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Abstract: Alzheimer’s disease (AD) is an incurable degenerative disease of the central nervous system
and the most common type of dementia in the elderly. Despite years of extensive research efforts, our
understanding of the etiology and pathogenesis of AD is still highly limited. Nevertheless, several
hypotheses related to risk factors for AD have been proposed. Moreover, plant-derived dietary
polyphenols were also shown to exert protective effects against neurodegenerative diseases such
as AD. In this review, we summarize the regulatory effects of the most well-known plant-derived
dietary polyphenols on several AD-related molecular mechanisms, such as amelioration of oxidative
stress injury, inhibition of aberrant glial cell activation to alleviate neuroinflammation, inhibition
of the generation and promotion of the clearance of toxic amyloid-β (Aβ) plaques, inhibition of
cholinesterase enzyme activity, and increase in acetylcholine levels in the brain. We also discuss the
issue of bioavailability and the potential for improvement in this regard. This review is expected to
encourage further research on the role of natural dietary plant polyphenols in the treatment of AD.

Keywords: Alzheimer’s disease; polyphenols; antioxidant; anti-neuroinflammation; amyloid-β;
bioavailability

1. Introduction

Alzheimer’s disease (AD), also known as senile dementia, is a neurodegenerative
disease that occurs in the elderly worldwide and develops very slowly. AD is the most
common type of dementia [1]. AD is characterized by a variety of pathological features,
including cerebral cortex atrophy, decrease in brain weight [2], loss of locus coeruleus
neuromelanin [3], accumulation of extracellular amyloid-β protein (Aβ), and the occurrence
of neurofibrillary tangles (NFTs) due to abnormal tau protein hyperphosphorylation [4].
The pathogenesis of AD remains unclear to date. Several hypotheses have been developed
in the past, such as the oxidative stress [5], cholinergic injury hypothesis [6], Aβ toxicity
hypothesis, tau protein phosphorylation hypothesis [7], neuroinflammation hypothesis [8],
and apolipoprotein E (ApoE) gene hypotheses [9]. The complexity of these hypotheses is
considered to be the main reason for the repeated failure of anti-AD drugs. Thus, no clear
conclusions have been drawn to date regarding the factors that determine the occurrence
and development of AD. Therefore, the clinical treatment of AD remains a challenge
for mankind.

Despite the fact that AD was first discovered more than a hundred years ago and
that major pharmaceutical companies such as Merck and AstraZeneca have made heavy
investments in developing drugs against AD, the failure rate remains very high. Only six
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drugs have been approved by the Food and Drug Administration (FDA) for AD treatment
to date; however, many adverse drug reactions have also been reported for these drugs [10]
(Table 1).

Table 1. The mechanisms of action and adverse reactions of drugs approved by Food and Drug
Administration (FDA) for Alzheimer’s disease (AD) treatment.

Drugs Mechanisms of Action Main Limitations Reference

Tacrine Inhibition of acetylcholinesterase activity
and increase in acetylcholine level

Oral administration leads to strong
hepatotoxicity and gastrointestinal adverse
reactions, which quickly leads to increase

in transaminase activity

[11,12]

Donepezil

Inhibition of acetylcholinesterase activity
and increase in acetylcholine level.

Inhibition of aberrant glia cell activation to
alleviate neuroinflammation

Low CNS selectivity, gastrointestinal
toxicity (nausea, vomiting, anorexia,

flatulence, loose stool, diarrhea, salivation,
and abdominal colic)

[13–15]

Rivastigmine

Selective enhancement of Ach activity in
the cerebral cortex and hippocampus.

Improvements in cognitive function and
deceleration of APP formation

Adverse reactions such as acute dystonia,
nausea, vomiting, diarrhea, dizziness, and

weight loss
[16–18]

Galantamine

Inhibition of acetylcholinesterase activity
and increase in acetylcholine level.

Regulation of nicotinic acid receptors
outside the brain to increase Ach release

Severe cutaneous adverse drug reactions [19]

Memantine Antagonizing effect on NMDAR Bradycardia [20,21]

Aducanumab
Recognition of an epitope of Aβ, reduction

of aggregated soluble and insoluble
forms of Aβ.

ARIA, effusion, minor hemorrhage,
and hemosiderosis [22]

CNS, central nervous system; Ach, acetylcholine; APP, amyloid precursor protein; NMDAR, N-methyl-D-aspartate-
receptor; ARIA, amyloid-associated imaging abnormality.

Recently, the sodium oligomannate capsules (GV-971) for AD treatment were ap-
proved in China, which demonstrates the potential of natural products for the treatment
of neurodegenerative diseases [23]. Therefore, the discovery and development of safe
and effective anti-AD drugs from natural sources such as plants may provide a viable
strategy [24]. Highly efficient anti-AD drugs with low toxicities may indeed be discov-
ered through extensive studies on the effects of various natural products on AD-related
molecular mechanisms [25].

The focus of AD treatment strategies is also gradually shifting to alternative therapies.
A diet-based lifestyle is the most effective that can be easily adopted by individuals among
these alternative therapies [26,27]. Improving the dietary structure, such as choosing a
Mediterranean or Asian diet rich in fruits and vegetables, is recognized globally as an
effective means to prevent the development of AD [28–30]. Polyphenols are commonly
found in vegetables, fruits, and cereals such as grapes, blueberries, and apples, in addition
to tea and red wine [31–35]. Polyphenols have diverse and complex structures. Most
polyphenols are found in glycosidic forms in plants [36]. Polyphenols are mainly classi-
fied into flavonoids and nonflavonoids based on the basic flavonoid structure, aglycone.
Flavonoids include flavones, flavonols, flavanones, flavanonols, and isoflavones, whereas
nonflavonoids are mainly classified into phenolic acids, phenolic alcohols, stilbenes, lig-
nans, curcumins, and coumarins [37] (Figure 1). Polyphenols have been widely used for
the treatment of age-related neurological disorders, including AD and cognitive disorders,
due to their antioxidant and anti-inflammatory activities [38]. Many in vivo and in vitro
experiments have confirmed the therapeutic effect of polyphenols on neurodegenerative
diseases, including AD. These experiments also clarified several AD-related molecular
mechanisms and led to the development of several hypotheses regarding the development
of AD, such as oxidative stress, cholinergic, Aβ toxicity, tau protein, and neuroinflammation
hypothesis [39–42].
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However, at present, most of the experiments on the application of polyphenols in the
treatment of AD are limited to in vitro experiments or animal experiments, and there are
few clinical trials in vivo human studies, which may be related to the low bioavailability in
the brain and the difficulty in penetrating the blood–brain barrier (BBB) [43]. Meanwhile,
the clinical trials that have been carried out are often limited by the small sample size, the
short study duration, and the individual differences of the subjects, and cannot obtain en-
couraging results like in vitro experiments [44]. These issues need to be further considered
in future clinical experiment design involving in vivo human studies.

As of 25th September 2022, we have selected the relevant studies from PubMed, CNKI,
and Google Scholar databases, using the following Medical Subject Headings (MeSH)
keywords: “polyphenols”, “plant polyphenols”, “Alzheimer’s disease”, “resveratrol”,
“curcumin”, “procyanidins”, “EGCG”, “bioavailability”, and so on. We identified the
relevant papers and selected them following the inclusion criteria: full-text original articles,
including both preclinical and clinical studies.

Here, we review the regulatory roles of the most widely reported dietary plant polyphe-
nols, curcumin, resveratrol, proanthocyanidins, and EGCG, on widely recognized molecular
mechanism hypotheses related to AD development. We also discuss the current application
limitations of polyphenols and improved sample preparation methods in order to provide
a reference for further functional research on plant polyphenols for the prevention and
treatment of AD. We also expect that this review will provide a theoretical basis for the
development of similar health products and drugs.

2. Polyphenols and Oxidative Stress
2.1. The Oxidative Stress in Alzheimer’s Disease

The brain has a greater lipid content and energy requirements than any other organ.
The brain also has relatively weak endogenous antioxidant defenses and is thus vulnerable
to an imbalance in redox homeostasis [45]. Therefore, free radicals may readily disrupt
neuronal cell structure and function and lead to various neurodegenerative diseases, in-
cluding AD and Parkinson’s disease (PD) [46]. Oxidative stress (OS) has previously been
shown to be the primary cause of neuronal death and neuroinflammation in neurodegen-
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erative diseases [47]. The aggregation of misfolded proteins, such as amyloid fibers and
aberrantly phosphorylated tau protein, is a major pathological feature of AD that disrupts
normal mitochondrial function and induces the production of large amounts of reactive
oxygen species (ROS). This, in turn, leads to the oxidization of Aβ scavenger proteins
and thus to further Aβ accumulation, as well as to hyperphosphorylation and Tau protein
aggregation [48–50].

The antioxidant enzyme system is the first line of defenses against ROS in the human
body. Activities of glutathione peroxidase (GPx), glutathione reductase (GR), superoxide
dismutase (SOD), and catalase (CAT) in the brains of AD patients have been reported to
decrease, whereas malondialdehyde (MDA) activity is increased. This is accompanied by
extensive protein and lipid peroxidation, which eventually leads to cell apoptosis [51]. SOD
activity is particularly an important indicator of the degree of an oxidative stress injury in
the nervous system. The regulation of SOD, GPX, GR, and CAT activities has thus become
a focus of research for drug development against AD.

OS is also a significant feature of neuroinflammation and apoptosis. OS occurs in nerve
cells; ROS produced by OS causes mitochondrial respiratory chain energy metabolism
disorder, which leads to the irreversible opening of the mitochondrial permeability tran-
sition pore (MPTP) and a decrease in mitochondrial membrane potential in nerve cells.
As a result, the release of cytochrome C (Cytc) from the mitochondria is increased, and a
polymerized complex of Cytc and apoptosis protein activating factor-1 (Apaf-1) is formed.
This complex activates the precursor of caspase-9, which in turn activates downstream
caspase-3, and thereby starts the apoptotic response cascade, leading to the ultimate loss of
synapses and neuronal apoptosis [52–54]. B-cell lymphoma-2 (Bcl-2) and mitogen-activated
protein kinase (MAPK) family member proteins have also been reported to play key roles
in AD development [55–57].

2.2. Polyphenols Alleviate AD Symptoms by Reducing Oxidative Stress

Curcumin (1,7-bis (4-Hydroxy-3-Methoxy phenol) -1,6-heptadiene-3,5-dione) is a
lipophilic polyphenol obtained from the rhizome of the Asian ginger plant Curcuma
longa [58]. Due to its antioxidant [59], anti-inflammatory [60], antibacterial [61], anti-
mutagenic [62], and anti-cancer [63] properties, curcumin is widely used in many areas,
such as food spices, cosmetics, food pigments, and colorants. Curcuma longa L.—the
source plant of curcumin—has long been used as part of herbal medicine practices in
Asian countries as well [64]. Curcumin can directly scavenge free radicals (ROS and re-
active nitrogen species, RNS). In vivo and in vitro experiments have also confirmed the
role of curcumin in cell protection via activation of nuclear factor erythroid 2-related factor
2 (Nrf2)/Heme Oxygenase-1 (HO-1) and Nrf2/Kelch-like ECH-associated protein 1 (Keap1)
pathways [65–67]. The amount of (Nrf2) in the brains of AD patients has been shown to be
significantly lower than that in healthy individuals [68]. This signaling pathway plays a
key role in Aβ deposition and thus delays the onset and development of AD. Curcumin
was also shown to reduce copper-induced oxidative stress and mitochondrial apoptosis
in SH-SY5Y cells and thereby improve neurotoxicity [69]. Fermented curcuma, including
curcumin as its main component, was found to exert neuroprotective effects on C6 and
BV2 cells against OS induced by H2O2 [70] and on rats against high intraocular pres-
sure. Curcumin can provide neuroprotection by reducing ROS species and inhibiting the
apoptosis pathway [71]. Curcumin was in vivo found to improve the overall behavior by
increasing the CAT level in the brain of depression model mice [72]. Finally, curcumin and
mitochondria-targeted curcumin (MTC) were found to have neuroprotective effects on a
mouse model of cerebellar oxidative damage [73].

Resveratrol (3,4 ‘, 5-trihydroxystilbene), also known as stilbene triphenol, is a polyphe-
nol that is abundant in grapes, pomegranates, mulberry, blueberries, and Reynoutria
japonica Houtt [74]. Resveratrol was first isolated from Veratrum in 1939. The beneficial
effects of resveratrol on human health have been emphasized for the first time through the
“French paradox” (low risk of cardiovascular disease among French, despite their high-fat
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and -cholesterol diet), which is related to large amounts of daily red wine consumption
among the French population [75,76]. Resveratrol has two isomers: cis-resveratrol and
trans-resveratrol. Trans-resveratrol is the main form, and its effectiveness is conferred by
the lower steric hindrance of its side chain [77]. Resveratrol has anti-inflammatory [78],
antioxidative [79], anti-infective [80], antibacterial [81], and anti-cancer effects [82]. The
main mechanisms involved with respect to the effect of resveratrol in the context of AD
mainly involve antioxidant stress, anti-inflammatory effects, and Aβ aggregation [83].

OS markers that indicate the progression of AD were shown to appear earlier than
pathological changes, including Aβ plaques and neurofibrillary tangles [84]. The antioxida-
tive stress effect of resveratrol is mainly determined by its structure: 4’-OH and conjugated
double bonds facilitate the transfer of hydrogen atoms or electrons to free radicals [85,86].
Resveratrol was also found to facilitate the production of free radicals and reactive oxygen
species in BV2 mice, malondialdehyde production induced by rotenone, and the down-
regulation of glutathione synthesis by enhancing the inhibition of signal transducer and
activator of transcription 1 (STAT1) and Keap1, and finally upregulation of the expression
of Nrf2 and solute carrier family 7 (cationic amino acid transporter, y+ system) member
11 (SLC7A11) proteins. Hence, it plays a role in antioxidative stress as well [87]. Administra-
tion of resveratrol to c57bl/6 mice exposed to MnCl2 not only resulted in an improvement
of the cognitive function of mice but also increased ROS levels and inhibited MDA activity
significantly. On the other hand, SOD and CAT activities, L-Glutathione (GSH) content, and
the ratio of GSH/ glutathione (GSSG) in the hippocampus were significantly increased [88].

Procyanidins (PC) are polyphenols that consist of flavanol monomers and their poly-
mers and are abundant in all kinds of fruits, vegetables, bark, and peel, and especially
in grapes and grape seeds, which was demonstrated to be a much stronger antioxidant
than vitamin C or E [89–92]. The favorable pharmacological activities of procyanidins
in terms of free radical scavenging [93], and antioxidative [94], anti-inflammatory [95],
hypoglycemic [96], hypolipidemic [97], anticancer, and antitumor [98] effects have been
confirmed by numerous studies. Neuroprotective effects of PC with different structures
have also been recently proven. PC have thus been used to treat and prevent neurodegener-
ative diseases, including AD [99]. A unique tricyclic structure confers PC to its antioxidant
capacity [100]. PC were found to significantly improve the cognitive ability of elderly rats,
reduce increased protein oxidation and lipid peroxidation levels, enhance their antioxidant
defense abilities, and significantly restore Ach activities [101]. In a mouse OS injury model
induced by extremely low-frequency electromagnetic fields (ELF-EMF), administration of
lotus seed pod proanthocyanidins was found to significantly enhance the activities of SOD,
CAT, GPx, GR, and GST, and also reduced MDA levels, and thereby exerted neuroprotective
effects [102]. The phenolic profiles of hardy kiwifruits rich in procyanidin B2 were also
found to allow the reversal of oxidative stress in SH-SY5Y and PC-12 cells induced by H2O2
by improving their ability to resist acetyl cholinesterase (AchE) and butyrylcholinesterase
(BchE) action [103]. Grape seed proanthocyanidins were found to improve the cognitive
decline of mice caused by isoflurane and prevent OS by interfering with SOD activity and
the NR2B/CREB pathway [104].

Tea is one of the most popular beverages worldwide and an important component of
the East Asian diet. Although from the current clinical research, it seems uncertain to draw
the conclusion that the consumption of tea, especially green tea, is significantly related
to the improvement of cognitive impairment in AD patients. However, scientists do not
deny that tea and its effective ingredients have certain neuroprotective effects [105–107].
Especially in animal experiments and in vitro experiments, tea has shown a better effect on
improving cognitive function [108,109]. EGCG is a natural and the main active ingredient
in green tea. ECCG has antioxidative [110], anti-inflammatory [111], anti-viral [112], cardio-
protective [113], and anticancer effects [114,115]. In recent years, EGCG has also attracted
the attention of researchers due to its neuroprotective effects, especially for the prevention
and treatment of neurodegenerative diseases such as AD [116,117]. In one study, a daily
intake of 400 mg/kg green tea polyphenols rich in EGCG by rats with chronic cerebral
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hypoperfusion was found to significantly improve cognitive function, eliminate free oxy-
gen radicals, enhance antioxidative capacity, and reduce the production of lipid peroxide
and oxidative DNA damage [118]. When rats with Streptozocin (STZ) injection into the
ventricles were treated with EGCG, the levels of ROS and GSH levels in the hippocampus
were found to decrease, and memory function was found to improve [119]. AD pathology
is also related to brain iron imbalance and its association with amyloid precursor protein
(APP) plaque formation. To this end, EGCG was found to increase the level of transferrin
receptor (TfR) protein and mRNA in SH-SY5Y cells in a dose-dependent manner, and
thereby play a role in iron chelation and reduce the expression of Swedish mutant APP in
Chinese hamster oocytes [120].

In general, the regulatory roles of polyphenols in the context of AD-related oxidative
stress mechanisms are mainly based on the direct elimination of ROS; the regulation of
SOD, CAT, and GSH levels; and the reduction of an oxidative stress injury in the brain
through regulation of Nrf2/HO-1 and Nrf2/Keap1 pathways (Figure 2).
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Figure 2. Regulatory roles of polyphenols in the context of oxidative stress: polyphenols can directly
clear ROS and inhibit Keap1 to upregulate Nrf2 expression; increase SOD, CAT, and GSH activities;
inhibit oxidative stress response; and thus alleviate AD symptoms. Nrf2, nuclear factor erythroid
2-related factor 2; Keap1, Kelch-like ECH-associated protein 1; p53, tumor protein P53; ROS, reactive
oxygen species; ASK1, DASH complex subunit ASK1; SOD, superoxide dismutase; GPx, glutathione
peroxidase; GSH, L-glutathione; CAT, catalase; Bax, apoptosis regulator BAX; Bcl-2, apoptosis
regulator Bcl-2; Cytc, Cytochrome C; Apaf-1, apoptotic peptidase activating factor 1.

3. Polyphenols and Neuroinflammatory Mechanisms
3.1. Neuroinflammation in Alzheimer’s Disease

Due to the prevention of immune cells and humoral factors from entering the brain by
the blood-brain barrier (BBB) and the inability of brain cells to produce an innate immune
response, the brain was previously believed to enjoy immune privilege [121]. However, an
increasing number of epidemiological observations and autopsy results refuted this theory
by demonstrating that brain tissue can flexibly regulate its innate paracrine inflammatory
factors [122–124]. The repeated failure of drugs that directly affect Aβ in clinical trials
led some scientists to believe that direct regulation of Aβ is an unrealistic therapeutic
intervention and that attention should instead be directed toward neuroinflammation
mechanisms in AD [125].

Microglia, astrocytes, and monocytes play a significant role in the occurrence and de-
velopment of inflammatory reactions in the central nervous system (CNS) [8,126]. Microglia
can be considered immune cells of the brain since, although they account for only about
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10% of the brain tissue, they constitute the first line of defenses against diseases [127,128].
Upon their activation, microglia in their normal resting state quickly travel to the vicinity of
Aβ plaques and differentiate into pro-inflammatory (M1 microglia) and anti-inflammatory
(M2 microglia) phenotypes that secret pro-inflammatory or anti-inflammatory cytokines,
respectively. Pro-inflammatory cytokines activate microglia and astrocytes, aggravate nerve
damage, decrease Aβ clearance, and ultimately aggravate the development of AD [129,130].
Astrocytes are the most abundant cells in the brain and perform various biological functions,
such as blood flow regulation, maintenance of the BBB, supply of energy metabolites to
neurons, regulation of synaptic activity, control of the secretion of neurotrophic factors, and
removal of dead cells. Similar to microglia, astrocytes can also differentiate into two differ-
ent phenotypes: pro-inflammatory (A1 astrocytes) and anti-inflammatory (A2 astrocytes).
Both types of astrocytes perform their functions through the secretion of cytokines and
the formation of cross-talk between microglia and coordinate their responses to regulate
neuroinflammation [131–134]. At the same time, monocytes can also join in the “talk”,
actively participate in the immune response and inflammatory response in the brain, and
secrete a large amount of monocyte chemotactic protein 1 (MCP-1) after astrocytes are
stimulated by Aβ, triggering the inflammatory cascade reaction by combining it with
C-C motif chemokine receptor 2 (CCR2), and gradually differentiate into macrophages
in the process of recruitment into the brain, playing the Aβ clearance ability as good as
microglia [135–137]. The significant decrease in the phagocytosis of monocytes to Aβ in
AD patients leads to the deposition of Aβ, which also indicates that monocytes play an
important role in the anti-inflammatory treatment of AD [138,139]. Therefore, the develop-
ment of targeted drugs to inhibit neuroinflammatory processes, such as the inhibition of
microglia and astrocyte activation, and the enhancement of the phagocytic ability of mono-
cytes/macrophages to Aβ is of great significance for the treatment of neurodegenerative
diseases such as AD.

3.2. Polyphenols Can Alleviate AD Symptoms by Inhibiting Glial Inflammatory Activation,
Affecting Monocyte/Macrophage System, and Inhibiting Neuroinflammation

The inflammatory response is a key factor in the development of most neurodegenera-
tive diseases, such as Parkinson’s syndrome, multiple sclerosis, and AD [140]. Curcumin
was previously found to promote the polarization of BV2 cells to the anti-inflammatory
M2 phenotype through the triggering receptor expressed on myeloid cells-2 (TREM2)/Toll-
like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway in vitro, and thereby
inhibit lipopolysaccharide (LPS)-induced neuroinflammation [141]. The expression of ma-
trix metalloproteinase-9 (MMP-9) and interleukin 6 (IL-6) secreted by human astrocytes
(U373-MG) was found to be downregulated by curcumin after LPS induction, confirming
the potential of curcumin to regulate astrocyte-mediated inflammation in the central ner-
vous system [142]. Curcumin was also injected intraperitoneally into c57bl/6 mice in a
distal middle cerebral artery occlusion (dMCAO) model to improve infarct area and motor
sensory function, promote the expression of M2 polarization markers in microglia, and
inhibit the expression of M1 polarization markers [143]. Reactive astrocytes in the brains
of gfap-il6 mice treated with Meriva curcumin (MC) were also found to be significantly
reduced. Hence, plant-based curcumin may indeed improve the pathology of neuritis by
reversing the harmful effects of chronic glial cell activation [144]. In addition, it has been
verified that curcuminoids can significantly improve the phagocytosis of macrophages to
Aβ in AD patients [145,146].

The anti-inflammatory properties of resveratrol may be attributed to the inhibition of
the production of anti-inflammatory factors. Resveratrol was found to inhibit the polar-
ization of LPS-stimulated microglia to the pro-inflammatory phenotype M1 in vitro and
in vivo through PGC-1α and promote the polarization of anti-inflammatory phenotype
M2 through CO activation of signal transducer and activator of transcription 6 (STAT6)
and signal transducer and activator of transcription 3 (STAT3), and thereby play an anti-
inflammatory role [147]. The production of classical pro-inflammatory factors tumor
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necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and interleukin-18 (IL-18) released
by primary astrocytes from the rat hippocampus and stimulated by LPS were also found to
be inhibited by resveratrol. This anti-inflammatory effect is likely to be mediated through
the regulation of NF-κB, HO-1, p38, and extracellular-signal-regulated kinases (ERK) path-
ways [148]. Resveratrol was also found to alleviate neuroinflammation in a rat astrocyte
line (RA) and microglia (N9) caused by Aβ aggregation and plays an anti-inflammatory
role by inhibiting NF-κB/p65 nuclear translocation [149]. In addition, resveratrol can
reverse glutamate-induced upregulation of MCP-1 expression in rat hippocampus, reduce
the release of inflammatory factor IL-1β, and alleviate neuroinflammation [150].

It was previously found that procyanidin dimers and trimers have significant anti-
inflammatory activity [151–154]. Procyanidin A2 extracted from litchi seeds was found to
significantly reduce the levels of TNF-α, IL-1β, and IL-6 released from the supernatant of
BV2 neuroinflammatory model cells induced by Aβ1-42, and production levels of TNF-
α, IL-1β, and inducible nitric oxide synthase (iNOS) by inhibiting the NF-B pathway
to improve the inflammatory response [155]. Procyanidins were also found to inhibit
LPS-induced p65 nuclear translocation and p38 MAPK phosphorylation in BV2 cells by
regulating the p38 MAPK and NF-κB pathways. As a result, the inflammatory response is
inhibited [156]. Proanthocyanidin treatment of mice with subcutaneous morphine-induced
activation of spinal microglia attenuates chronic morphine tolerance by inhibiting the
phosphorylation of NMDA-NR1, protein kinase C (PKC), and MAPKs in the spinal cord.
Proanthocyanidin also inhibits the activation of microglia and NOD-like receptor thermal
protein domain associated protein 3 (NLRP3) inflammasome in vitro and in vivo [157]. In
addition, both procyanidin dimer B1 and trimer C1 can inhibit the inflammatory response
signaling in human monocytes [153].

In conclusion, polyphenols inhibit the transformation of microglia and astrocytes to
a pro-inflammatory phenotype and reactive astrocytes, respectively. Polyphenols further
hinder the secretion of classical inflammatory factors such as TNF-α, IL-1β, and IL-6 by
regulating the NF-κB pathway to improve inflammatory cross-talk in the brain and affecting
monocyte/macrophage system to alleviate the symptoms of AD (Figure 3).
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4. Polyphenols and Amyloid Toxicity Mechanism
4.1. Amyloid Neurotoxicity in Alzheimer’s Disease

As the core of the amyloid hypothesis was first proposed in 1992, Aβ denotes short
peptides composed of approximately 36–43 amino acids that are produced through hydrol-
ysis of APP by β- and γ-secretory enzymes [158,159]. Amyloid plaque deposition in the
brain as a result of the gradual aggregation and accumulation of Aβ is a major pathological
feature of AD and has been recognized by scientists as the main cause of AD for a long
time [160]. Aβ production is closely related to the single transmembrane protein APP,
which is mainly located in the brain. Mutations in the APP gene locus and presenilin 1
and 2 (PSEN-1, -2) result in abnormal upregulation of beta-secretase 1 (BACE-1) and γ-site
cutting enzyme activities. The resulting erroneous cleavage leads to the production and
accumulation of excessive Aβ peptides. These peptides show toxic effects on axons and
synapses; lead to neuronal degeneration, necrosis, and synaptic dysfunction; and eventu-
ally induce pathological changes [161,162]. However, an increasing number of researchers
have started to question the relevance of this hypothesis to AD development. To this end,
the connection between Aβ accumulation and AD development is not considered a simple
causal relationship and may be explained by accelerated assembly of AD-like polymers,
which in turn damages cholinergic neurons, and leads to excessive accumulation and
activation of microglia to induce neuroinflammation. This, in turn, affects mitochondrial-
dominated energy metabolism, leading to oxidative stress and abnormal phosphorylation
of tau protein, creating a more complex feedback cascade that promotes the symptoms of
AD [134,163–167].

4.2. Regulatory Role of Polyphenols in the Context of Amyloid Neurotoxicity

As mentioned above, the erroneous cleavage of β- and γ-secretase enzymes will
eventually lead to large amounts of Aβ production, and the Aβ that cannot be cleared
in time will deposit in the brain and eventually form toxic amyloid deposits, resulting
in AD pathology. Therefore, in the current study, the relationship between polyphenols,
Alzheimer’s disease, and amyloid toxicity hypothesis can be summarized as follows:
polyphenols inhibit the production of Aβ by affecting the activity of secreted enzymes or
inhibit the self-assembly of amyloid into fibrils by relying on their own aromatic rings with
hydroxyl groups, and promote the depolymerization and clearance of Aβ [168,169]. In this
way, the pathological phenomena of AD can be alleviated to a certain extent.

The effect of resveratrol on BACE1 and γ-secretase may occur via two distinct mech-
anisms. Nine resveratrol oligomers extracted from peony were found to inhibit BACE-1
expressed in baculovirus in a dose-dependent manner [170]. Resveratrol derivatives ex-
tracted from Vitis vinifera were also found to inhibit BACE-1 expression by baculovirus in
a dose-dependent manner [171]. Resveratrol and its analogs were also found to decrease
γ-secretase and increase α-secretase activities in Neuro2a neuroblastoma cells [172]. How-
ever, some studies have reported that resveratrol only facilitates the reduction of the Aβ
content in cells and has, in fact, no effect on the α-, β-, or γ-secretase-mediated cleavage of
APP or the stability of its C-terminal fragment. Resveratrol was also shown not to affect
APP metabolism and Aβ production. The therapeutic potential of resveratrol for AD may
therefore be based on its proteasome-dependent anti-amyloidosis activity [173]. The focus
of research on the effect of resveratrol in AD thus shifted to Aβ clearance mechanisms
such as activation of Aβ degradation enzymes [174], modulation of the plasminogen sys-
tem [175], maintenance of the integrity of the BBB, and modulation of the expression of
transporters and receptors to regulate the steady-state levels of Aβ [176].

Many clinical studies showed the central role of Aβ-polymerized fibrils or other
self-assembly states in AD pathogenesis [177]. Procyanidins show their potential for
AD treatment by affecting Aβ accumulation, which is manifested through the following
mechanisms. First, the aggregation of Aβ is inhibited: several type-A procyanidins and
procyanidins from apple were found to inhibit the aggregation of Aβ fibrils and show
depolymerization activity as observed by experimental observations based on transmission
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electron microscopy (TEM) or thioflavin-T (Th-T) fluorescence staining [178,179]. This
may be related to the fact that the catechol moiety is easily oxidized automatically and
covalently bound to the nucleophilic amino acid residues of amyloid protein, rendering
the structure of the β-fold unstable [180–182]. This may also be related to the presence
of multiple hydroxyl groups in procyanidins themselves, which can be related to the
strong interaction between amino acids that hinders the formation of β-fold forms [183].
Second, the particle size distribution of peptide aggregates is affected. Upon intervention
by procyanidins, the particle size of Aβ decreases from the micron to the nanometer range.
Third, the morphology of the peptide aggregates is modified. Following co-incubation
with procyanidins, the fibrils of the Aβ peptide become smaller spherical particles. Finally,
peptide depolymerization is promoted, and thereby mature fibrils are turned into shorter
fibrils [184].

As with any other polyphenol, EGCG also inhibits the aggregation of Aβ fibrils in
a dose-dependent manner [185]. Comparative evaluations of the capacities of several
common polyphenols to inhibit Aβ aggregation showed that EGCG is a significantly
stronger inhibitor of Aβ aggregation than other polyphenols, including curcumin and
resveratrol [186]. The underlying mechanism may involve changes in the conformation
of Aβ into an Aβ assembly without the “seeding” ability [187]. The aromatic ring of
EGCG may also prevent the C-terminal of Aβ from obtaining a β-fold conformation. Thus,
the oligomer structure is gradually stabilized and cannot form fibrils further [188]. Oral
administration of EGCG (50 mg/kg) to APP/PS1 transgenic AD model mice for 4 months
was found to significantly alleviate cognitive deficits in mice, improve dendritic integrity
and synaptic protein expression levels in the brain, significantly reduce Aβ plaques in the
hippocampus of mice, and alleviate the neuroinflammatory response by reducing microglial
activation, inhibiting the secretion of pro-inflammatory cytokines IL-1β, and increasing
the secretion of anti-inflammatory cytokines interleukin-10 (IL-10) and interleukin-13
(IL-13) [189]. EGCG was also found to increase α-secretase and reduce β- and γ-secretase
activities by acting through the ERK/NF-κB pathway, thereby reducing the production of
Aβ aggregates [190,191].

In conclusion, the inhibitory effect of polyphenols on Aβ aggregation is mainly based
on the inhibition of Aβ production by affecting the activities of α-, β-, and γ-secretory
enzymes, promoting the clearance, and depolymerization by affecting the conformation of
Aβ fibrils, and reduction of neurotoxicity (Figure 4).
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5. Polyphenols and Abnormal Tau Protein Phosphorylation
5.1. Abnormal Phosphorylation of Tau Protein in Alzheimer’s Disease

The tau protein hypothesis is mainly based on the abnormal deposition of neuronal
tangles, a pathological phenomenon in AD [192]. The tau protein is soluble under normal
conditions and regulates the stabilities of microproteins. However, its over-phosphorylation
renders the protein insoluble, and the phosphorylated tau competes with binding to normal
tau protein. This then leads to the depolymerization of microtubules and the formation of
paired helices in neurons, thereby disrupting the normal physiological function of the tau
protein [2,193,194]. As a marker of neuronal injury, the content of total tau protein in the
cerebrospinal fluid of AD patients is higher than that in normal individuals. The proportion
of abnormally phosphorylated tau protein is significantly increased as well [195]. Similar
to the Aβ plaque deposition, abnormal phosphorylation of tau can also not be detected in
the early stages of AD, yet previous findings indicate that the abnormal accumulation of
tau is a better indicator of AD onset time [3]. Therefore, the current AD treatment methods
based on tau protein are mainly divided into non-immunotherapeutic approaches based
on stabilizing microtubules, inhibition of tau protein phosphorylation and aggregation, or
inhibition of pathological tau diffusion, and active and passive immunotherapy approaches,
including vaccination and monoclonal antibodies. Non-immunotherapeutic approaches
are, in general, ineffective [196–198].

5.2. Regulatory Role of Polyphenols in the Context of Abnormal Tau Protein Phosphorylation

The role of curcumin in improving tau-based AD pathology has been preliminarily in-
vestigated [199]. Curcumin administration to human Tau (hTau) transgenic mice exhibiting
the tau pathology was found to reduce the level of soluble tau dimers, reverse the interrup-
tion of the expression of molecular chaperones heat-shock protein 90 (HSP90), heat-shock
protein 70 (HSP70), and heat-shock protein 72 (HSP72) in hTau expressing mice, and im-
prove spatial learning and memory abilities [200]. Curcumin was also found to inhibit tau
oligomerization by preventing β-folding, which is the initial step of tau aggregation, and
decomposing the formed tau protein filaments in vitro [201]. Curcumin treatment of trans-
genic Caenorhabditis elegans with tau-induced neuronal dysfunction did not significantly
affect tau aggregation, yet improved neuron functions and stabilized microtubules [202].
EGCG interacts with full-length tau protein via multiple residues to destabilize its structure
and dissolve tau fibrils and oligomers while inhibiting the aggregation of full-length tau.
Thus, the tau protein remains mostly in the unfolded monomer state [203,204]. EGCG was
also found to enhance the clearance of abnormally phosphorylated tau in primary neurons
by enhancing connexin expression in an in vitro model [205]. Oral administration of EGCG
(50 mg/kg) to APPsw mice for 6 months significantly improved their cognitive ability and
reduced the expression of hyperphosphorylated tau in the brain [206].

6. Influence of Polyphenol on Cholinergic Injury
6.1. Cholinergic Injury in Alzheimer’s Disease

The cholinergic injury hypothesis is a widely recognized mechanism of AD [207].
The significant loss in basal forebrain cholinergic neurons has attracted the attention of
scientists as an early pathological feature of AD [208]. Previous findings revealed defects
in the central cholinergic system responsible for regulating learning and memory in AD
patients. One of the main reasons for this defect is the abnormal enhancement of AchE
activity [209]. AchE inhibitors can therefore protect neurons by reversibly binding to the
enzyme, thereby preventing acetylcholine hydrolysis, increasing the level of acetylcholine
in the brain, and eventually enhancing cholinergic transmission. Indeed, drugs designed to
inhibit AchE activity, such as donepezil, tacrine, and galantamine, have been widely used
for AD treatment to date [210].
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6.2. Regulatory Role of Polyphenols in the Context of Cholinergic Injury

Polyphenols mainly inhibit the binding of cholinesterase to receptors, reduce its activ-
ity, and thus reduce the hydrolysis of Ach to restore cholinergic levels, improve cognitive
ability, and alleviate AD symptoms (Figure 5). Curcumin has been reported to regulate the
function of the cholinergic system and improve the levels of diminished nutritional factors
in neurodegenerative diseases. Following the administration of curcumin to cadmium-
treated (neurotoxic) rats, AchE activity and gene expression in the cerebral cortex were
found to be significantly reduced, confirming the inhibitory effect of curcumin on AchE
activity in the nervous system in vivo [211]. Curcumin can also inhibit AchE activity in the
hippocampus and cortex of rats with dementia induced by intracerebroventricular (ICV)
injection of STZ [212].
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binding of cholinesterase to receptors, reduce cholinesterase activity, reduce Ach hydrolysis, restore
the cholinergic level in the brain, and alleviate AD symptoms. Ach, acetylcholine; AchE, acetyl
cholinesterase; BchE, butyrylcholinesterase.

EGCG was also shown to have an inhibitory effect on AchE. A comparative eval-
uation of five natural flavane-3-alcohol (catechin) compounds isolated from green tea
using the Ellman method: (-)—epicatechin (EC), catechin, (-)—epicatechin-3-gallate (ECG),
(-)—epigallocatechin (EGC), and (-)—epigallocatechin-3-gallate (EGCG) revealed that only
EGCG significantly inhibited AchE [213]. Oral administration of EGCG to rats with chronic
brain dysfunction induced by an ICV injection of STZ reduced AchE activity in the hip-
pocampus as well [119]. Other studies have further confirmed that the oral administration
of EGCG (2 mg/kg/day, lasting for 30 days) increases the level of Ach in the cerebral
cortex of aged rats [214]. Moreover, molecular docking simulations have also confirmed
the interaction between green tea polyphenols through combined effects on AchE and
BChE [215].

7. Polyphenols and ApoE in Alzheimer’s Disease
7.1. ApoE Gene in Alzheimer’s Disease

ApoE and its three isoforms, ApoE2, ApoE3, and ApoE4, play significant roles in
plasma cholesterol metabolism, atherosclerosis, and hypercholesterolemia [216–220]. ApoE
was also shown to be the main apolipoprotein lipid and cholesterol transporter in the
central nervous system and is produced by nearly all nerve cell types, including astrocytes
in the physiological state, microglia in the pathological state, and neurons following specific
injuries [221–224]. AD is also considered by some a genetic disease caused by mutations
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in several genes, including ApoE. ApoE4—the ε4 allele of ApoE—has attracted attention
as the strongest risk gene since it is most commonly found in patients with late-onset
AD [224–226]. ApoE4 is associated with several pathological features of AD. For example,
patients carrying this gene have more obvious speech memory and cognitive impairment,
and Aβ plaque deposition and pathological tau protein phosphorylation occur earlier
than in other AD patients [227,228]. ApoE4 not only affects Aβ-related mechanisms of
AD [229–233] but also aggravates Tau-mediated neurodegeneration [234,235] and even
promotes the expression of inflammatory cytokines. Hence, carriers of this gene develop a
stronger systemic inflammatory response [236]. Although the exact mechanism is not yet
clear, it can be argued that the ApoE gene hypothesis is closely related to other hypotheses
of AD development.

7.2. Regulatory Role of Polyphenols in the Context of ApoE Gene

Our knowledge of polyphenols regulating ApoE gene function is mainly based on
studies of atherosclerotic diseases. Only several studies have focused on the regulation
of the ApoE gene by polyphenols in AD models [237]. Researchers have previously
found that the secretion of inflammatory factors is reduced upon administration of the
extract of Arabidopsis seedlings, which increases the yield of polyphenolsin mixed glial
cell cultures extracted from the cerebral cortex of ApoE-targeted replacement (ApoE TR)
mice or ApoE knockout (ApoE KO) mice. This suggests that polyphenols inhibit ApoE-
derived neuroinflammation [238]. Other studies have confirmed that single polar phenolic
compounds can improve the changes in cell redox state and cytotoxicity after induction and
that kaempferol can regulate the pathogenic conformation of the ApoE4 form by providing
ApoE-induced SK-N-SH cell blackcurrant extract (whose main components are resveratrol,
quercetin, kaempferol, and epigallocatechin gallate) [239].

8. Polyphenols and Other Mechanisms in Alzheimer’s Disease Development
8.1. Polyphenols and Insulin Resistance

Most patients with AD develop many other complications as well, such as obesity,
stroke, and type 2 diabetes mellitus (T2DM). These complications may coordinate or
aggravate the development of AD [240]. A meta-analysis revealed that diabetic patients
are more likely to convert from mild cognitive impairment (MCI) to AD compared to
non-diabetic AD patients, which indicates that T2DM increases the vulnerability of patients
to neurodegenerative diseases, including AD [241]. T2DM has been proven to be associated
with AD through insulin resistance [242]. Insulin resistance refers to the decline in the
efficiency of insulin in promoting glucose uptake and utilization and the compensatory
secretion of excessive insulin by the body to produce hyperinsulinemia, which is the
main cause and pathological phenomenon of T2DM [243]. Polyphenols were reported to
effectively inhibit insulin resistance. For example, insulin resistance in APP/PS1 transgenic
mice was found to decrease via upregulation of the PI3K/Akt signaling pathway upon
curcumin treatment [244]. Resveratrol and EGCG were also found to enhance the activity
of insulin-degrading enzyme (IDE) to decompose extracellular Aβ in neurons, and promote
its clearance in hyperinsulinemia caused by insulin resistance [245,246].

8.2. Polyphenols and Mitochondrial Dysfunction

Mitochondrial dysfunction is one of the most important mechanisms in the early stages
of AD, which is mainly caused by oxidative phosphorylation induced by insufficient glucose
metabolism. Ultimately, dysfunctional mitochondria produce less ATP and more ROS. This,
in turn, leads to pathological changes in AD, such as Aβ deposition, formation of NFTs,
and synaptic degeneration [247]. The recombinant sirtuin (SIRT) family plays an important
role in regulating mitochondrial proteins to maintain homeostasis during oxidative stress
and apoptosis. Recombinant sirtuin 3 (SIRT3) has been proposed as a new target for
AD treatment [248]. Previous studies have revealed that in the AD model presenilin
(psev1-v97l) transgenic mice honokiol upregulates the expression of mitochondrial SIRT3,
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increases the amount of produced ATP, decreases the amount of produced ROS, improves
the cognitive ability of mice, and thereby alleviates AD symptoms [249]. Other researchers
found that urolithin A (UA), a type of ellagitannin found in pomegranate and walnuts,
reduces mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP)
levels in a cellular model of early AD and increases the expression of genes involved
in mitochondrial biogenesis and mitochondrial respiration (oxidative phosphorylation,
OXPHOS). Urolithin A may thus also show therapeutic effects on AD [250].

8.3. Polyphenols and Faulty Autolysosome Acidification

The pathogenesis of AD has traditionally been accepted to originate from the forma-
tion of Aβ amyloid plaques. Here, amyloid plaques are first formed and then cause a series
of toxic reactions to kill nerve cells. However, according to this concept, clearing plaques
cannot remedy dead nerve cells according to this mechanism. This raises the question of
whether Aβ plaques are the cause or effect. A recent study where a variety of AD mouse
models were used disproved this traditional hypothesis and instead proposed that the
occurrence of AD begins with the death of nerve cells caused by faulty autolysosome acidi-
fication of nerve cells, followed by the formation of extracellular amyloid plaques [251].
The hydrolases in lysosomes are only active in acidic environments, which are mainly
maintained by the proton pump V-ATPase that pumps H+ ions from the cytoplasm into the
lysosomes. Once lysosomal acidification is blocked, the pipeline of substrate removal stops,
resulting in the formation and accumulation of many waste intermediates in lysosomes,
including Aβ and APP. When the lysosome cannot bear rupture, the hydrolase is released
into the cytoplasm to decompose the digestive cells and disintegrate them, eventually form-
ing “extracellular” amyloid plaques [251,252]. Therefore, the main idea of treatment based
on this mechanism is to restore the acidification function of the lysosomes. Previous experi-
ments have shown that resveratrol activates adenosine 5‘-monophosphate (AMP)-activated
protein kinase (AMPK) through pro-autophagic mechanisms and directly interacts with
SIRT1 in vitro to induce autophagy by controlling SIRT1-mediated transcriptional reg-
ulation or mTOR-dependent signaling pathways. Resveratrol thus shows the potential
to treat AD through these mechanisms [253–256]. Other studies have also revealed that
EGCG resists incomplete autophagy induced by the hepatitis B virus (HBV) and inhibits
its replication by enhancing lysosomal acidification [257]. Apple polyphenol extract (APE)
has also been proven to restore lysosomal acidification by activating the SIRT1/AMPK
signaling pathway, which may indicate another strategy for AD treatment [258].

8.4. Polyphenols and Disruption of the Intestinal Flora

The two-way communication system along the flora-gut-brain axis includes neural,
immune, endocrine, and metabolic pathways, all of which have a profound impact on
brain function and cognitive ability [259]. The relative abundance of bacterial species
in patients with cognitive impairment was reported to change in previous studies. This
change is manifested by an increase in the abundance of pro-inflammatory Escherichia
coli/Shigella species and a decrease in the abundance of anti-inflammatory Escherichia
coli [260]. On the other hand, the proportion of beneficial bacteria that synthesizes short-
chain fatty acids (SCFA: acetate, propionate, butyrate) was found to decrease in the fecal
flora of AD patients, whereas the abundance of pro-inflammatory bacteria was found
to increase [261]. This suggests that the loss of intestinal homeostasis and inflammation
caused by disruption of the intestinal flora may lead to the development of AD. Previous
studies have revealed the effect of polyphenols on the richness, diversity, and composition
of intestinal microbiota [262]. Curcumin was also found to improve the memory and
cognitive abilities of APP/PS1 transgenic mice, increase intestinal bacterial diversity and
reduce the abundance of Escherichia coli/Shigella [263]. In addition, a resveratrol-selenium-
peptide nanocomposite was also found to improve cognitive impairment in AD model mice
by reducing intestinal bacterial flora disruption due to oxidative stress and inflammation,
such as Alistipes, Helicobacter pylori, Rikenella, Desulfovibrio, and Faecalibaculum [264].
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The idea of treating AD by regulating intestinal flora has received increasing attention in
the clinic, yet more research is still needed to confirm the proposed mechanisms.

9. Potential Regulation Effect of Polyphenols on Recently Identified Targets of AD

Mammalian STE20-like protein kinase (MST) is an important component of the Hippo
pathway, in which MST1/2 regulates neuronal death and neuroinflammation [265,266].
A recent study revealed that Mst1 activity is increased with the accumulation of Aβ in
the hippocampus of 5xfad mice. The overexpression of MST1/2 was also found to induce
an AD-like phenotype in normal mice yet without a significant effect on Aβ levels. This
was found to accelerate the decline in cognitive abilities of 2-month-old mice and caused
damage to synaptic plasticity. It was also found to promote neuronal apoptosis by activating
and phosphorylating p53. Knockout or chemical inactivation of Mst1 was found to be
effective in alleviating AD symptoms [267]. Mst1 is therefore expected to become a potential
target for the treatment of AD. Although there are currently only a few reports on the
treatment of AD with polyphenols with this target, studies have already shown that tea
polyphenols reverse the upregulation of MST1/2 in RAW264.7 cells after H2O2 application,
inhibit oxidative stress through the MST/Nrf2 axis, and Keap1/Nrf2/HO-1 signaling
pathways, and reduce the production of ROS, the release of NO, and the level of MDA in
cells [268]. These findings highlight the therapeutic potential of polyphenols in alleviating
AD symptoms by acting on this target.

Receptor-interacting protein kinase 1 (RIPK1), as a kind of serine/threonine protein
kinase, a member of the RIP family, has been widely mentioned in research related to necro-
sis [269–271]. It was found that RIPK1 was highly expressed in AD patients, AD model mice,
and microglia of the AD model [272]. In addition, RIPK1 inhibitors can reduce the levels of
Aβ and p-tau in the cortex and hippocampus of APP/PS1 mice [273]. These data indicate
that RIPK1 is expected to become a potential target for the treatment of AD. Although there
are currently only a few reports aimed at this target to treat AD with polyphenols, some
studies have shown that curcumin can reduce the levels of oxidative stress biomarkers
and inflammatory cytokines and reduce the necrosis and apoptosis of chicken liver tissue
by regulating TLR4/RIPK signal pathway [274]. In addition, some studies have also con-
firmed that resveratrol can inhibit myocardial cell necrosis and apoptosis by inhibiting
TNF-a/receptor-interacting protein kinase 1 (RIP1)/RIP3/mixed-lineage kinase domain-
like (MLKL) signaling pathway [275]. This suggests that the possible therapeutic ability of
polyphenols on AD can be studied from this target in the future.

10. The Potential and Mechanisms of Action of Other Common Plant Polyphenols for
AD Treatment

Polyphenols are widely found in various common plant species and show unlimited
potential for screening of active ingredients for the prevention and treatment of AD. As
mentioned above, polyphenols can alleviate AD symptoms through several mechanisms,
including antioxidant stress, reduction of neuroinflammation, inhibition of Aβ production
and aggregation, and inhibition of AchE activity. Curcumin, resveratrol, proanthocyanidins,
and EGCG are extensively studied plant polyphenols in terms of their potential for the
prevention and treatment of AD. However, the use of other plant polyphenols for AD
treatment has also gradually attracted attention (Table 2).
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Table 2. Prevention and treatment potential of polyphenols on AD and its mechanism.

Classification Compounds Main Sources AD Model Dose and Time Mechanism Reference

Flavone

Apigenin
Apium graveolens, Petroselinum crispum, Citrus

sinensis, Vitis vinifera, Allium sativum,
Marchantia polymorpha

APP/PS1 mice 40 mg/kg, 12 weeks Antioxidant stress and
inhibition of Aβ production [276]

Aβ1–42 or LPS-induced coculture of
cortical neurons and glial cells in

neonatal Wistar rats
1 µM, 24 h Anti-inflammatory [277]

Baicalin Scutellaria baicalensis Georgi APP/PS1 mice; Aβ1–42-induced BV2 and
SH-SY5Y cells

100 mg/kg, 33 days; 0, 10,
20, 40 µM, 24 h

Inhibiting NLRP3
inflammatory corpuscle

activation by TLR4/
NF-κB pathway

[278]

Kaempferol

Allium tuberosum, Allium cepa, Vigna radiata,
Cucurbita moschata, Solanum tuberosum, Solanum
lycopersicum, Fragaria ananassa, Forsythia suspensa,

Rosmarinus officinalis, Acacia farnesiana, Ginkgo,
Mimosa pudica, Cinnamomum tamala

Female ovariectomized (OVX) Wistar
rats induced by ICV of STZ 10 mg/kg, 21 days Antioxidative stress,

anti-neuroinflammation [279]

Lipoprotein particles containing
ApoE4-induced SK-N-SH cells 20 µM, 24 h Changing the conformation

and function of ApoE4 [239]

Luteolin

Arachis hypogaea, Brassica napus, Olea europaea,
Fagopyrum esculentum, Theobroma, Capsicum

annuum, Apium graveolens, Daucus carota,
Cucumis sativus, Lactuca sativus, Punica granatum

3 × Tg-AD mice 20, 40 mg/kg, 3 weeks
inhibiting endoplasmic

reticulum stress-dependent
neuroinflammation

[280]

Flavanol

Epicatechin Tea-leaves, cocoa, grape seeds, Fagopyrum dibotrys,
Amygdalus persica, Malus pumila

Methamphetamine (METH) induced
HT22 cells 10, 20 µM, 1 h Antioxidant [281]

Myricetin Fragaria ananassa, Malus pumila, Spinacia oleracea,
Aloe vera, Daucus carota, Fructus Mori, red wine

Primary rat cortical neurons induced by
Aβ1–42

10µM, 48 h Inhibiting the activity of
BACE-1; inhibiting Aβ [282]

Quercetin
Citrus reticulata, Momordica charantia, Malus

pumila, Allium cepa, Vitis vinifera, Vaccinium spp,
Rubus idaeus

Aβ25–35-induced PC-12 cells 10, 20, 40, 80 µM, 48 h Antioxidant [283]

Okadaic acid (OA)-induced HT22 cells 5, 10 µM, 12 h Antioxidant, inhibiting tau
hyperphosphorylation [284]

APP/PS1 mice 2 mg/kg, 7–8 months inhibition of Aβ production [285]

Phenolic acid

Caffeic acid
Solanum lycopersicum, Daucus carota, Fragaria

ananassa, Semen Trigonellae, wheat wine, tea, coffee,
apple juice

Mice induced by ICV of Aβ25–35 10, 50 mg/kg, 14 days Antioxidant [286]

Gallic acid

Vitis vinifera, Lilium brownii viridulum, Punica
granatum, Rosa rugosa, Toxicodendron vernicifluum,
Quercus palustris, Hamamelis mollis, Rhus chinensis,

Terminalia chebula

APP/PS1 mice 20 mg/kg, 6 months
Antioxidant stress,

anti-inflammatory, affecting
α-, β-, γ-secretase activity

[287]

AlCl3-induced Wistar rats 100 mg/kg, 60 days Antioxidant [288]

APP/PS1 mice 30 mg/kg, 30 days Inhibiting Aβ1–42
aggregation [289]

Aβ1–42-induced primary microglia and
BV2 cells 5–50 µM, 24 h Inhibiting NF-κB

acetylation, antioxidant [290]
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Table 2. Cont.

Classification Compounds Main Sources AD Model Dose and Time Mechanism Reference

Phenylpropanoid

Chlorogenic acid
coffee, Lycium chinense, Lonicera japonica,

Eucommia ulmoides, Arctium lappa,
Chrysanthemum indicum, Malus pumila, Prunus

pseudocerasus, Camellia sinensis

APP/PS1 mice; Aβ25–35-induced
SH-SY5Y cells

40 mg/kg, 6 months; 3.125,
6.25, 12.5, 25, 50 µM,

24, 48 h

Inhibiting excessive
autophagy and Aβ

production by regulating
mTOR/TFEB

signaling pathway

[291]

Aβ25–35-induced primary rat
hippocampal neurons 12.5, 25, 50 µM, 2 h Antioxidant [292]

Ferulic acid
Triticum sativum, beer, coffee, berries, Avena sativa,

Ananas comosus, Arachis hypogaea
APP/PS1 mice 20 mg/kg, 30 days

Improving hippocampal
capillary perfusion

insufficiency
[293]

ICR mice induced by ICV of Aβ1–42 14–19 mg/kg, 30 days Antioxidant [294]

Flavanonol Dihydromyricetin Vitis vinifera, Myrica rubra, Ampelopsis
grossedentata, Ginkgo

SD rats induced by ICV of Aβ1–42 100, 200 mg/kg, 21 days
Anti-inflammatory by

activating AMPK/SIRT1
signaling pathway

[295]

LPS-induced BV2 and
primary microglias 10, 30, 50 µM, 1 h Anti-inflammatory by

NF-κB signaling pathway [296]

Isoflavone Genistein Glycine max

Wistar rats induced by
bilateral ICV of Aβ1–42

10 mg/kg, 10 days

Attenuating synaptic
toxicity, inhibiting tau
hyperphosphorylation,

inactivating ERK

[297]

Wistar rats induced by ICV of STZ 150 mg/kg, 30, 90 days
Anti-inflammatory;

Stimulating autophagy of
Aβ40, 42 and p-tau

[298]

Aβ25–35-induced SH-SY5Y cells 1, 10 nM, 24 h

Inhibiting Aβ induced
apoptosis and Akt

inactivation, inhibiting tau
hyperphosphorylation

[299]

Flavonone Hesperidin Citrus reticulata Blanco C57BL/6N induced by ICV of Aβ1–42;
Aβ1–42-induced BV2 and HT22 cells

50 mg/kg, 6 weeks;
50 µM, 24 h

Inhibiting oxidative stress
by regulating Nrf2/HO-1;
Inhibiting neuroinflamma-

tion by regulating
TLR4/NF-κB; Inhibiting the

expression of APP,
BACE-1, Aβ

[300]

Ellagitannin Punicalagin Punica granatum LPS-induced ICR; Primary rat cortical
astrocytes and BV2

1.5 mg/kg, 4 weeks; 10, 20,
50 µM, 24 h Anti-inflammatory [301]
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Table 2. Cont.

Classification Compounds Main Sources AD Model Dose and Time Mechanism Reference

Isothiocyanate Sulforaphane

Brassica oleracea, Nasturtium officinale, Brassica
oleracea var. acephala DC, Brassica oleracea var.

capitata, Brussels sprouts, Brassica rapa var. glabra
Regel, Brassica juncea, Brassica oleracea var.

botrytis Linnaeus

5 × FAD mice 5, 10 mg/kg, 2 months Inhibiting Aβ, inhibiting
phosphorylation tau [302]

Benzotropolones Theaflavin Camellia sinensis ICR mice induced by ICV of LPS; LPS,
IFN-γ induced primary microglias

10, 50 mg/kg, 3 days; 10,
30 µM, 12 h Anti-inflammatory [303]
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Previous studies have emphasized that in aging-related neurodegenerative diseases,
including AD, plant polyphenols do not just affect a specific mechanism of the pathogenesis
of these diseases, such as inhibition of Aβ production and aggregation, anti-inflammatory
response, and antioxidant stress. The therapeutic effect on AD may also alleviate disease
symptoms by regulating the links between multiple targets and mechanisms [304]. Some
polyphenols were found to produce rapid benefits after a single administration, especially
in terms of attention function and working memory, yet these polyphenols need to be
consumed over a long period of time if adequate observations are to be made. Researchers
also prefer to administer polyphenols in the early stage of the disease, based on the
expectation that dietary intake of polyphenols is more suitable for the early stage of
AD [43,305]. In this stage, polyphenols mainly play a therapeutic role in antioxidant stress,
anti-inflammatory activity, inhibition of Aβ production and aggregation, and inhibition of
AchE activity.

11. Limitations in the Application and Improvements in Preparation of Polyphenols

An increasing number of studies have revealed that a diet rich in polyphenols can
prevent the onset of AD. Therefore, interest in easily obtained plant polyphenols with low
toxicity has increased recently. Hence, the therapeutic potential of these compounds against
AD has also been studied by more scientists over time. However, polyphenols also suffer
from limitations that hinder their clinical use, such as low bioavailability and their unclear
role in the BBB [306,307].

Although curcumin shows a certain degree of neuroprotective effect due to its strong
hydrophobicity and low solubility, it has poor absorption and stability at physiological pH
and suffers from rapid systemic elimination, poor bioavailability, and low brain bioavail-
ability due to the BBB. The retention time of curcumin in the brain is very short [307–309].
To overcome this problem, different curcumin carriers, such as liposome curcumin, cur-
cumin nanoparticles, and curcumin phospholipid complexes, have been developed pre-
viously [310]. Curcumin-loaded solid lipid nanoparticles (SLN) and nanostructured lipid
carriers (NLC) were found to improve the stability of curcumin and increase its permeabil-
ity through the BBB by a factor of 1.5 [311]. The melting crystallization method was also
found to effectively improve the solubility of curcumin and wrap it into the cavity of lipid
poly (lactic-co-glycolic acid) (PLGA) nanobubbles. The resulting curcumin-loaded lipid
PLGA nanobubbles (Cur NBS) can pass through the BBB and deliver the drug to the brain
core, which was found to significantly alleviate the symptoms in PD mice [312].

Similarly, the clinical use of resveratrol is also limited owing to its low bioavailability.
Extensive metabolism in the gut and liver leads to an oral bioavailability of less than
1%, and dose escalation and repeated administration were found to be ineffective [313].
Since the success of the treatment of nervous system diseases largely depends on the
bioavailability of drugs, novel strategies are needed for the use of resveratrol in a clinical
context [314]. Currently, resveratrol delivery nanocarriers developed for the treatment of
AD mainly include lipid core nano capsules (NC), polymer micelles, and SLN [315]. A
comparison of resveratrol-loaded NC and free resveratrol in rats exposed to Aβ showed that
resveratrol-loaded NC can play a neuroprotective role by increasing the concentration of
resveratrol in brain tissue and reducing the harmful effects caused by Aβ, such as memory
loss, learning difficulties, synaptophysin level reduction, and astrocyte and microglial
activation [316]. Polymer micelles loaded with resveratrol can reduce the cytotoxicity of
free resveratrol, protect PC12 cells from Aβ through antioxidant stress, and reduce the
activity of Caspase-3 [317].

Although proanthocyanidins can promote health, only monomers and smaller oligomeric
forms of proanthocyanidins can be absorbed. Proanthocyanidins with a degree of polymer-
ization of more than four cannot be absorbed due to their large molecular sizes and the
presence of the intestinal barrier [318]. High clearance and rapid metabolism of proantho-
cyanidins after oral administration were found to result in a significantly lower bioavail-
ability (8–11%), as estimated from the blood area under the concentration–time curve
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(AUC) (0–24) values [319]. The absorption and metabolism of procyanidin B2 following
oral administration in mice were also studied, and a total of 45 metabolites of procyanidin
B2 were identified. The small intestine included the highest proportion of metabolites
compared to other tissues. The liver was also found as the main binding reaction organ
for procyanidin B2. Furthermore, procyanidins are among the few polyphenols that can
penetrate the blood-brain barrier after oral absorption. The metabolites of procyanidin
B2 in the mouse brain include hydration, sulfonation, and dihydrate products [320]. The
optimization of the dosage form of procyanidins mostly involves the production of mi-
crocapsules, nano-emulsions, liposomes, and clathrate compounds in order to improve
stability and bioavailability simultaneously [321].

Polyphenols have considerable application potential in the field of natural products
as drugs and health products owing to their antioxidant, antibacterial, anti-inflammatory,
and other favorable biological activities [322]. However, most polyphenols are insoluble
and unstable, and their low absorption and bioavailability limit their clinical and industrial
application [323]. With the development of improved nanomaterials for biomedical appli-
cations, polyphenol-loaded drug delivery systems that can improve the in vitro stability
and bioavailability of polyphenols have been favored by researchers [324]. For example,
polymer nanoparticles, lipid-based nanocarriers, gold–silver nanoparticles, silica nanopar-
ticles of resveratrol, lipid nanoparticles, protein nanoparticles, and PLGA nanoparticles of
EGCG have been developed in recent years [325].

12. Conclusions

In conclusion, recent scientific evidence shows that the development of AD is ac-
companied by pathological changes such as oxidative stress, Aβ deposition, abnormal
phosphorylation of tau protein, neuroinflammation, and abnormal acetylcholine activity,
in addition to changes in various other physiological mechanisms. Due to the complex
molecular mechanisms related to AD, prevention and treatment can not only target a single
protein or gene but also need to consider new strategies for multiple proteins and genes.
Polyphenols, as secondary metabolites widely found in natural plants, especially curcumin,
resveratrol, proanthocyanidins, EGCG, and other plant polyphenols, can alleviate the
symptoms of AD patients through antioxidative, anti-inflammatory, Aβ inhibitory, and
other neuroprotective effects when used as dietary supplements (Figure 6).
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Figure 6. Mechanisms of action of curcumin, resveratrol, proanthocyanidins, and EGCG in AD
treatment: Curcumin, resveratrol, proanthocyanidins, and EGCG alleviate the pathological symptoms
of AD mainly through antioxidant stress, anti-neuroinflammation, inhibition of Aβ production and
inhibition of AchE.
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Future research on polyphenols should focus on clinical applications, and especially
the connection between in vitro and animal experiments. If the bioavailabilities of several
powerful polyphenols need to be further improved, the preparation of nanoparticles,
liposomes, and other new dosage forms that do not affect function while maintaining
high bioavailability should be prioritized in clinical research. Moreover, it should also be
recognized that in vitro AD experiments cannot completely simulate the long course of a
disease that lasts for several years. Therefore, more long-term experiments and large-scale
epidemiological and clinical studies are needed to determine whether polyphenols have
sufficient beneficial effects on the slow development of AD. The combined use of several
widely studied polyphenols is likely to have a greater effect. In addition, it is also necessary
to evaluate the risks and safety of the use of polyphenols and investigate the possible
adverse reactions to medication in clinical research. In general, the development of plant
polyphenols with low toxicity and high availability as drugs has good potential to prevent
and alleviate AD symptoms.
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