopt the appropriate strategy in a harsh microenvironment. The
alteration of ceramide and S1P is also related to GBM aggressiveness and histological grade.
Thus, targeting the lipid metabolism of GBM is a promising therapeutic target, considering
the changed factors. Although the clinical application of lipid metabolism remains chal-
lenging, some previous studies reported promising therapeutic strategies targeting lipid
metabolism in GBM. Targeting cholesterol-, FA-, and sphingolipid-related studies have
been described in this section (Table 1).
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Table 1. Therapeutic strategies targeting lipid metabolism in GBM.

Lipids Target Regulation Method

Cholesterol

Apolipoprotein E Binding to LDLR Synthetic ApoE peptide
CYP46A1 Activation Efavirenz

LXR receptor Activation LXR623 and gamitrinib
SOAT1 Inhibition shRNA

Fatty acid

SREBP-1 and SREBP-2 Inhibition 25-HC, fatostatin, and FGH10019
Fatty acid oxidation Inhibition Etomoxir and anti-CD47 antibody

Medium-chain acyl-CoA dehydrogenase Inhibition shRNA
DGAT1 Inhibition shRNA

Sphingolipid
SMPD1 Inhibition Fluoxetine, pimozide, and loperamide

N-acylsphingosine amidohydrolase 1 Inhibition Carmofur
GD2 Inhibition Chimeric anti-GD2 dinutuximab beta

3.1. Targeting Cholesterol Metabolism in GBM

A previous study reported that the ApoE peptide [(LRKLRKRLL)2C] specifically binds
to LDLRs and penetrates the BBB, resulting in GBM-targeting therapy in vivo [84]. The
other target is the cytochrome P450 family 46 subfamily A member 1 (CYP46A1). CYP46A1
catalyzes the conversion of cholesterol to 24S-hydroxycholesterol. CYP46A1 expression was
significantly lower in GBM samples than in normal brain tissue. A reduction in CYP46A1
expression is associated with increased tumor grade and poor prognosis in human gliomas.
Efavirenz, an activator of CYP46A1 that penetrates the blood–brain barrier, inhibits GBM
growth in vivo [85]. In other cases, the combination of LXR623 and gamitrinib reduced
tumor growth and induced cell death in GBM. These effects of LXR623 and gamitrinib are
reversed by exogenous cholesterol [86]. In addition, sterol O-acyltransferase (SOAT1) is
upregulated in GBM and controls cholesterol esterification and storage in GBM. Targeting
SOAT1 inhibits GBM growth and increases survival in mouse models by inhibiting SREBP-
1-regulated lipid synthesis [20]. Finally, the pharmacological inhibition of SREBP by 25-HC,
fatostatin, and FGH10019 decreased SREBP-1 and SREBP-2 targeting genes and reduced
the growth of the GBM cell line [87].

3.2. Targeting Fatty Acid Metabolism in GBM

A previous study reported that the mitochondrial FAO enzymes (CPT1A, CPT2, and
ACAD9) and CD47 are related to recurrent GBM patients with poor prognosis. Etomoxir
combined with anti-CD47 antibody sensitized radiotherapy and boosted phagocytosis via
macrophage in recurrent GBM [88]. Medium-chain acyl-CoA dehydrogenase (MCAD) has
been reported to be involved in lipid peroxidation. MCAD oxidizes medium-chain fatty
acids (MCFA) and is upregulated in GBM. Depleting MCAD induced harmful metabolic
changes, including accumulation of MCFAs, which increased lipid peroxidation, oxidative
damage, mitochondrial damage, and apoptosis [22]. Another target of lipid peroxidation,
DGAT1, has been previously reported. As in the case of MCAD, DGAT1 is upregulated in
GBM to store FAs in TAG and lipid droplets. The inhibition of DGAT1 induced unbalancing
of lipid homeostasis and increased β-oxidation, leading to excess reactive oxygen species,
mitochondrial damage, cytochrome c release, and apoptosis [21].

3.3. Targeting Sphingolipid Metabolism in GBM

A previous study reported that sphingomyelin phosphodiesterase 1 (SMPD1), which
converts sphingomyelin to ceramide, is a druggable target for GBM. The antidepressant
fluoxetine could inhibit SMPD1 activity, inducing GBM death by inhibiting EGFR signaling
and activating lysosomal stress [89]. In another SMPD1-related study, pimozide and lop-
eramide inhibited the SMPD1 activity and promoted the induction of lysosomal membrane
permeabilization (LMP) and the release of cathepsin B (CTSB) into the cytosol. Thus, pi-
mozide and loperamide induce autophagy and lipotoxicity, resulting in LMP and GBM
death [90]. N-acylsphingosine amidohydrolase 1 (ASAH1), which hydrolyzes ceramides,
has been identified in other cases. ASAH1 is upregulated in GBM compared to non-tumor.
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Carmofur, and the inhibition of ASAH1, decreased in vitro migration of GBM cells and
patient-derived xenograft models [91]. Finally, it has been reported that disialoganglioside
GD2 is expressed in malignant gliomas. GD2 targeting by chimeric anti-GD2 dinutuximab
beta is an available inhibitor against GBM [92].

4. Conclusions

Although further research is in progress, GBM remains an obstinate type of brain
tumor. Metabolic reprogramming of GBM cells is one of the properties of growth and sur-
vival in unfavorable environments. Lipid metabolism in GBM is also essential for cellular
growth, energy requirements, and oncogenic signaling. Anabolic and catabolic changes in
lipid metabolism are inescapable and noticeable when alleviating GBM. However, focusing
on the use of lipid metabolism to fully cure GBM has not been investigated because the
physiological functions of lipid and lipid-related pathways in the brain and GBM are poorly
understood. Research based on various alterations in lipid metabolism in GBM will be
more compelling for GBM treatment. Thus, future investigations of therapeutic strategies
focusing on lipid metabolism may provide new and practical concepts for GBM therapy.
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